Displaying 1 - 14 of 14
-
D’Onofrio, G., Accogli, A., Severino, M., Caliskan, H., Kokotović, T., Blazekovic, A., Jercic, K. G., Markovic, S., Zigman, T., Goran, K., Barišić, N., Duranovic, V., Ban, A., Borovecki, F., Ramadža, D. P., Barić, I., Fazeli, W., Herkenrath, P., Marini, C., Vittorini, R. and 30 moreD’Onofrio, G., Accogli, A., Severino, M., Caliskan, H., Kokotović, T., Blazekovic, A., Jercic, K. G., Markovic, S., Zigman, T., Goran, K., Barišić, N., Duranovic, V., Ban, A., Borovecki, F., Ramadža, D. P., Barić, I., Fazeli, W., Herkenrath, P., Marini, C., Vittorini, R., Gowda, V., Bouman, A., Rocca, C., Alkhawaja, I. A., Murtaza, B. N., Rehman, M. M. U., Al Alam, C., Nader, G., Mancardi, M. M., Giacomini, T., Srivastava, S., Alvi, J. R., Tomoum, H., Matricardi, S., Iacomino, M., Riva, A., Scala, M., Madia, F., Pistorio, A., Salpietro, V., Minetti, C., Rivière, J.-B., Srour, M., Efthymiou, S., Maroofian, R., Houlden, H., Vernes, S. C., Zara, F., Striano, P., & Nagy, V. (2023). Genotype–phenotype correlation in contactin-associated protein-like 2 (CNTNAP-2) developmental disorder. Human Genetics, 142, 909-925. doi:10.1007/s00439-023-02552-2.
Abstract
Contactin-associated protein-like 2 (CNTNAP2) gene encodes for CASPR2, a presynaptic type 1 transmembrane protein, involved in cell–cell adhesion and synaptic interactions. Biallelic CNTNAP2 loss has been associated with “Pitt-Hopkins-like syndrome-1” (MIM#610042), while the pathogenic role of heterozygous variants remains controversial. We report 22 novel patients harboring mono- (n = 2) and bi-allelic (n = 20) CNTNAP2 variants and carried out a literature review to characterize the genotype–phenotype correlation. Patients (M:F 14:8) were aged between 3 and 19 years and affected by global developmental delay (GDD) (n = 21), moderate to profound intellectual disability (n = 17) and epilepsy (n = 21). Seizures mainly started in the first two years of life (median 22.5 months). Antiseizure medications were successful in controlling the seizures in about two-thirds of the patients. Autism spectrum disorder (ASD) and/or other neuropsychiatric comorbidities were present in nine patients (40.9%). Nonspecific midline brain anomalies were noted in most patients while focal signal abnormalities in the temporal lobes were noted in three subjects. Genotype–phenotype correlation was performed by also including 50 previously published patients (15 mono- and 35 bi-allelic variants). Overall, GDD (p < 0.0001), epilepsy (p < 0.0001), hyporeflexia (p = 0.012), ASD (p = 0.009), language impairment (p = 0.020) and severe cognitive impairment (p = 0.031) were significantly associated with the presence of biallelic versus monoallelic variants. We have defined the main features associated with biallelic CNTNAP2 variants, as severe cognitive impairment, epilepsy and behavioral abnormalities. We propose CASPR2-deficiency neurodevelopmental disorder as an exclusively recessive disease while the contribution of heterozygous variants is less likely to follow an autosomal dominant inheritance pattern.Additional information
