Displaying 1 - 3 of 3
-
Loke, J., Seijdel, N., Snoek, L., Van der Meer, M., Van de Klundert, R., Quispel, E., Cappaert, N., & Scholte, H. S. (2022). A critical test of deep convolutional neural networks’ ability to capture recurrent processing in the brain using visual masking. Journal of Cognitive Neuroscience, 34(12): 10.1101/2022.01.30.478404, pp. 2390-2405. doi:10.1162/jocn_a_01914.
Abstract
Recurrent processing is a crucial feature in human visual processing supporting perceptual grouping, figure-ground segmentation, and recognition under challenging conditions. There is a clear need to incorporate recurrent processing in deep convolutional neural networks (DCNNs) but the computations underlying recurrent processing remain unclear. In this paper, we tested a form of recurrence in deep residual networks (ResNets) to capture recurrent processing signals in the human brain. Though ResNets are feedforward networks, they approximate an excitatory additive form of recurrence. Essentially, this form of recurrence consists of repeating excitatory activations in response to a static stimulus. Here, we used ResNets of varying depths (reflecting varying levels of recurrent processing) to explain electroencephalography (EEG) activity within a visual masking paradigm. Sixty-two humans and fifty artificial agents (10 ResNet models of depths - 4, 6, 10, 18 and 34) completed an object categorization task. We show that deeper networks (ResNet-10, 18 and 34) explained more variance in brain activity compared to shallower networks (ResNet-4 and 6). Furthermore, all ResNets captured differences in brain activity between unmasked and masked trials, with differences starting at ∼98ms (from stimulus onset). These early differences indicated that EEG activity reflected ‘pure’ feedforward signals only briefly (up to ∼98ms). After ∼98ms, deeper networks showed a significant increase in explained variance which peaks at ∼200ms, but only within unmasked trials, not masked trials. In summary, we provided clear evidence that excitatory additive recurrent processing in ResNets captures some of the recurrent processing in humans. -
Seijdel, N., Sakmakidis, N., De Haan, E. H. F., Bohte, S. M., & Scholte, H. S. (2019). Implicit scene segmentation in deeper convolutional neural networks. In Proceedings of the 2019 Conference on Cognitive Computational Neuroscience (pp. 1059-1062). doi:10.32470/CCN.2019.1149-0.
Abstract
Feedforward deep convolutional neural networks (DCNNs) are matching and even surpassing human performance on object recognition. This performance suggests that activation of a loose collection of image
features could support the recognition of natural object categories, without dedicated systems to solve specific visual subtasks. Recent findings in humans however, suggest that while feedforward activity may suffice for
sparse scenes with isolated objects, additional visual operations ('routines') that aid the recognition process (e.g. segmentation or grouping) are needed for more complex scenes. Linking human visual processing to
performance of DCNNs with increasing depth, we here explored if, how, and when object information is differentiated from the backgrounds they appear on. To this end, we controlled the information in both objects
and backgrounds, as well as the relationship between them by adding noise, manipulating background congruence and systematically occluding parts of the image. Results indicated less distinction between object- and background features for more shallow networks. For those networks, we observed a benefit of training on segmented objects (as compared to unsegmented objects). Overall, deeper networks trained on natural
(unsegmented) scenes seem to perform implicit 'segmentation' of the objects from their background, possibly by improved selection of relevant features. -
Smits, A., Seijdel, N., Scholte, H., Heywood, C., Kentridge, R., & de Haan, E. (2019). Action blindsight and antipointing in a hemianopic patient. Neuropsychologia, 128, 270-275. doi:10.1016/j.neuropsychologia.2018.03.029.
Abstract
Blindsight refers to the observation of residual visual abilities in the hemianopic field of patients without a functional V1. Given the within- and between-subject variability in the preserved abilities and the phenomenal experience of blindsight patients, the fine-grained description of the phenomenon is still debated. Here we tested a patient with established “perceptual” and “attentional” blindsight (c.f. Danckert and Rossetti, 2005). Using a pointing paradigm patient MS, who suffers from a complete left homonymous hemianopia, showed clear above chance manual localisation of ‘unseen’ targets. In addition, target presentations in his blind field led MS, on occasion, to spontaneous responses towards his sighted field. Structural and functional magnetic resonance imaging was conducted to evaluate the magnitude of V1 damage. Results revealed the presence of a calcarine sulcus in both hemispheres, yet his right V1 is reduced, structurally disconnected and shows no fMRI response to visual stimuli. Thus, visual stimulation of his blind field can lead to “action blindsight” and spontaneous antipointing, in absence of a functional right V1. With respect to the antipointing, we suggest that MS may have registered the stimulation and subsequently presumes it must have been in his intact half field.Additional information
video
Share this page