Displaying 1 - 8 of 8
-
Verga, L., D’Este, G., Cassani, S., Leitner, C., Kotz, S. A., Ferini-Strambi, L., & Galbiati, A. (2023). Sleeping with time in mind? A literature review and a proposal for a screening questionnaire on self-awakening. PLoS One, 18(3): e0283221. doi:10.1371/journal.pone.0283221.
Abstract
Some people report being able to spontaneously “time” the end of their sleep. This ability to self-awaken challenges the idea of sleep as a passive cognitive state. Yet, current evidence on this phenomenon is limited, partly because of the varied definitions of self-awakening and experimental approaches used to study it. Here, we provide a review of the literature on self-awakening. Our aim is to i) contextualise the phenomenon, ii) propose an operating definition, and iii) summarise the scientific approaches used so far. The literature review identified 17 studies on self-awakening. Most of them adopted an objective sleep evaluation (76%), targeted nocturnal sleep (76%), and used a single criterion to define the success of awakening (82%); for most studies, this corresponded to awakening occurring in a time window of 30 minutes around the expected awakening time. Out of 715 total participants, 125 (17%) reported to be self-awakeners, with an average age of 23.24 years and a slight predominance of males compared to females. These results reveal self-awakening as a relatively rare phenomenon. To facilitate the study of self-awakening, and based on the results of the literature review, we propose a quick paper-and-pencil screening questionnaire for self-awakeners and provide an initial validation for it. Taken together, the combined results of the literature review and the proposed questionnaire help in characterising a theoretical framework for self-awakenings, while providing a useful tool and empirical suggestions for future experimental studies, which should ideally employ objective measurements.Additional information
additional results, details, and SAQ, Italian version -
Verga, L., Kotz, S. A., & Ravignani, A. (2023). The evolution of social timing. Physics of Life Reviews, 46, 131-151. doi:10.1016/j.plrev.2023.06.006.
Abstract
Sociality and timing are tightly interrelated in human interaction as seen in turn-taking or synchronised dance movements. Sociality and timing also show in communicative acts of other species that might be pleasurable, but also necessary for survival. Sociality and timing often co-occur, but their shared phylogenetic trajectory is unknown: How, when, and why did they become so tightly linked? Answering these questions is complicated by several constraints; these include the use of divergent operational definitions across fields and species, the focus on diverse mechanistic explanations (e.g., physiological, neural, or cognitive), and the frequent adoption of anthropocentric theories and methodologies in comparative research. These limitations hinder the development of an integrative framework on the evolutionary trajectory of social timing and make comparative studies not as fruitful as they could be. Here, we outline a theoretical and empirical framework to test contrasting hypotheses on the evolution of social timing with species-appropriate paradigms and consistent definitions. To facilitate future research, we introduce an initial set of representative species and empirical hypotheses. The proposed framework aims at building and contrasting evolutionary trees of social timing toward and beyond the crucial branch represented by our own lineage. Given the integration of cross-species and quantitative approaches, this research line might lead to an integrated empirical-theoretical paradigm and, as a long-term goal, explain why humans are such socially coordinated animals. -
Verga, L., Schwartze, M., & Kotz, S. A. (2023). Neurophysiology of language pathologies. In M. Grimaldi, E. Brattico, & Y. Shtyrov (
Eds. ), Language Electrified: Neuromethods (pp. 753-776). New York, NY: Springer US. doi:10.1007/978-1-0716-3263-5_24.Abstract
Language- and speech-related disorders are among the most frequent consequences of developmental and acquired pathologies. While classical approaches to the study of these disorders typically employed the lesion method to unveil one-to-one correspondence between locations, the extent of the brain damage, and corresponding symptoms, recent advances advocate the use of online methods of investigation. For example, the use of electrophysiology or magnetoencephalography—especially when combined with anatomical measures—allows for in vivo tracking of real-time language and speech events, and thus represents a particularly promising venue for future research targeting rehabilitative interventions. In this chapter, we provide a comprehensive overview of language and speech pathologies arising from cortical and/or subcortical damage, and their corresponding neurophysiological and pathological symptoms. Building upon the reviewed evidence and literature, we aim at providing a description of how the neurophysiology of the language network changes as a result of brain damage. We will conclude by summarizing the evidence presented in this chapter, while suggesting directions for future research. -
Galbiati, A., Verga, L., Giora, E., Zucconi, M., & Ferini-Strambi, L. (2019). The risk of neurodegeneration in REM sleep behavior disorder: A systematic review and meta-analysis of longitudinal studies. Sleep Medicine Reviews, 43, 37-46. doi:10.1016/j.smrv.2018.09.008.
