Publications

Displaying 1 - 11 of 11
  • Mooijman, S., Schoonen, R., Roelofs, A., & Ruiter, M. B. (2024). Benefits of free language choice in bilingual individuals with aphasia. Aphasiology, 38(11), 1793-1831. doi:10.1080/02687038.2024.2326239.

    Abstract

    Background

    Forced switching between languages poses demands on control abilities, which may be difficult to meet for bilinguals with aphasia. Freely choosing languages has been shown to increase naming efficiency in healthy bilinguals, and lexical accessibility was found to be a predictor for language choice. The overlap between bilingual language switching and other types of switching is yet unclear.

    Aims

    This study aimed to examine the benefits of free language choice for bilinguals with aphasia and to investigate the overlap of between- and within-language switching abilities.

    Methods & Procedures

    Seventeen bilinguals with aphasia completed a questionnaire and four web-based picture naming tasks: single-language naming in the first and second language separately; voluntary switching between languages; cued and predictable switching between languages; cued and predictable switching between phrase types in the first language. Accuracy and naming latencies were analysed using (generalised) linear mixed-effects models.

    Outcomes & Results

    The results showed higher accuracy and faster naming for the voluntary switching condition compared to single-language naming and cued switching. Both voluntary and cued language switching yielded switch costs, and voluntary switch costs were larger. Ease of lexical access was a reliable predictor for voluntary language choice. We obtained no statistical evidence for differences or associations between switch costs in between- and within-language switching.

    Conclusions

    Several results point to benefits of voluntary language switching for bilinguals with aphasia. Freely mixing languages improved naming accuracy and speed, and ease of lexical access affected language choice. There was no statistical evidence for overlap of between- and within-language switching abilities. This study highlights the benefits of free language choice for bilinguals with aphasia.
  • Mooijman, S., Schoonen, R., Ruiter, M. B., & Roelofs, A. (2024). Voluntary and cued language switching in late bilingual speakers. Bilingualism: Language and Cognition, 27(4), 610-627. doi:10.1017/S1366728923000755.

    Abstract

    Previous research examining the factors that determine language choice and voluntary switching mainly involved early bilinguals. Here, using picture naming, we investigated language choice and switching in late Dutch–English bilinguals. We found that naming was overall slower in cued than in voluntary switching, but switch costs occurred in both types of switching. The magnitude of switch costs differed depending on the task and language, and was moderated by L2 proficiency. Self-rated rather than objectively assessed proficiency predicted voluntary switching and ease of lexical access was associated with language choice. Between-language and within-language switch costs were not correlated. These results highlight self-rated proficiency as a reliable predictor of voluntary switching, with language modulating switch costs. As in early bilinguals, ease of lexical access was related to word-level language choice of late bilinguals.
  • Jongman, S. R., Roelofs, A., & Lewis, A. G. (2020). Attention for speaking: Prestimulus motor-cortical alpha power predicts picture naming latencies. Journal of Cognitive Neuroscience, 32(5), 747-761. doi:10.1162/jocn_a_01513.

    Abstract

    There is a range of variability in the speed with which a single speaker will produce the same word from one instance to another. Individual differences studies have shown that the speed of production and the ability to maintain attention are related. This study investigated whether fluctuations in production latencies can be explained by spontaneous fluctuations in speakers' attention just prior to initiating speech planning. A relationship between individuals' incidental attentional state and response performance is well attested in visual perception, with lower prestimulus alpha power associated with faster manual responses. Alpha is thought to have an inhibitory function: Low alpha power suggests less inhibition of a specific brain region, whereas high alpha power suggests more inhibition. Does the same relationship hold for cognitively demanding tasks such as word production? In this study, participants named pictures while EEG was recorded, with alpha power taken to index an individual's momentary attentional state. Participants' level of alpha power just prior to picture presentation and just prior to speech onset predicted subsequent naming latencies. Specifically, higher alpha power in the motor system resulted in faster speech initiation. Our results suggest that one index of a lapse of attention during speaking is reduced inhibition of motor-cortical regions: Decreased motor-cortical alpha power indicates reduced inhibition of this area while early stages of production planning unfold, which leads to increased interference from motor-cortical signals and longer naming latencies. This study shows that the language production system is not impermeable to the influence of attention.
  • Zheng, X., Roelofs, A., & Lemhöfer, K. (2020). Language selection contributes to intrusion errors in speaking: Evidence from picture naming. Bilingualism: Language and Cognition, 23, 788-800. doi:10.1017/S1366728919000683.

    Abstract

    Bilinguals usually select the right language to speak for the particular context they are in, but sometimes the nontarget language intrudes. Despite a large body of research into language selection and language control, it remains unclear where intrusion errors originate from. These errors may be due to incorrect selection of the nontarget language at the conceptual level, or be a consequence of erroneous word selection (despite correct language selection) at the lexical level. We examined the former possibility in two language switching experiments using a manipulation that supposedly affects language selection on the conceptual level, namely whether the conversational language context was associated with the target language (congruent) or with the alternative language (incongruent) on a trial. Both experiments showed that language intrusion errors occurred more often in incongruent than in congruent contexts, providing converging evidence that language selection during concept preparation is one driving force behind language intrusion.
  • Zheng, X., Roelofs, A., Erkan, H., & Lemhöfer, K. (2020). Dynamics of inhibitory control during bilingual speech production: An electrophysiological study. Neuropsychologia, 140: 107387. doi:10.1016/j.neuropsychologia.2020.107387.

