Publications

Displaying 1 - 6 of 6
  • Seijdel, N., Marshall, T. R., & Drijvers, L. (2023). Rapid invisible frequency tagging (RIFT): A promising technique to study neural and cognitive processing using naturalistic paradigms. Cerebral Cortex, 33(5), 1626-1629. doi:10.1093/cercor/bhac160.

    Abstract

    Frequency tagging has been successfully used to investigate selective stimulus processing in electroencephalography (EEG) or magnetoencephalography (MEG) studies. Recently, new projectors have been developed that allow for frequency tagging at higher frequencies (>60 Hz). This technique, rapid invisible frequency tagging (RIFT), provides two crucial advantages over low-frequency tagging as (i) it leaves low-frequency oscillations unperturbed, and thus open for investigation, and ii) it can render the tagging invisible, resulting in more naturalistic paradigms and a lack of participant awareness. The development of this technique has far-reaching implications as oscillations involved in cognitive processes can be investigated, and potentially manipulated, in a more naturalistic manner.
  • Seijdel, N., Loke, J., Van de Klundert, R., Van der Meer, M., Quispel, E., Van Gaal, S., De Haan, E. H., & Scholte, H. S. (2021). On the necessity of recurrent processing during object recognition: It depends on the need for scene segmentation. Journal of Neuroscience, 41(29), 6281-6289. doi:10.1523/JNEUROSCI.2851-20.2021.

    Abstract

    Although feedforward activity may suffice for recognizing objects in isolation, additional visual operations that aid object recognition might be needed for real-world scenes. One such additional operation is figure-ground segmentation, extracting the relevant features and locations of the target object while ignoring irrelevant features. In this study of 60 human participants (female and male), we show objects on backgrounds of increasing complexity to investigate whether recurrent computations are increasingly important for segmenting objects from more complex backgrounds. Three lines of evidence show that recurrent processing is critical for recognition of objects embedded in complex scenes. First, behavioral results indicated a greater reduction in performance after masking objects presented on more complex backgrounds, with the degree of impairment increasing with increasing background complexity. Second, electroencephalography (EEG) measurements showed clear differences in the evoked response potentials between conditions around time points beyond feedforward activity, and exploratory object decoding analyses based on the EEG signal indicated later decoding onsets for objects embedded in more complex backgrounds. Third, deep convolutional neural network performance confirmed this interpretation. Feedforward and less deep networks showed a higher degree of impairment in recognition for objects in complex backgrounds compared with recurrent and deeper networks. Together, these results support the notion that recurrent computations drive figure-ground segmentation of objects in complex scenes.SIGNIFICANCE STATEMENT The incredible speed of object recognition suggests that it relies purely on a fast feedforward buildup of perceptual activity. However, this view is contradicted by studies showing that disruption of recurrent processing leads to decreased object recognition performance. Here, we resolve this issue by showing that how object recognition is resolved and whether recurrent processing is crucial depends on the context in which it is presented. For objects presented in isolation or in simple environments, feedforward activity could be sufficient for successful object recognition. However, when the environment is more complex, additional processing seems necessary to select the elements that belong to the object and by that segregate them from the background.
  • Seijdel, N., Scholte, H. S., & de Haan, E. H. (2021). Visual features drive the category-specific impairments on categorization tasks in a patient with object agnosia. Neuropsychologia, 161: 108017. doi:10.1016/j.neuropsychologia.2021.108017.

    Abstract

    Object and scene recognition both require mapping of incoming sensory information to existing conceptual knowledge about the world. A notable finding in brain-damaged patients is that they may show differentially impaired performance for specific categories, such as for “living exemplars”. While numerous patients with category-specific impairments have been reported, the explanations for these deficits remain controversial. In the current study, we investigate the ability of a brain injured patient with a well-established category-specific impairment of semantic memory to perform two categorization experiments: ‘natural’ vs. ‘manmade’ scenes (experiment 1) and objects (experiment 2). Our findings show that the pattern of categorical impairment does not respect the natural versus manmade distinction. This suggests that the impairments may be better explained by differences in visual features, rather than by category membership. Using Deep Convolutional Neural Networks (DCNNs) as ‘artificial animal models’ we further explored this idea. Results indicated that DCNNs with ‘lesions’ in higher order layers showed similar response patterns, with decreased relative performance for manmade scenes (experiment 1) and natural objects (experiment 2), even though they have no semantic category knowledge, apart from a mapping between pictures and labels. Collectively, these results suggest that the direction of category-effects to a large extent depends, at least in MS′ case, on the degree of perceptual differentiation called for, and not semantic knowledge.