Abstract
Several studies report an association between REM Sleep Behavior Disorder (RBD) and neurodegenerative diseases, in particular synucleinopathies. Interestingly, the onset of RBD precedes the development of neurodegeneration by several years. This review and meta-analysis aims to establish the rate of conversion of RBD into neurodegenerative diseases. Longitudinal studies were searched from the PubMed, Web of Science, and SCOPUS databases. Using random-effect modeling, we performed a meta-analysis on the rate of RBD conversions into neurodegeneration. Furthermore, we fitted a Kaplan-Meier analysis and compared the differences between survival curves of different diseases with log-rank tests. The risk for developing neurodegenerative diseases was 33.5% at five years follow-up, 82.4% at 10.5 years and 96.6% at 14 years. The average conversion rate was 31.95% after a mean duration of follow-up of 4.75 ± 2.43 years. The majority of RBD patients converted to Parkinson's Disease (43%), followed by Dementia with Lewy Bodies (25%). The estimated risk for RBD patients to develop a neurodegenerative disease over a long-term follow-up is more than 90%. Future studies should include control group for the evaluation of REM sleep without atonia as marker for neurodegeneration also in non-clinical population and target RBD as precursor of neurodegeneration to develop protective trials. -
Ravignani, A., Verga, L., & Greenfield, M. D. (2019). Interactive rhythms across species: The evolutionary biology of animal chorusing and turn-taking. Annals of the New York Academy of Sciences, 1453(1), 12-21. doi:10.1111/nyas.14230.
Abstract
The study of human language is progressively moving toward comparative and interactive frameworks, extending the concept of turn‐taking to animal communication. While such an endeavor will help us understand the interactive origins of language, any theoretical account for cross‐species turn‐taking should consider three key points. First, animal turn‐taking must incorporate biological studies on animal chorusing, namely how different species coordinate their signals over time. Second, while concepts employed in human communication and turn‐taking, such as intentionality, are still debated in animal behavior, lower level mechanisms with clear neurobiological bases can explain much of animal interactive behavior. Third, social behavior, interactivity, and cooperation can be orthogonal, and the alternation of animal signals need not be cooperative. Considering turn‐taking a subset of chorusing in the rhythmic dimension may avoid overinterpretation and enhance the comparability of future empirical work. -
Verga, L., & Kotz, S. A. (2019). Putting language back into ecological communication contexts. Language, Cognition and Neuroscience, 34(4), 536-544. doi:10.1080/23273798.2018.1506886.
Abstract
Language is a multi-faceted form of communication. It is not until recently though that language research moved on from simple stimuli and protocols toward a more ecologically valid approach, namely “shifting” from words and simple sentences to stories with varying degrees of contextual complexity. While much needed, the use of ecologically valid stimuli such as stories should also be explored in interactive rather than individualistic experimental settings leading the way to an interactive neuroscience of language. Indeed, mounting evidence suggests that cognitive processes and their underlying neural activity significantly differ between social and individual experiences. We aim at reviewing evidence, which indicates that the characteristics of linguistic and extra-linguistic contexts may significantly influence communication–including spoken language comprehension. In doing so, we provide evidence on the use of new paradigms and methodological advancements that may enable the study of complex language features in a truly interactive, ecological way. -
Verga, L., & Kotz, S. A. (2019). Spatial attention underpins social word learning in the right fronto-parietal network. NeuroImage, 195, 165-173. doi:10.1016/j.neuroimage.2019.03.071.
Abstract
In a multi- and inter-cultural world, we daily encounter new words. Adult learners often rely on a situational context to learn and understand a new word's meaning. Here, we explored whether interactive learning facilitates word learning by directing the learner's attention to a correct new word referent when a situational context is non-informative. We predicted larger involvement of inferior parietal, frontal, and visual cortices involved in visuo-spatial attention during interactive learning. We scanned participants while they played a visual word learning game with and without a social partner. As hypothesized, interactive learning enhanced activity in the right Supramarginal Gyrus when the situational context provided little information. Activity in the right Inferior Frontal Gyrus during interactive learning correlated with post-scanning behavioral test scores, while these scores correlated with activity in the Fusiform Gyrus in the non-interactive group. These results indicate that attention is involved in interactive learning when the situational context is minimal and suggest that individual learning processes may be largely different from interactive ones. As such, they challenge the ecological validity of what we know about individual learning and advocate the exploration of interactive learning in naturalistic settings. -
Ferreri, L., & Verga, L. (2016). Benefits of music on verbal learning and memory: How and when does it work? Music Perception, 34(2), 167-182. doi:10.1525/mp.2016.34.2.167.
Abstract
A long-standing debate in cognitive neurosciences concerns the effect of music on verbal learning and memory. Research in this field has largely provided conflicting results in both clinical as well as non-clinical populations. Although several studies have shown a positive effect of music on the encoding and retrieval of verbal stimuli, music has also been suggested to hinder mnemonic performance by dividing attention. In an attempt to explain this conflict, we review the most relevant literature on the effects of music on verbal learning and memory. Furthermore, we specify several mechanisms through which music may modulate these cognitive functions. We suggest that the extent to which music boosts these cognitive functions relies on experimental factors, such as the relative complexity of musical and verbal stimuli employed. These factors should be carefully considered in further studies, in order to reliably establish how and when music boosts verbal memory and learning. The answers to these questions are not only crucial for our knowledge of how music influences cognitive and brain functions, but may have important clinical implications. Considering the increasing number of approaches using music as a therapeutic tool, the importance of understanding exactly how music works can no longer be underestimated.
Share this page