Displaying 1 - 16 of 16
-
Jongman, S. R., Roelofs, A., & Meyer, A. S. (2015). Sustained attention in language production: An individual differences investigation. Quarterly Journal of Experimental Psychology, 68, 710-730. doi:10.1080/17470218.2014.964736.
Abstract
Whereas it has long been assumed that most linguistic processes underlying language production happen automatically, accumulating evidence suggests that some form of attention is required. Here, we investigated the contribution of sustained attention, which is the ability to maintain alertness over time. First, the sustained attention ability of participants was measured using auditory and visual continuous performance tasks. Next, the participants described pictures using simple noun phrases while their response times (RTs) and gaze durations were measured. Earlier research has suggested that gaze duration reflects language planning processes up to and including phonological encoding. Individual differences in sustained attention ability correlated with individual differences in the magnitude of the tail of the RT distribution, reflecting the proportion of very slow responses, but not with individual differences in gaze duration. These results suggest that language production requires sustained attention, especially after phonological encoding. -
Jongman, S. R., Meyer, A. S., & Roelofs, A. (2015). The role of sustained attention in the production of conjoined noun phrases: An individual differences study. PLoS One, 10(9): e0137557. doi:10.1371/journal.pone.0137557.
Abstract
It has previously been shown that language production, performed simultaneously with a nonlinguistic task, involves sustained attention. Sustained attention concerns the ability to maintain alertness over time. Here, we aimed to replicate the previous finding by showing that individuals call upon sustained attention when they plan single noun phrases (e.g., "the carrot") and perform a manual arrow categorization task. In addition, we investigated whether speakers also recruit sustained attention when they produce conjoined noun phrases (e.g., "the carrot and the bucket") describing two pictures, that is, when both the first and second task are linguistic. We found that sustained attention correlated with the proportion of abnormally slow phrase-production responses. Individuals with poor sustained attention displayed a greater number of very slow responses than individuals with better sustained attention. Importantly, this relationship was obtained both for the production of single phrases while performing a nonlinguistic manual task, and the production of noun phrase conjunctions in referring to two spatially separated objects. Inhibition and updating abilities were also measured. These scores did not correlate with our measure of sustained attention, suggesting that sustained attention and executive control are distinct. Overall, the results suggest that planning conjoined noun phrases involves sustained attention, and that language production happens less automatically than has often been assumed. -
Piai, V., Roelofs, A., Rommers, J., & Maris, E. (2015). Beta oscillations reflect memory and motor aspects of spoken word production. Human brain mapping, 36(7), 2767-2780. doi:10.1002/hbm.22806.
Abstract
Two major components form the basis of spoken word production: the access of conceptual and lexical/phonological information in long-term memory, and motor preparation and execution of an articulatory program. Whereas the motor aspects of word production have been well characterized as reflected in alpha-beta desynchronization, the memory aspects have remained poorly understood. Using magnetoencephalography, we investigated the neurophysiological signature of not only motor but also memory aspects of spoken-word production. Participants named or judged pictures after reading sentences. To probe the involvement of the memory component, we manipulated sentence context. Sentence contexts were either constraining or nonconstraining toward the final word, presented as a picture. In the judgment task, participants indicated with a left-hand button press whether the picture was expected given the sentence. In the naming task, they named the picture. Naming and judgment were faster with constraining than nonconstraining contexts. Alpha-beta desynchronization was found for constraining relative to nonconstraining contexts pre-picture presentation. For the judgment task, beta desynchronization was observed in left posterior brain areas associated with conceptual processing and in right motor cortex. For the naming task, in addition to the same left posterior brain areas, beta desynchronization was found in left anterior and posterior temporal cortex (associated with memory aspects), left inferior frontal cortex, and bilateral ventral premotor cortex (associated with motor aspects). These results suggest that memory and motor components of spoken word production are reflected in overlapping brain oscillations in the beta band.Additional information
hbm22806-sup-0001-suppinfo1.docxFiles private
Request files -
Piai, V., Roelofs, A., & Roete, I. (2015). Semantic interference in picture naming during dual-task performance does not vary with reading ability. Quarterly Journal of Experimental Psychology, 68(9), 1758-68. doi:10.1080/17470218.2014.985689.