supplementary tables -
Lu, A. T., Fei, Z., Haghani, A., Robeck, T. R., Zoller, J. A., Li, C. Z., Lowe, R., Yan, Q., Zhang, J., Vu, H., Ablaeva, J., Acosta-Rodriguez, V. A., Adams, D. M., Almunia, J., Aloysius, A., Ardehali, R., Arneson, A., Baker, C. S., Banks, G., Belov, K. and 168 moreLu, A. T., Fei, Z., Haghani, A., Robeck, T. R., Zoller, J. A., Li, C. Z., Lowe, R., Yan, Q., Zhang, J., Vu, H., Ablaeva, J., Acosta-Rodriguez, V. A., Adams, D. M., Almunia, J., Aloysius, A., Ardehali, R., Arneson, A., Baker, C. S., Banks, G., Belov, K., Bennett, N. C., Black, P., Blumstein, D. T., Bors, E. K., Breeze, C. E., Brooke, R. T., Brown, J. L., Carter, G. G., Caulton, A., Cavin, J. M., Chakrabarti, L., Chatzistamou, I., Chen, H., Cheng, K., Chiavellini, P., Choi, O. W., Clarke, S. M., Cooper, L. N., Cossette, M. L., Day, J., DeYoung, J., DiRocco, S., Dold, C., Ehmke, E. E., Emmons, C. K., Emmrich, S., Erbay, E., Erlacher-Reid, C., Faulkes, C. G., Ferguson, S. H., Finno, C. J., Flower, J. E., Gaillard, J. M., Garde, E., Gerber, L., Gladyshev, V. N., Gorbunova, V., Goya, R. G., Grant, M. J., Green, C. B., Hales, E. N., Hanson, M. B., Hart, D. W., Haulena, M., Herrick, K., Hogan, A. N., Hogg, C. J., Hore, T. A., Huang, T., Izpisua Belmonte, J. C., Jasinska, A. J., Jones, G., Jourdain, E., Kashpur, O., Katcher, H., Katsumata, E., Kaza, V., Kiaris, H., Kobor, M. S., Kordowitzki, P., Koski, W. R., Krützen, M., Kwon, S. B., Larison, B., Lee, S. G., Lehmann, M., Lemaitre, J. F., Levine, A. J., Li, C., Li, X., Lim, A. R., Lin, D. T. S., Lindemann, D. M., Little, T. J., Macoretta, N., Maddox, D., Matkin, C. O., Mattison, J. A., McClure, M., Mergl, J., Meudt, J. J., Montano, G. A., Mozhui, K., Munshi-South, J., Naderi, A., Nagy, M., Narayan, P., Nathanielsz, P. W., Nguyen, N. B., Niehrs, C., O’Brien, J. K., O’Tierney Ginn, P., Odom, D. T., Ophir, A. G., Osborn, S., Ostrander, E. A., Parsons, K. M., Paul, K. C., Pellegrini, M., Peters, K. J., Pedersen, A. B., Petersen, J. L., Pietersen, D. W., Pinho, G. M., Plassais, J., Poganik, J. R., Prado, N. A., Reddy, P., Rey, B., Ritz, B. R., Robbins, J., Rodriguez, M., Russell, J., Rydkina, E., Sailer, L. L., Salmon, A. B., Sanghavi, A., Schachtschneider, K. M., Schmitt, D., Schmitt, T., Schomacher, L., Schook, L. B., Sears, K. E., Seifert, A. W., Seluanov, A., Shafer, A. B. A., Shanmuganayagam, D., Shindyapina, A. V., Simmons, M., Singh, K., Sinha, I., Slone, J., Snell, R. G., Soltanmaohammadi, E., Spangler, M. L., Spriggs, M. C., Staggs, L., Stedman, N., Steinman, K. J., Stewart, D. T., Sugrue, V. J., Szladovits, B., Takahashi, J. S., Takasugi, M., Teeling, E. C., Thompson, M. J., Van Bonn, B., Vernes, S. C., Villar, D., Vinters, H. V., Wallingford, M. C., Wang, N., Wayne, R. K., Wilkinson, G. S., Williams, C. K., Williams, R. W., Yang, X. W., Yao, M., Young, B. G., Zhang, B., Zhang, Z., Zhao, P., Zhao, Y., Zhou, W., Zimmermann, J., Ernst, J., Raj, K., & Horvath, S. (2023). Universal DNA methylation age across mammalian tissues. Nature aging, 3, 1144-1166. doi:10.1038/s43587-023-00462-6.