    Abstract

    Bilingual speakers have to control their languages to avoid interference, which may be achieved by enhancing the target language and/or inhibiting the nontarget language. Previous research suggests that bilinguals use inhibition (e.g., Jackson et al., 2001), which should be reflected in the N2 component of the event-related potential (ERP) in the EEG. In the current study, we investigated the dynamics of inhibitory control by measuring the N2 during language switching and repetition in bilingual picture naming. Participants had to name pictures in Dutch or English depending on the cue. A run of same-language trials could be short (two or three trials) or long (five or six trials). We assessed whether RTs and N2 changed over the course of same-language runs, and at a switch between languages. Results showed that speakers named pictures more quickly late as compared to early in a run of same-language trials. Moreover, they made a language switch more quickly after a long run than after a short run. This run-length effect was only present in the first language (L1), not in the second language (L2). In ERPs, we observed a widely distributed switch effect in the N2, which was larger after a short run than after a long run. This effect was only present in the L2, not in the L1, although the difference was not significant between languages. In contrast, the N2 was not modulated during a same-language run. Our results suggest that the nontarget language is inhibited at a switch, but not during the repeated use of the target language.

    Additional information

    Data availability

    Files private

    Request files
  • Meeuwissen, M., Roelofs, A., & Levelt, W. J. M. (2003). Planning levels in naming and reading complex numerals. Memory & Cognition, 31(8), 1238-1249.

    Abstract

    On the basis of evidence from studies of the naming and reading of numerals, Ferrand (1999) argued that the naming of objects is slower than reading their names, due to a greater response uncertainty in naming than in reading, rather than to an obligatory conceptual preparation for naming, but not for reading. We manipulated the need for conceptual preparation, while keeping response uncertainty constant in the naming and reading of complex numerals. In Experiment 1, participants named three-digit Arabic numerals either as house numbers or clock times. House number naming latencies were determined mostly by morphophonological factors, such as morpheme frequency and the number of phonemes, whereas clock time naming latencies revealed an additional conceptual involvement. In Experiment 2, the numerals were presented in alphabetic format and had to be read aloud. Reading latencies were determined mostly by morphophonological factors in both modes. These results suggest that conceptual preparation, rather than response uncertainty, is responsible for the difference between naming and reading latencies.
  • Meeuwissen, M., Roelofs, A., & Levelt, W. J. M. (2003). Naming analog clocks conceptually facilitates naming digital clocks. In Proceedings of XIII Conference of the European Society of Cognitive Psychology (ESCOP 2003) (pp. 271-271).
  • Meyer, A. S., Roelofs, A., & Levelt, W. J. M. (2003). Word length effects in object naming: The role of a response criterion. Journal of Memory and Language, 48(1), 131-147. doi:10.1016/S0749-596X(02)00509-0.

    Abstract

    According to Levelt, Roelofs, and Meyer (1999) speakers generate the phonological and phonetic representations of successive syllables of a word in sequence and only begin to speak after having fully planned at least one complete phonological word. Therefore, speech onset latencies should be longer for long than for short words. We tested this prediction in four experiments in which Dutch participants named or categorized objects with monosyllabic or disyllabic names. Experiment 1 yielded a length effect on production latencies when objects with long and short names were tested in separate blocks, but not when they were mixed. Experiment 2 showed that the length effect was not due to a difference in the ease of object recognition. Experiment 3 replicated the results of Experiment 1 using a within-participants design. In Experiment 4, the long and short target words appeared in a phrasal context. In addition to the speech onset latencies, we obtained the viewing times for the target objects, which have been shown to depend on the time necessary to plan the form of the target names. We found word length effects for both dependent variables, but only when objects with short and long names were presented in separate blocks. We argue that in pure and mixed blocks speakers used different response deadlines, which they tried to meet by either generating the motor programs for one syllable or for all syllables of the word before speech onset. Computer simulations using WEAVER++ support this view.
  • Roelofs, A. (2003). Shared phonological encoding processes and representations of languages in bilingual speakers. Language and Cognitive Processes, 18(2), 175-204. doi:10.1080/01690960143000515.

    Abstract

    Four form-preparation experiments investigated whether aspects of phonological encoding processes and representations are shared between languages in bilingual speakers. The participants were Dutch--English bilinguals. Experiment 1 showed that the basic rightward incrementality revealed in studies for the first language is also observed for second-language words. In Experiments 2 and 3, speakers were given words to produce that did or did not share onset segments, and that came or did not come from different languages. It was found that when onsets were shared among the response words, those onsets were prepared, even when the words came from different languages. Experiment 4 showed that preparation requires prior knowledge of the segments and that knowledge about their phonological features yields no effect. These results suggest that both first- and second-language words are phonologically planned through the same serial order mechanism and that the representations of segments common to the languages are shared.
  • Roelofs, A. (2003). Goal-referenced selection of verbal action: Modeling attentional control in the Stroop task. Psychological Review, 110(1), 88-125.

    Abstract

    This article presents a new account of the color-word Stroop phenomenon ( J. R. Stroop, 1935) based on an implemented model of word production, WEAVER++ ( W. J. M. Levelt, A. Roelofs, & A. S. Meyer, 1999b; A. Roelofs, 1992, 1997c). Stroop effects are claimed to arise from processing interactions within the language-production architecture and explicit goal-referenced control. WEAVER++ successfully simulates 16 classic data sets, mostly taken from the review by C. M. MacLeod (1991), including incongruency, congruency, reverse-Stroop, response-set, semantic-gradient, time-course, stimulus, spatial, multiple-task, manual, bilingual, training, age, and pathological effects. Three new experiments tested the account against alternative explanations. It is shown that WEAVER++ offers a more satisfactory account of the data than other models.
  • Roelofs, A. (2003). Modeling the relation between the production and recognition of spoken word forms. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 115-158). Berlin: Mouton de Gruyter.

Share this page