Abstract
Previous dual-task studies examining the locus of semantic interference of distractor words in picture naming have obtained diverging results. In these studies, participants manually responded to tones and named pictures while ignoring distractor words (picture-word interference, PWI) with varying stimulus onset asynchrony (SOA) between tone and PWI stimulus. Whereas some studies observed no semantic interference at short SOAs, other studies observed effects of similar magnitude at short and long SOAs. The absence of semantic interference in some studies may perhaps be due to better reading skill of participants in these than in the other studies. According to such a reading-ability account, participants' reading skill should be predictive of the magnitude of their interference effect at short SOAs. To test this account, we conducted a dual-task study with tone discrimination and PWI tasks and measured participants' reading ability. The semantic interference effect was of similar magnitude at both short and long SOAs. Participants' reading ability was predictive of their naming speed but not of their semantic interference effect, contrary to the reading ability account. We conclude that the magnitude of semantic interference in picture naming during dual-task performance does not depend on reading skill. -
Shao, Z., Roelofs, A., Martin, R., & Meyer, A. S. (2015). Selective inhibition and naming performance in semantic blocking, picture-word interference, and color-word stroop tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 41, 1806-1820. doi:10.1037/a0039363.
Abstract
In two studies, we examined whether explicit distractors are necessary and sufficient toevoke selective inhibition in three naming tasks: the semantic blocking, picture-word interference, and color-word Stroop task. Delta plots were used to quantify the size of the interference effects as a function of reaction time (RT). Selective inhibition was operationalized as the decrease in the size of the interference effect as a function of naming RT. For all naming tasks, mean naming RTs were significantly longer in the interference condition than in a control condition. The slopes of the interference effects for the longest naming RTs correlated with the magnitude of the mean interference effect in both the semantic blocking task and the picture-word interference task, suggesting that selective inhibition was involved to reduce the interference from strong semantic competitors either invoked by a single explicit competitor or strong implicit competitors in picture naming. However, there was no correlation between the slopes and the mean interference effect in the Stroop task, suggesting less importance of selective inhibition in this task despite explicit distractors. Whereas the results of the semantic blocking task suggest that an explicit distractor is not necessary for triggering inhibition, the results of the Stroop task suggest that such a distractor is not sufficient for evoking inhibition either. -
Piai, V., Roelofs, A., & Schriefers, H. (2012). Distractor strength and selective attention in picture-naming performance. Memory and cognition, 40, 614-627. doi:10.3758/s13421-011-0171-3.
Abstract
Whereas it has long been assumed that competition plays a role in lexical selection in word production (e.g., Levelt, Roelofs, & Meyer, 1999), recently Finkbeiner and Caramazza (2006) argued against the competition assumption on the basis of their observation that visible distractors yield semantic interference in picture naming, whereas masked distractors yield semantic facilitation. We examined an alternative account of these findings that preserves the competition assumption. According to this account, the interference and facilitation effects of distractor words reflect whether or not distractors are strong enough to exceed a threshold for entering the competition process. We report two experiments in which distractor strength was manipulated by means of coactivation and visibility. Naming performance was assessed in terms of mean response time (RT) and RT distributions. In Experiment 1, with low coactivation, semantic facilitation was obtained from clearly visible distractors, whereas poorly visible distractors yielded no semantic effect. In Experiment 2, with high coactivation, semantic interference was obtained from both clearly and poorly visible distractors. These findings support the competition threshold account of the polarity of semantic effects in naming. -
Piai, V., Roelofs, A., & van der Meij, R. (2012). Event-related potentials and oscillatory brain responses associated with semantic and Stroop-like interference effects in overt naming. Brain Research, 1450, 87-101. doi:10.1016/j.brainres.2012.02.050.
Abstract
Picture–word interference is a widely employed paradigm to investigate lexical access in word production: Speakers name pictures while trying to ignore superimposed distractor words. The distractor can be congruent to the picture (pictured cat, word cat), categorically related (pictured cat, word dog), or unrelated (pictured cat, word pen). Categorically related distractors slow down picture naming relative to unrelated distractors, the so-called semantic interference. Categorically related distractors slow down picture naming relative to congruent distractors, analogous to findings in the colour–word Stroop task. The locus of semantic interference and Stroop-like effects in naming performance has recently become a topic of debate. Whereas some researchers argue for a pre-lexical locus of semantic interference and a lexical locus of Stroop-like effects, others localise both effects at the lexical selection stage. We investigated the time course of semantic and Stroop-like interference effects in overt picture naming by means of event-related potentials (ERP) and time–frequency analyses. Moreover, we employed cluster-based permutation for statistical analyses. Naming latencies showed semantic and Stroop-like interference effects. The ERP waveforms for congruent stimuli started diverging statistically from categorically related stimuli around 250 ms. Deflections for the categorically related condition were more negative-going than for the congruent condition (the Stroop-like effect). The time–frequency analysis revealed a power increase in the beta band (12–30 Hz) for categorically related relative to unrelated stimuli roughly between 250 and 370 ms (the semantic effect). The common time window of these effects suggests that both semantic interference and Stroop-like effects emerged during lexical selection. -
Shao, Z., Roelofs, A., & Meyer, A. S. (2012). Sources of individual differences in the speed of naming objects and actions: The contribution of executive control. Quarterly Journal of Experimental Psychology, 65, 1927-1944. doi:10.1080/17470218.2012.670252.