Abstract
Aging, often considered a result of random cellular damage, can be accurately estimated using DNA methylation profiles, the foundation of pan-tissue epigenetic clocks. Here, we demonstrate the development of universal pan-mammalian clocks, using 11,754 methylation arrays from our Mammalian Methylation Consortium, which encompass 59 tissue types across 185 mammalian species. These predictive models estimate mammalian tissue age with high accuracy (r > 0.96). Age deviations correlate with human mortality risk, mouse somatotropic axis mutations and caloric restriction. We identified specific cytosines with methylation levels that change with age across numerous species. These sites, highly enriched in polycomb repressive complex 2-binding locations, are near genes implicated in mammalian development, cancer, obesity and longevity. Our findings offer new evidence suggesting that aging is evolutionarily conserved and intertwined with developmental processes across all mammals. -
Haghani, A., Li, C. Z., Robeck, T. R., Zhang, J., Lu, A. T., Ablaeva, J., Acosta-Rodríguez, V. A., Adams, D. M., Alagaili, A. N., Almunia, J., Aloysius, A., Amor, N. M. S., Ardehali, R., Arneson, A., Baker, C. S., Banks, G., Belov, K., Bennett, N. C., Black, P., Blumstein, D. T. and 170 moreHaghani, A., Li, C. Z., Robeck, T. R., Zhang, J., Lu, A. T., Ablaeva, J., Acosta-Rodríguez, V. A., Adams, D. M., Alagaili, A. N., Almunia, J., Aloysius, A., Amor, N. M. S., Ardehali, R., Arneson, A., Baker, C. S., Banks, G., Belov, K., Bennett, N. C., Black, P., Blumstein, D. T., Bors, E. K., Breeze, C. E., Brooke, R. T., Brown, J. L., Carter, G., Caulton, A., Cavin, J. M., Chakrabarti, L., Chatzistamou, I., Chavez, A. S., Chen, H., Cheng, K., Chiavellini, P., Choi, O.-W., Clarke, S., Cook, J. A., Cooper, L. N., Cossette, M.-L., Day, J., DeYoung, J., Dirocco, S., Dold, C., Dunnum, J. L., Ehmke, E. E., Emmons, C. K., Emmrich, S., Erbay, E., Erlacher-Reid, C., Faulkes, C. G., Fei, Z., Ferguson, S. H., Finno, C. J., Flower, J. E., Gaillard, J.-M., Garde, E., Gerber, L., Gladyshev, V. N., Goya, R. G., Grant, M. J., Green, C. B., Hanson, M. B., Hart, D. W., Haulena, M., Herrick, K., Hogan, A. N., Hogg, C. J., Hore, T. A., Huang, T., Izpisua Belmonte, J. C., Jasinska, A. J., Jones, G., Jourdain, E., Kashpur, O., Katcher, H., Katsumata, E., Kaza, V., Kiaris, H., Kobor, M. S., Kordowitzki, P., Koski, W. R., Krützen, M., Kwon, S. B., Larison, B., Lee, S.-G., Lehmann, M., Lemaître, J.-F., Levine, A. J., Li, X., Li, C., Lim, A. R., Lin, D. T. S., Lindemann, D. M., Liphardt, S. W., Little, T. J., Macoretta, N., Maddox, D., Matkin, C. O., Mattison, J. A., McClure, M., Mergl, J., Meudt, J. J., Montano, G. A., Mozhui, K., Munshi-South, J., Murphy, W. J., Naderi, A., Nagy, M., Narayan, P., Nathanielsz, P. W., Nguyen, N. B., Niehrs, C., Nyamsuren, B., O’Brien, J. K., Ginn, P. O., Odom, D. T., Ophir, A. G., Osborn, S., Ostrander, E. A., Parsons, K. M., Paul, K. C., Pedersen, A. B., Pellegrini, M., Peters, K. J., Petersen, J. L., Pietersen, D. W., Pinho, G. M., Plassais, J., Poganik, J. R., Prado, N. A., Reddy, P., Rey, B., Ritz, B. R., Robbins, J., Rodriguez, M., Russell, J., Rydkina, E., Sailer, L. L., Salmon, A. B., Sanghavi, A., Schachtschneider, K. M., Schmitt, D., Schmitt, T., Schomacher, L., Schook, L. B., Sears, K. E., Seifert, A. W., Shafer, A. B. A., Shindyapina, A. V., Simmons, M., Singh, K., Sinha, I., Slone, J., Snell, R. G., Soltanmohammadi, E., Spangler, M. L., Spriggs, M., Staggs, L., Stedman, N., Steinman, K. J., Stewart, D. T., Sugrue, V. J., Szladovits, B., Takahashi, J. S., Takasugi, M., Teeling, E. C., Thompson, M. J., Van Bonn, B., Vernes, S. C., Villar, D., Vinters, H. V., Vu, H., Wallingford, M. C., Wang, N., Wilkinson, G. S., Williams, R. W., Yan, Q., Yao, M., Young, B. G., Zhang, B., Zhang, Z., Zhao, Y., Zhao, P., Zhou, W., Zoller, J. A., Ernst, J., Seluanov, A., Gorbunova, V., Yang, X. W., Raj, K., & Horvath, S. (2023). DNA methylation networks underlying mammalian traits. Science, 381(6658): eabq5693. doi:10.1126/science.abq5693.
