Displaying 1 - 4 of 4
-
Valentin, B., Verga, L., Benoit, C.-E., Kotz, S. A., & Dalla Bella, S. (2018). Test-retest reliability of the battery for the assessment of auditory sensorimotor and timing abilities (BAASTA). Annals of Physical and Rehabilitation Medicine, 61(6), 395-400. doi:10.1016/j.rehab.2018.04.001.
Abstract
Perceptual and sensorimotor timing skills can be thoroughly assessed with the Battery for the Assessment of Auditory Sensorimotor and Timing Abilities (BAASTA). The battery has been used for testing rhythmic skills in healthy adults and patient populations (e.g., with Parkinson disease), showing sensitivity to timing and rhythm deficits. Here we assessed the test-retest reliability of the BAASTA in 20 healthy adults. Participants were tested twice with the BAASTA, implemented on a tablet interface, with a 2-week interval. They completed 4 perceptual tasks, namely, duration discrimination, anisochrony detection with tones and music, and the Beat Alignment Test (BAT). Moreover, they completed motor tasks via finger tapping, including unpaced and paced tapping with tones and music, synchronization-continuation, and adaptive tapping to a sequence with a tempo change. Despite high variability among individuals, the results showed good test-retest reliability in most tasks. A slight but significant improvement from test to retest was found in tapping with music, which may reflect a learning effect. In general, the BAASTA was found a reliable tool for evaluating timing and rhythm skills. -
Ferreri, L., & Verga, L. (2016). Benefits of music on verbal learning and memory: How and when does it work? Music Perception, 34(2), 167-182. doi:10.1525/mp.2016.34.2.167.
Abstract
A long-standing debate in cognitive neurosciences concerns the effect of music on verbal learning and memory. Research in this field has largely provided conflicting results in both clinical as well as non-clinical populations. Although several studies have shown a positive effect of music on the encoding and retrieval of verbal stimuli, music has also been suggested to hinder mnemonic performance by dividing attention. In an attempt to explain this conflict, we review the most relevant literature on the effects of music on verbal learning and memory. Furthermore, we specify several mechanisms through which music may modulate these cognitive functions. We suggest that the extent to which music boosts these cognitive functions relies on experimental factors, such as the relative complexity of musical and verbal stimuli employed. These factors should be carefully considered in further studies, in order to reliably establish how and when music boosts verbal memory and learning. The answers to these questions are not only crucial for our knowledge of how music influences cognitive and brain functions, but may have important clinical implications. Considering the increasing number of approaches using music as a therapeutic tool, the importance of understanding exactly how music works can no longer be underestimated. -
Verga, L. (2015). Learning together or learning alone: Investigating the role of social interaction in second language word learning. PhD Thesis, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
-
Verga, L., Bigand, E., & Kotz, S. A. (2015). Play along: Effects of music and social interaction on word learning. Frontiers in Psychology, 6: 1316. doi:10.3389/fpsyg.2015.01316.
Abstract
Learning new words is an increasingly common necessity in everyday life. External factors, among which music and social interaction are particularly debated, are claimed to facilitate this task. Due to their influence on the learner’s temporal behavior, these stimuli are able to drive the learner’s attention to the correct referent of new words at the correct point in time. However, do music and social interaction impact learning behavior in the same way? The current study aims to answer this question. Native German speakers (N = 80) were requested to learn new words (pseudo-words) during a contextual learning game. This learning task was performed alone with a computer or with a partner, with or without music. Results showed that music and social interaction had a different impact on the learner’s behavior: Participants tended to temporally coordinate their behavior more with a partner than with music, and in both cases more than with a computer. However, when both music and social interaction were present, this temporal coordination was hindered. These results suggest that while music and social interaction do influence participants’ learning behavior, they have a different impact. Moreover, impaired behavior when both music and a partner are present suggests that different mechanisms are employed to coordinate with the two types of stimuli. Whether one or the other approach is more efficient for word learning, however, is a question still requiring further investigation, as no differences were observed between conditions in a retrieval phase, which took place immediately after the learning session. This study contributes to the literature on word learning in adults by investigating two possible facilitating factors, and has important implications for situations such as music therapy, in which music and social interaction are present at the same time.
Share this page