    Additional information

    data and code
  • Haan, E. H. F., Seijdel, N., Kentridge, R. W., & Heywood, C. A. (2020). Plasticity versus chronicity: Stable performance on category fluency 40 years post‐onset. Journal of Neuropsychology, 14(1), 20-27. doi:10.1111/jnp.12180.

    Abstract

    What is the long‐term trajectory of semantic memory deficits in patients who have suffered structural brain damage? Memory is, per definition, a changing faculty. The traditional view is that after an initial recovery period, the mature human brain has little capacity to repair or reorganize. More recently, it has been suggested that the central nervous system may be more plastic with the ability to change in neural structure, connectivity, and function. The latter observations are, however, largely based on normal learning in healthy subjects. Here, we report a patient who suffered bilateral ventro‐medial damage after presumed herpes encephalitis in 1971. He was seen regularly in the eighties, and we recently had the opportunity to re‐assess his semantic memory deficits. On semantic category fluency, he showed a very clear category‐specific deficit performing better that control data on non‐living categories and significantly worse on living items. Recent testing showed that his impairments have remained unchanged for more than 40 years. We suggest cautiousness when extrapolating the concept of brain plasticity, as observed during normal learning, to plasticity in the context of structural brain damage.
  • Seijdel, N., Tsakmakidis, N., De Haan, E. H. F., Bohte, S. M., & Scholte, H. S. (2020). Depth in convolutional neural networks solves scene segmentation. PLOS Computational Biology, 16: e1008022. doi:10.1371/journal.pcbi.1008022.

    Abstract

    Feed-forward deep convolutional neural networks (DCNNs) are, under specific conditions, matching and even surpassing human performance in object recognition in natural scenes. This performance suggests that the analysis of a loose collection of image features could support the recognition of natural object categories, without dedicated systems to solve specific visual subtasks. Research in humans however suggests that while feedforward activity may suffice for sparse scenes with isolated objects, additional visual operations ('routines') that aid the recognition process (e.g. segmentation or grouping) are needed for more complex scenes. Linking human visual processing to performance of DCNNs with increasing depth, we here explored if, how, and when object information is differentiated from the backgrounds they appear on. To this end, we controlled the information in both objects and backgrounds, as well as the relationship between them by adding noise, manipulating background congruence and systematically occluding parts of the image. Results indicate that with an increase in network depth, there is an increase in the distinction between object- and background information. For more shallow networks, results indicated a benefit of training on segmented objects. Overall, these results indicate that, de facto, scene segmentation can be performed by a network of sufficient depth. We conclude that the human brain could perform scene segmentation in the context of object identification without an explicit mechanism, by selecting or “binding” features that belong to the object and ignoring other features, in a manner similar to a very deep convolutional neural network.
  • Seijdel, N., Jahfari, S., Groen, I. I. A., & Scholte, H. S. (2020). Low-level image statistics in natural scenes influence perceptual decision-making. Scientific Reports, 10: 10573. doi:10.1038/s41598-020-67661-8.

    Abstract

    A fundamental component of interacting with our environment is gathering and interpretation of sensory information. When investigating how perceptual information influences decision-making, most researchers have relied on manipulated or unnatural information as perceptual input, resulting in findings that may not generalize to real-world scenes. Unlike simplified, artificial stimuli, real-world scenes contain low-level regularities that are informative about the structural complexity, which the brain could exploit. In this study, participants performed an animal detection task on low, medium or high complexity scenes as determined by two biologically plausible natural scene statistics, contrast energy (CE) or spatial coherence (SC). In experiment 1, stimuli were sampled such that CE and SC both influenced scene complexity. Diffusion modelling showed that the speed of information processing was affected by low-level scene complexity. Experiment 2a/b refined these observations by showing how isolated manipulation of SC resulted in weaker but comparable effects, with an additional change in response boundary, whereas manipulation of only CE had no effect. Overall, performance was best for scenes with intermediate complexity. Our systematic definition quantifies how natural scene complexity interacts with decision-making. We speculate that CE and SC serve as an indication to adjust perceptual decision-making based on the complexity of the input.

    Additional information

    supplementary materials data code and data

Share this page