Displaying 1 - 5 of 5
-
Dalla Bella, S., Janaqi, S., Benoit, C.-E., Farrugia, N., Bégel, V., Verga, L., Harding, E. E., & Kotz, S. A. (2024). Unravelling individual rhythmic abilities using machine learning. Scientific Reports, 14(1): 1135. doi:10.1038/s41598-024-51257-7.
Abstract
Humans can easily extract the rhythm of a complex sound, like music, and move to its regular beat, like in dance. These abilities are modulated by musical training and vary significantly in untrained individuals. The causes of this variability are multidimensional and typically hard to grasp in single tasks. To date we lack a comprehensive model capturing the rhythmic fingerprints of both musicians and non-musicians. Here we harnessed machine learning to extract a parsimonious model of rhythmic abilities, based on behavioral testing (with perceptual and motor tasks) of individuals with and without formal musical training (n = 79). We demonstrate that variability in rhythmic abilities and their link with formal and informal music experience can be successfully captured by profiles including a minimal set of behavioral measures. These findings highlight that machine learning techniques can be employed successfully to distill profiles of rhythmic abilities, and ultimately shed light on individual variability and its relationship with both formal musical training and informal musical experiences.Additional information
supplementary materials -
Leitner, C., D’Este, G., Verga, L., Rahayel, S., Mombelli, S., Sforza, M., Casoni, F., Zucconi, M., Ferini-Strambi, L., & Galbiati, A. (2024). Neuropsychological changes in isolated REM sleep behavior disorder: A systematic review and meta-analysis of cross-sectional and longitudinal studies. Neuropsychology Review, 34(1), 41-66. doi:10.1007/s11065-022-09572-1.
Abstract
The aim of this meta-analysis is twofold: (a) to assess cognitive impairments in isolated rapid eye movement (REM) sleep behavior disorder (iRBD) patients compared to healthy controls (HC); (b) to quantitatively estimate the risk of developing a neurodegenerative disease in iRBD patients according to baseline cognitive assessment. To address the first aim, cross-sectional studies including polysomnography-confirmed iRBD patients, HC, and reporting neuropsychological testing were included. To address the second aim, longitudinal studies including polysomnography-confirmed iRBD patients, reporting baseline neuropsychological testing for converted and still isolated patients separately were included. The literature search was conducted based on PRISMA guidelines and the protocol was registered at PROSPERO (CRD42021253427). Cross-sectional and longitudinal studies were searched from PubMed, Web of Science, Scopus, and Embase databases. Publication bias and statistical heterogeneity were assessed respectively by funnel plot asymmetry and using I2. Finally, a random-effect model was performed to pool the included studies. 75 cross-sectional (2,398 HC and 2,460 iRBD patients) and 11 longitudinal (495 iRBD patients) studies were selected. Cross-sectional studies showed that iRBD patients performed significantly worse in cognitive screening scores (random-effects (RE) model = –0.69), memory (RE model = –0.64), and executive function (RE model = –0.50) domains compared to HC. The survival analyses conducted for longitudinal studies revealed that lower executive function and language performance, as well as the presence of mild cognitive impairment (MCI), at baseline were associated with an increased risk of conversion at follow-up. Our study underlines the importance of a comprehensive neuropsychological assessment in the context of iRBD. -
Verga, L., D’Este, G., Cassani, S., Leitner, C., Kotz, S. A., Ferini-Strambi, L., & Galbiati, A. (2023). Sleeping with time in mind? A literature review and a proposal for a screening questionnaire on self-awakening. PLoS One, 18(3): e0283221. doi:10.1371/journal.pone.0283221.
Abstract
Some people report being able to spontaneously “time” the end of their sleep. This ability to self-awaken challenges the idea of sleep as a passive cognitive state. Yet, current evidence on this phenomenon is limited, partly because of the varied definitions of self-awakening and experimental approaches used to study it. Here, we provide a review of the literature on self-awakening. Our aim is to i) contextualise the phenomenon, ii) propose an operating definition, and iii) summarise the scientific approaches used so far. The literature review identified 17 studies on self-awakening. Most of them adopted an objective sleep evaluation (76%), targeted nocturnal sleep (76%), and used a single criterion to define the success of awakening (82%); for most studies, this corresponded to awakening occurring in a time window of 30 minutes around the expected awakening time. Out of 715 total participants, 125 (17%) reported to be self-awakeners, with an average age of 23.24 years and a slight predominance of males compared to females. These results reveal self-awakening as a relatively rare phenomenon. To facilitate the study of self-awakening, and based on the results of the literature review, we propose a quick paper-and-pencil screening questionnaire for self-awakeners and provide an initial validation for it. Taken together, the combined results of the literature review and the proposed questionnaire help in characterising a theoretical framework for self-awakenings, while providing a useful tool and empirical suggestions for future experimental studies, which should ideally employ objective measurements.Additional information
additional results, details, and SAQ, Italian version -
Verga, L., Kotz, S. A., & Ravignani, A. (2023). The evolution of social timing. Physics of Life Reviews, 46, 131-151. doi:10.1016/j.plrev.2023.06.006.
Abstract
Sociality and timing are tightly interrelated in human interaction as seen in turn-taking or synchronised dance movements. Sociality and timing also show in communicative acts of other species that might be pleasurable, but also necessary for survival. Sociality and timing often co-occur, but their shared phylogenetic trajectory is unknown: How, when, and why did they become so tightly linked? Answering these questions is complicated by several constraints; these include the use of divergent operational definitions across fields and species, the focus on diverse mechanistic explanations (e.g., physiological, neural, or cognitive), and the frequent adoption of anthropocentric theories and methodologies in comparative research. These limitations hinder the development of an integrative framework on the evolutionary trajectory of social timing and make comparative studies not as fruitful as they could be. Here, we outline a theoretical and empirical framework to test contrasting hypotheses on the evolution of social timing with species-appropriate paradigms and consistent definitions. To facilitate future research, we introduce an initial set of representative species and empirical hypotheses. The proposed framework aims at building and contrasting evolutionary trees of social timing toward and beyond the crucial branch represented by our own lineage. Given the integration of cross-species and quantitative approaches, this research line might lead to an integrated empirical-theoretical paradigm and, as a long-term goal, explain why humans are such socially coordinated animals. -
Verga, L., Schwartze, M., & Kotz, S. A. (2023). Neurophysiology of language pathologies. In M. Grimaldi, E. Brattico, & Y. Shtyrov (
Eds. ), Language Electrified: Neuromethods (pp. 753-776). New York, NY: Springer US. doi:10.1007/978-1-0716-3263-5_24.Abstract
Language- and speech-related disorders are among the most frequent consequences of developmental and acquired pathologies. While classical approaches to the study of these disorders typically employed the lesion method to unveil one-to-one correspondence between locations, the extent of the brain damage, and corresponding symptoms, recent advances advocate the use of online methods of investigation. For example, the use of electrophysiology or magnetoencephalography—especially when combined with anatomical measures—allows for in vivo tracking of real-time language and speech events, and thus represents a particularly promising venue for future research targeting rehabilitative interventions. In this chapter, we provide a comprehensive overview of language and speech pathologies arising from cortical and/or subcortical damage, and their corresponding neurophysiological and pathological symptoms. Building upon the reviewed evidence and literature, we aim at providing a description of how the neurophysiology of the language network changes as a result of brain damage. We will conclude by summarizing the evidence presented in this chapter, while suggesting directions for future research.
Share this page