Abstract
INTRODUCTION
Comparative epigenomics is an emerging field that combines epigenetic signatures with phylogenetic relationships to elucidate species characteristics such as maximum life span. For this study, we generated cytosine DNA methylation (DNAm) profiles (n = 15,456) from 348 mammalian species using a methylation array platform that targets highly conserved cytosines.
RATIONALE
Nature has evolved mammalian species of greatly differing life spans. To resolve the relationship of DNAm with maximum life span and phylogeny, we performed a large-scale cross-species unsupervised analysis. Comparative studies in many species enables the identification of epigenetic correlates of maximum life span and other traits.
RESULTS
We first tested whether DNAm levels in highly conserved cytosines captured phylogenetic relationships among species. We constructed phyloepigenetic trees that paralleled the traditional phylogeny. To avoid potential confounding by different tissue types, we generated tissue-specific phyloepigenetic trees. The high phyloepigenetic-phylogenetic congruence is due to differences in methylation levels and is not confounded by sequence conservation.
We then interrogated the extent to which DNA methylation associates with specific biological traits. We used an unsupervised weighted correlation network analysis (WGCNA) to identify clusters of highly correlated CpGs (comethylation modules). WGCNA identified 55 distinct comethylation modules, of which 30 were significantly associated with traits including maximum life span, adult weight, age, sex, human mortality risk, or perturbations that modulate murine life span.
Both the epigenome-wide association analysis (EWAS) and eigengene-based analysis identified methylation signatures of maximum life span, and most of these were independent of aging, presumably set at birth, and could be stable predictors of life span at any point in life. Several CpGs that are more highly methylated in long-lived species are located near HOXL subclass homeoboxes and other genes that play a role in morphogenesis and development. Some of these life span–related CpGs are located next to genes that are also implicated in our analysis of upstream regulators (e.g., ASCL1 and SMAD6). CpGs with methylation levels that are inversely related to life span are enriched in transcriptional start site (TSS1) and promoter flanking (PromF4, PromF5) associated chromatin states. Genes located in chromatin state TSS1 are constitutively active and enriched for nucleic acid metabolic processes. This suggests that long-living species evolved mechanisms that maintain low methylation levels in these chromatin states that would favor higher expression levels of genes essential for an organism’s survival.
The upstream regulator analysis of the EWAS of life span identified the pluripotency transcription factors OCT4, SOX2, and NANOG. Other factors, such as POLII, CTCF, RAD21, YY1, and TAF1, showed the strongest enrichment for negatively life span–related CpGs.
CONCLUSION
The phyloepigenetic trees indicate that divergence of DNA methylation profiles closely parallels that of genetics through evolution. Our results demonstrate that DNA methylation is subjected to evolutionary pressures and selection. The publicly available data from our Mammalian Methylation Consortium are a rich source of information for different fields such as evolutionary biology, developmental biology, and aging. -
Paulat, N. S., Storer, J. M., Moreno-Santillán, D. D., Osmanski, A. B., Sullivan, K. A. M., Grimshaw, J. R., Korstian, J., Halsey, M., Garcia, C. J., Crookshanks, C., Roberts, J., Smit, A. F. A., Hubley, R., Rosen, J., Teeling, E. C., Vernes, S. C., Myers, E., Pippel, M., Brown, T., Hiller, M. and 5 morePaulat, N. S., Storer, J. M., Moreno-Santillán, D. D., Osmanski, A. B., Sullivan, K. A. M., Grimshaw, J. R., Korstian, J., Halsey, M., Garcia, C. J., Crookshanks, C., Roberts, J., Smit, A. F. A., Hubley, R., Rosen, J., Teeling, E. C., Vernes, S. C., Myers, E., Pippel, M., Brown, T., Hiller, M., Zoonomia Consortium, Rojas, D., Dávalos, L. M., Lindblad-Toh, K., Karlsson, E. K., & Ray, D. A. (2023). Chiropterans are a hotspot for horizontal transfer of DNA transposons in mammalia. Molecular Biology and Evolution, 40(5): msad092. doi:10.1093/molbev/msad092.
Abstract
Horizontal transfer of transposable elements (TEs) is an important mechanism contributing to genetic diversity and innovation. Bats (order Chiroptera) have repeatedly been shown to experience horizontal transfer of TEs at what appears to be a high rate compared with other mammals. We investigated the occurrence of horizontally transferred (HT) DNA transposons involving bats. We found over 200 putative HT elements within bats; 16 transposons were shared across distantly related mammalian clades, and 2 other elements were shared with a fish and two lizard species. Our results indicate that bats are a hotspot for horizontal transfer of DNA transposons. These events broadly coincide with the diversification of several bat clades, supporting the hypothesis that DNA transposon invasions have contributed to genetic diversification of bats. -
Rutz, C., Bronstein, M., Raskin, A., Vernes, S. C., Zacarian, K., & Blasi, D. E. (2023). Using machine learning to decode animal communication. Science, 381(6654), 152-155. doi:10.1126/science.adg7314.