Abstract
We examined the contribution of executive control to individual differences in response time (RT) for naming objects and actions. Following Miyake, Friedman, Emerson, Witzki, Howerter, and Wager (2000), executive control was assumed to include updating, shifting, and inhibiting abilities, which were assessed using operation-span, task switching, and stop-signal tasks, respectively. Study 1 showed that updating ability was significantly correlated with the mean RT of action naming, but not of object naming. This finding was replicated in Study 2 using a larger stimulus set. Inhibiting ability was significantly correlated with the mean RT of both action and object naming, whereas shifting ability was not correlated with the mean naming RTs. Ex-Gaussian analyses of the RT distributions revealed that updating ability was correlated with the distribution tail of both action and object naming, whereas inhibiting ability was correlated with the leading edge of the distribution for action naming and the tail for object naming. Shifting ability provided no independent contribution. These results indicate that the executive control abilities of updating and inhibiting contribute to the speed of naming objects and actions, although there are differences in the way and extent these abilities are involved. -
Janssen, D. P., Roelofs, A., & Levelt, W. J. M. (2004). Stem complexity and inflectional encoding in language production. Journal of Psycholinguistic Research, 33(5), 365-381. doi:10.1023/B:JOPR.0000039546.60121.a8.
Abstract
Three experiments are reported that examined whether stem complexity plays a role in inflecting polymorphemic words in language production. Experiment 1 showed that preparation effects for words with polymorphemic stems are larger when they are produced among words with constant inflectional structures compared to words with variable inflectional structures and simple stems. This replicates earlier findings for words with monomorphemic stems (Janssen et al., 2002). Experiments 2 and 3 showed that when inflectional structure is held constant, the preparation effects are equally large with simple and compound stems, and with compound and complex adjectival stems. These results indicate that inflectional encoding is blind to the complexity of the stem, which suggests that specific inflectional rather than generic morphological frames guide the generation of inflected forms in speaking words. -
Levelt, W. J. M., Meyer, A. S., & Roelofs, A. (2004). Relations of lexical access to neural implementation and syntactic encoding [author's response]. Behavioral and Brain Sciences, 27, 299-301. doi:10.1017/S0140525X04270078.
Abstract
How can one conceive of the neuronal implementation of the processing model we proposed in our target article? In his commentary (Pulvermüller 1999, reprinted here in this issue), Pulvermüller makes various proposals concerning the underlying neural mechanisms and their potential localizations in the brain. These proposals demonstrate the compatibility of our processing model and current neuroscience. We add further evidence on details of localization based on a recent meta-analysis of neuroimaging studies of word production (Indefrey & Levelt 2000). We also express some minor disagreements with respect to Pulvermüller’s interpretation of the “lemma” notion, and concerning his neural modeling of phonological code retrieval. Branigan & Pickering discuss important aspects of syntactic encoding, which was not the topic of the target article. We discuss their well-taken proposal that multiple syntactic frames for a single verb lemma are represented as independent nodes, which can be shared with other verbs, such as accounting for syntactic priming in speech production. We also discuss how, in principle, the alternative multiple-frame-multiplelemma account can be tested empirically. The available evidence does not seem to support that account. -
Meeuwissen, M., Roelofs, A., & Levelt, W. J. M. (2004). Naming analog clocks conceptually facilitates naming digital clocks. Brain and Language, 90(1-3), 434-440. doi:10.1016/S0093-934X(03)00454-1.
