Displaying 1 - 2 of 2
-
Snijders Blok, L., Vino, A., Den Hoed, J., Underhill, H. R., Monteil, D., Li, H., Reynoso Santos, F. J., Chung, W. K., Amaral, M. D., Schnur, R. E., Santiago-Sim, T., Si, Y., Brunner, H. G., Kleefstra, T., & Fisher, S. E. (2021). Heterozygous variants that disturb the transcriptional repressor activity of FOXP4 cause a developmental disorder with speech/language delays and multiple congenital abnormalities. Genetics in Medicine, 23, 534-542. doi:10.1038/s41436-020-01016-6.
Abstract
Heterozygous pathogenic variants in various FOXP genes cause specific developmental disorders. The phenotype associated with heterozygous variants in FOXP4 has not been previously described.
We assembled a cohort of eight individuals with heterozygous and mostly de novo variants in FOXP4: seven individuals with six different missense variants and one individual with a frameshift variant. We collected clinical data to delineate the phenotypic spectrum, and used in silico analyses and functional cell-based assays to assess pathogenicity of the variants.
We collected clinical data for six individuals: five individuals with a missense variant in the forkhead box DNA-binding domain of FOXP4, and one individual with a truncating variant. Overlapping features included speech and language delays, growth abnormalities, congenital diaphragmatic hernia, cervical spine abnormalities, and ptosis. Luciferase assays showed loss-of-function effects for all these variants, and aberrant subcellular localization patterns were seen in a subset. The remaining two missense variants were located outside the functional domains of FOXP4, and showed transcriptional repressor capacities and localization patterns similar to the wild-type protein.
Collectively, our findings show that heterozygous loss-of-function variants in FOXP4 are associated with an autosomal dominant neurodevelopmental disorder with speech/language delays, growth defects, and variable congenital abnormalities. -
Lozano, R., Vino, A., Lozano, C., Fisher, S. E., & Deriziotis, P. (2015). A de novo FOXP1 variant in a patient with autism, intellectual disability and severe speech and language impairment. European Journal of Human Genetics, 23, 1702-1707. doi:10.1038/ejhg.2015.66.
Abstract
FOXP1 (forkhead box protein P1) is a transcription factor involved in the development of several tissues, including the brain. An emerging phenotype of patients with protein-disrupting FOXP1 variants includes global developmental delay, intellectual disability and mild to severe speech/language deficits. We report on a female child with a history of severe hypotonia, autism spectrum disorder and mild intellectual disability with severe speech/language impairment. Clinical exome sequencing identified a heterozygous de novo FOXP1 variant c.1267_1268delGT (p.V423Hfs*37). Functional analyses using cellular models show that the variant disrupts multiple aspects of FOXP1 activity, including subcellular localization and transcriptional repression properties. Our findings highlight the importance of performing functional characterization to help uncover the biological significance of variants identified by genomics approaches, thereby providing insight into pathways underlying complex neurodevelopmental disorders. Moreover, our data support the hypothesis that de novo variants represent significant causal factors in severe sporadic disorders and extend the phenotype seen in individuals with FOXP1 haploinsufficiencyAdditional information
http://www.nature.com/ejhg/journal/vaop/ncurrent/suppinfo/ejhg201566s1.html?url…
Share this page