Abstract
The past few years have seen a surge of interest in using machine learning (ML) methods for studying the behavior of nonhuman animals (hereafter “animals”) (1). A topic that has attracted particular attention is the decoding of animal communication systems using deep learning and other approaches (2). Now is the time to tackle challenges concerning data availability, model validation, and research ethics, and to embrace opportunities for building collaborations across disciplines and initiatives. -
Hoeksema, N., Villanueva, S., Mengede, J., Salazar-Casals, A., Rubio-García, A., Curcic-Blake, B., Vernes, S. C., & Ravignani, A. (2020). Neuroanatomy of the grey seal brain: Bringing pinnipeds into the neurobiological study of vocal learning. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (
Eds. ), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 162-164). Nijmegen: The Evolution of Language Conferences. -
Hoeksema, N., Wiesmann, M., Kiliaan, A., Hagoort, P., & Vernes, S. C. (2020). Bats and the comparative neurobiology of vocal learning. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (
Eds. ), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 165-167). Nijmegen: The Evolution of Language Conferences. -
Jebb, D., Huang, Z., Pippel, M., Hughes, G. M., Lavrichenko, K., Devanna, P., Winkler, S., Jermiin, L. S., Skirmuntt, E. C., Katzourakis, A., Burkitt-Gray, L., Ray, D. A., Sullivan, K. A. M., Roscito, J. G., Kirilenko, B. M., Dávalos, L. M., Corthals, A. P., Power, M. L., Jones, G., Ransome, R. D. and 9 moreJebb, D., Huang, Z., Pippel, M., Hughes, G. M., Lavrichenko, K., Devanna, P., Winkler, S., Jermiin, L. S., Skirmuntt, E. C., Katzourakis, A., Burkitt-Gray, L., Ray, D. A., Sullivan, K. A. M., Roscito, J. G., Kirilenko, B. M., Dávalos, L. M., Corthals, A. P., Power, M. L., Jones, G., Ransome, R. D., Dechmann, D., Locatelli, A. G., Puechmaille, S. J., Fedrigo, O., Jarvis, E. D., Hiller, M., Vernes, S. C., Myers, E. W., & Teeling, E. C. (2020). Six reference-quality genomes reveal evolution of bat adaptations. Nature, 583, 578-584. doi:10.1038/s41586-020-2486-3.
Abstract
Bats possess extraordinary adaptations, including flight, echolocation, extreme longevity and unique immunity. High-quality genomes are crucial for understanding the molecular basis and evolution of these traits. Here we incorporated long-read sequencing and state-of-the-art scaffolding protocols1 to generate, to our knowledge, the first reference-quality genomes of six bat species (Rhinolophus ferrumequinum, Rousettus aegyptiacus, Phyllostomus discolor, Myotis myotis, Pipistrellus kuhlii and Molossus molossus). We integrated gene projections from our ‘Tool to infer Orthologs from Genome Alignments’ (TOGA) software with de novo and homology gene predictions as well as short- and long-read transcriptomics to generate highly complete gene annotations. To resolve the phylogenetic position of bats within Laurasiatheria, we applied several phylogenetic methods to comprehensive sets of orthologous protein-coding and noncoding regions of the genome, and identified a basal origin for bats within Scrotifera. Our genome-wide screens revealed positive selection on hearing-related genes in the ancestral branch of bats, which is indicative of laryngeal echolocation being an ancestral trait in this clade. We found selection and loss of immunity-related genes (including pro-inflammatory NF-κB regulators) and expansions of anti-viral APOBEC3 genes, which highlights molecular mechanisms that may contribute to the exceptional immunity of bats. Genomic integrations of diverse viruses provide a genomic record of historical tolerance to viral infection in bats. Finally, we found and experimentally validated bat-specific variation in microRNAs, which may regulate bat-specific gene-expression programs. Our reference-quality bat genomes provide the resources required to uncover and validate the genomic basis of adaptations of bats, and stimulate new avenues of research that are directly relevant to human health and diseaseAdditional information
41586_2020_2486_MOESM1_ESM.pdf -
Lattenkamp, E. Z., Linnenschmidt, M., Mardus, E., Vernes, S. C., Wiegrebe, L., & Schutte, M. (2020). Impact of auditory feedback on bat vocal development. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (
Eds. ), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 249-251). Nijmegen: The Evolution of Language Conferences. -
Lattenkamp, E. Z., Vernes, S. C., & Wiegrebe, L. (2020). Vocal production learning in the pale spear-nosed bat, Phyllostomus discolor. Biology Letters, 16: 20190928. doi:10.1098/rsbl.2019.0928.
