Publications

Displaying 1 - 4 of 4
  • Dalla Bella, S., Janaqi, S., Benoit, C.-E., Farrugia, N., Bégel, V., Verga, L., Harding, E. E., & Kotz, S. A. (2024). Unravelling individual rhythmic abilities using machine learning. Scientific Reports, 14(1): 1135. doi:10.1038/s41598-024-51257-7.

    Abstract

    Humans can easily extract the rhythm of a complex sound, like music, and move to its regular beat, like in dance. These abilities are modulated by musical training and vary significantly in untrained individuals. The causes of this variability are multidimensional and typically hard to grasp in single tasks. To date we lack a comprehensive model capturing the rhythmic fingerprints of both musicians and non-musicians. Here we harnessed machine learning to extract a parsimonious model of rhythmic abilities, based on behavioral testing (with perceptual and motor tasks) of individuals with and without formal musical training (n = 79). We demonstrate that variability in rhythmic abilities and their link with formal and informal music experience can be successfully captured by profiles including a minimal set of behavioral measures. These findings highlight that machine learning techniques can be employed successfully to distill profiles of rhythmic abilities, and ultimately shed light on individual variability and its relationship with both formal musical training and informal musical experiences.

    Additional information

    supplementary materials
  • Leitner, C., D’Este, G., Verga, L., Rahayel, S., Mombelli, S., Sforza, M., Casoni, F., Zucconi, M., Ferini-Strambi, L., & Galbiati, A. (2024). Neuropsychological changes in isolated REM sleep behavior disorder: A systematic review and meta-analysis of cross-sectional and longitudinal studies. Neuropsychology Review, 34(1), 41-66. doi:10.1007/s11065-022-09572-1.

    Abstract

    The aim of this meta-analysis is twofold: (a) to assess cognitive impairments in isolated rapid eye movement (REM) sleep behavior disorder (iRBD) patients compared to healthy controls (HC); (b) to quantitatively estimate the risk of developing a neurodegenerative disease in iRBD patients according to baseline cognitive assessment. To address the first aim, cross-sectional studies including polysomnography-confirmed iRBD patients, HC, and reporting neuropsychological testing were included. To address the second aim, longitudinal studies including polysomnography-confirmed iRBD patients, reporting baseline neuropsychological testing for converted and still isolated patients separately were included. The literature search was conducted based on PRISMA guidelines and the protocol was registered at PROSPERO (CRD42021253427). Cross-sectional and longitudinal studies were searched from PubMed, Web of Science, Scopus, and Embase databases. Publication bias and statistical heterogeneity were assessed respectively by funnel plot asymmetry and using I2. Finally, a random-effect model was performed to pool the included studies. 75 cross-sectional (2,398 HC and 2,460 iRBD patients) and 11 longitudinal (495 iRBD patients) studies were selected. Cross-sectional studies showed that iRBD patients performed significantly worse in cognitive screening scores (random-effects (RE) model = –0.69), memory (RE model = –0.64), and executive function (RE model = –0.50) domains compared to HC. The survival analyses conducted for longitudinal studies revealed that lower executive function and language performance, as well as the presence of mild cognitive impairment (MCI), at baseline were associated with an increased risk of conversion at follow-up. Our study underlines the importance of a comprehensive neuropsychological assessment in the context of iRBD.

    Additional information

    figure 1 tables
  • Valentin, B., Verga, L., Benoit, C.-E., Kotz, S. A., & Dalla Bella, S. (2018). Test-retest reliability of the battery for the assessment of auditory sensorimotor and timing abilities (BAASTA). Annals of Physical and Rehabilitation Medicine, 61(6), 395-400. doi:10.1016/j.rehab.2018.04.001.

    Abstract

    Perceptual and sensorimotor timing skills can be thoroughly assessed with the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA). The battery has been used for testing rhythmic skills in healthy adults and patient populations (e.g., with Parkinson disease), showing sensitivity to timing and rhythm deficits. Here we assessed the test-retest reliability of the BAASTA in 20 healthy adults. Participants were tested twice with the BAASTA, implemented on a tablet interface, with a 2-week interval. They completed 4 perceptual tasks, namely, duration discrimination, anisochrony detection with tones and music, and the Beat Alignment Test (BAT). Moreover, they completed motor tasks via finger tapping, including unpaced and paced tapping with tones and music, synchronization-continuation, and adaptive tapping to a sequence with a tempo change. Despite high variability among individuals, the results showed good test-retest reliability in most tasks. A slight but significant improvement from test to retest was found in tapping with music, which may reflect a learning effect. In general, the BAASTA was found a reliable tool for evaluating timing and rhythm skills.
  • Spada, D., Verga, L., Iadanza, A., Tettamanti, M., & Perani, D. (2014). The auditory scene: An fMRI study on melody and accompaniment in professional pianists. NeuroImage, 102(2), 764-775. doi:10.1016/j.neuroimage.2014.08.036.

    Abstract

    The auditory scene is a mental representation of individual sounds extracted from the summed sound waveform reaching the ears of the listeners. Musical contexts represent particularly complex cases of auditory scenes. In such a scenario, melody may be seen as the main object moving on a background represented by the accompaniment. Both melody and accompaniment vary in time according to harmonic rules, forming a typical texture with melody in the most prominent, salient voice. In the present sparse acquisition functional magnetic resonance imaging study, we investigated the interplay between melody and accompaniment in trained pianists, by observing the activation responses elicited by processing: (1) melody placed in the upper and lower texture voices, leading to, respectively, a higher and lower auditory salience; (2) harmonic violations occurring in either the melody, the accompaniment, or both. The results indicated that the neural activation elicited by the processing of polyphonic compositions in expert musicians depends upon the upper versus lower position of the melodic line in the texture, and showed an overall greater activation for the harmonic processing of melody over accompaniment. Both these two predominant effects were characterized by the involvement of the posterior cingulate cortex and precuneus, among other associative brain regions. We discuss the prominent role of the posterior medial cortex in the processing of melodic and harmonic information in the auditory stream, and propose to frame this processing in relation to the cognitive construction of complex multimodal sensory imagery scenes.

Share this page