Abstract
This study investigates how speakers of Dutch compute and produce relative time expressions. Naming digital clocks (e.g., 2:45, say ‘‘quarter to three’’) requires conceptual operations on the minute and hour information for the correct relative time expression. The interplay of these conceptual operations was investigated using a repetition priming paradigm. Participants named analog clocks (the primes) directly before naming digital clocks (the targets). The targets referred to the hour (e.g., 2:00), half past the hour (e.g., 2:30), or the coming hour (e.g., 2:45). The primes differed from the target in one or two hour and in five or ten minutes. Digital clock naming latencies were shorter with a five- than with a ten-min difference between prime and target, but the difference in hour had no effect. Moreover, the distance in minutes had only an effect for half past the hour and the coming hour, but not for the hour. These findings suggest that conceptual facilitation occurs when conceptual transformations are shared between prime and target in telling time. -
Roelofs, A. (2004). Seriality of phonological encoding in naming objects and reading their names. Memory & Cognition, 32(2), 212-222.
Abstract
There is a remarkable lack of research bringing together the literatures on oral reading and speaking.
As concerns phonological encoding, both models of reading and speaking assume a process of segmental
spellout for words, which is followed by serial prosodification in models of speaking (e.g., Levelt,
Roelofs, & Meyer, 1999). Thus, a natural place to merge models of reading and speaking would be
at the level of segmental spellout. This view predicts similar seriality effects in reading and object naming.
Experiment 1 showed that the seriality of encoding inside a syllable revealed in previous studies
of speaking is observed for both naming objects and reading their names. Experiment 2 showed that
both object naming and reading exhibit the seriality of the encoding of successive syllables previously
observed for speaking. Experiment 3 showed that the seriality is also observed when object naming and
reading trials are mixed rather than tested separately, as in the first two experiments. These results suggest
that a serial phonological encoding mechanism is shared between naming objects and reading
their names. -
Roelofs, A. (2004). The seduced speaker: Modeling of cognitive control. In A. Belz, R. Evans, & P. Piwek (
Eds. ), Natural language generation. (pp. 1-10). Berlin: Springer.Abstract
Although humans are the ultimate “natural language generators”, the area of psycholinguistic modeling has been somewhat underrepresented in recent approaches to Natural Language Generation in computer science. To draw attention to the area and illustrate its potential relevance to Natural Language Generation, I provide an overview of recent work on psycholinguistic modeling of language production together with some key empirical findings, state-of-the-art experimental techniques, and their historical roots. The techniques include analyses of speech-error corpora, chronometric analyses, eyetracking, and neuroimaging.
The overview is built around the issue of cognitive control in natural language generation, concentrating on the production of single words, which is an essential ingredient of the generation of larger utterances. Most of the work exploited the fact that human speakers are good but not perfect at resisting temptation, which has provided some critical clues about the nature of the underlying system. -
Roelofs, A. (2004). Error biases in spoken word planning and monitoring by aphasic and nonaphasic speakers: Comment on Rapp and Goldrick,2000. Psychological Review, 111(2), 561-572. doi:10.1037/0033-295X.111.2.561.
Abstract
B. Rapp and M. Goldrick (2000) claimed that the lexical and mixed error biases in picture naming by
aphasic and nonaphasic speakers argue against models that assume a feedforward-only relationship
between lexical items and their sounds in spoken word production. The author contests this claim by
showing that a feedforward-only model like WEAVER ++ (W. J. M. Levelt, A. Roelofs, & A. S. Meyer,
1999b) exhibits the error biases in word planning and self-monitoring. Furthermore, it is argued that
extant feedback accounts of the error biases and relevant chronometric effects are incompatible.
WEAVER ++ simulations with self-monitoring revealed that this model accounts for the chronometric
data, the error biases, and the influence of the impairment locus in aphasic speakers. -
Roelofs, A. (2004). Comprehension-based versus production-internal feedback in planning spoken words: A rejoinder to Rapp and Goldrick, 2004. Psychological Review, 111(2), 579-580. doi:10.1037/0033-295X.111.2.579.
Abstract
WEAVER++ has no backward links in its form-production network and yet is able to explain the lexical
and mixed error biases and the mixed distractor latency effect. This refutes the claim of B. Rapp and M.
Goldrick (2000) that these findings specifically support production-internal feedback. Whether their restricted interaction account model can also provide a unified account of the error biases and latency effect remains to be shown. -
Roelofs, A., & Schiller, N. (2004). Produzieren von Ein- und Mehrwortäusserungen. In G. Plehn (
Ed. ), Jahrbuch der Max-Planck Gesellschaft (pp. 655-658). Göttingen: Vandenhoeck & Ruprecht.
Share this page