Abstract
Vocal production learning (VPL), or the ability to modify vocalizations through the imitation of sounds, is a rare trait in the animal kingdom. While humans are exceptional vocal learners, few other mammalian species share this trait. Owing to their singular ecology and lifestyle, bats are highly specialized for the precise emission and reception of acoustic signals. This specialization makes them ideal candidates for the study of vocal learning, and several bat species have previously shown evidence supportive of vocal learning. Here we use a sophisticated automated set-up and a contingency training paradigm to explore the vocal learning capacity of pale spear-nosed bats. We show that these bats are capable of directional change of the fundamental frequency of their calls according to an auditory target. With this study, we further highlight the importance of bats for the study of vocal learning and provide evidence for the VPL capacity of the pale spear-nosed bat. -
Mengede, J., Devanna, P., Hörpel, S. G., Firzla, U., & Vernes, S. C. (2020). Studying the genetic bases of vocal learning in bats. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (
Eds. ), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 280-282). Nijmegen: The Evolution of Language Conferences. -
Vernes, S. C. (2020). Understanding bat vocal learning to gain insight into speech and language. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (
Eds. ), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 6). Nijmegen: The Evolution of Language Conferences. -
Vernes, S. C., & Wilkinson, G. S. (2020). Behaviour, biology, and evolution of vocal learning in bats. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 375(1789): 20190061. doi:10.1098/rstb.2019.0061.
Abstract
The comparative approach can provide insight into the evolution of human speech, language and social communication by studying relevant traits in animal systems. Bats are emerging as a model system with great potential to shed light on these processes given their learned vocalizations, close social interactions, and mammalian brains and physiology. A recent framework outlined the multiple levels of investigation needed to understand vocal learning across a broad range of non-human species, including cetaceans, pinnipeds, elephants, birds and bats. Here, we apply this framework to the current state-of-the-art in bat research. This encompasses our understanding of the abilities bats have displayed for vocal learning, what is known about the timing and social structure needed for such learning, and current knowledge about the prevalence of the trait across the order. It also addresses the biology (vocal tract morphology, neurobiology and genetics) and evolution of this trait. We conclude by highlighting some key questions that should be answered to advance our understanding of the biological encoding and evolution of speech and spoken communication. This article is part of the theme issue 'What can animal communication teach us about human language?'Additional information
earlier version of article on BioRxiv -
Johns, T. G., Perera, R. M., Vitali, A. A., Vernes, S. C., & Scott, A. (2004). Phosphorylation of a glioma-specific mutation of the EGFR [Abstract]. Neuro-Oncology, 6, 317.
Abstract
Mutations of the epidermal growth factor receptor (EGFR) gene are found at a relatively high frequency in glioma, with the most common being the de2-7 EGFR (or EGFRvIII). This mutation arises from an in-frame deletion of exons 2-7, which removes 267 amino acids from the extracellular domain of the receptor. Despite being unable to bind ligand, the de2-7 EGFR is constitutively active at a low level. Transfection of human glioma cells with the de2-7 EGFR has little effect in vitro, but when grown as tumor xenografts this mutated receptor imparts a dramatic growth advantage. We mapped the phosphorylation pattern of de2-7 EGFR, both in vivo and in vitro, using a panel of antibodies specific for different phosphorylated tyrosine residues. Phosphorylation of de2-7 EGFR was detected constitutively at all tyrosine sites surveyed in vitro and in vivo, including tyrosine 845, a known target in the wild-type EGFR for src kinase. There was a substantial upregulation of phosphorylation at every yrosine residue of the de2-7 EGFR when cells were grown in vivo compared to the receptor isolated from cells cultured in vitro. Upregulation of phosphorylation at tyrosine 845 could be stimulated in vitro by the addition of specific components of the ECM via an integrindependent mechanism. These observations may partially explain why the growth enhancement mediated by de2-7 EGFR is largely restricted to the in vivo environment
Share this page