Publications

Displaying 101 - 200 of 266
  • Gullberg, M. (2011). Thinking, speaking, and gesturing about motion in more than one language. In A. Pavlenko (Ed.), Thinking and speaking in two languages (pp. 143-169). Bristol: Multilingual Matters.

    Abstract

    A key problem in studies of bilingual linguistic cognition is how to probe the details of underlying representations in order to gauge whether bilinguals' conceptualizations differ from those of monolinguals, and if so how. This chapter provides an overview of a line of studies that rely on speech-associated gestures to explore these issues. The gestures of adult monolingual native speakers differ systematically across languages, reflecting consistent differences in what information is selected for expression and how it is mapped onto morphosyntactic devices. Given such differences, gestures can provide more detailed information on how multilingual speakers conceptualize events treated differently in their respective languages, and therefore, ultimately, on the nature of their representations. This chapter reviews a series of studies in the domain of (voluntary and caused) motion event construal. I first discuss speech and gesture evidence for different construals in monolingual native speakers, then review studies on second language speakers showing gestural evidence of persistent L1 construals, shifts to L2 construals, and of bidirectional influences. I consider the implications for theories of ultimate attainment in SLA, transfer and convergence. I will also discuss the methodological implications, namely what gesture data do and do not reveal about linguistic conceptualisation and linguistic relativity proper.
  • De Haan, E., & Hagoort, P. (2004). Het brein in beeld. In B. Deelman, P. Eling, E. De Haan, & E. Van Zomeren (Eds.), Klinische neuropsychologie (pp. 82-98). Amsterdam: Boom.
  • Hagoort, P. (2011). The binding problem for language, and its consequences for the neurocognition of comprehension. In E. A. Gibson, & N. J. Pearlmutter (Eds.), The processing and acquisition of reference (pp. 403-436). Cambridge, MA: MIT Press.
  • Hagoort, P. (2011). The neuronal infrastructure for unification at multiple levels. In G. Gaskell, & P. Zwitserlood (Eds.), Lexical representation: A multidisciplinary approach (pp. 231-242). Berlin: De Gruyter Mouton.
  • Hagoort, P., & Indefrey, P. (1997). De neurale architectuur van het menselijk taalvermogen. In H. Peters (Ed.), Handboek stem-, spraak-, en taalpathologie (pp. 1-36). Houten: Bohn Stafleu Van Loghum.
  • Hagoort, P. (2004). Er is geen behoefte aan trompetten als gordijnen. In H. Procee, H. Meijer, P. Timmerman, & R. Tuinsma (Eds.), Bij die wereld wil ik horen! Zesendertig columns en drie essays over de vorming tot academicus (pp. 78-80). Amsterdam: Boom.
  • Hagoort, P. (2004). Het zwarte gat tussen brein en bewustzijn. In N. Korteweg (Ed.), De oorsprong: Over het ontstaan van het leven en alles eromheen (pp. 107-124). Amsterdam: Boom.
  • Hagoort, P., & Beckmann, C. F. (2019). Key issues and future directions: The neural architecture for language. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 527-532). Cambridge, MA: MIT Press.
  • Hagoort, P. (2019). Introduction. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 1-6). Cambridge, MA: MIT Press.
  • Hagoort, P., & Van Turennout, M. (1997). The electrophysiology of speaking: Possibilities of event-related potential research for speech production. In W. Hulstijn, H. Peters, & P. Van Lieshout (Eds.), Speech motor production and fluency disorders: Brain research in speech production (pp. 351-361). Amsterdam: Elsevier.
  • Hagoort, P., & Wassenaar, M. (1997). Taalstoornissen: Van theorie tot therapie. In B. Deelman, P. Eling, E. De Haan, A. Jennekens, & A. Van Zomeren (Eds.), Klinische Neuropsychologie (pp. 232-248). Meppel: Boom.
  • Hagoort, P. (1998). The shadows of lexical meaning in patients with semantic impairments. In B. Stemmer, & H. Whitaker (Eds.), Handbook of neurolinguistics (pp. 235-248). New York: Academic Press.
  • Hagoort, P. (1997). Zonder fosfor geen gedachten: Gagarin, geest en brein. In Brain & Mind (pp. 6-14). Utrecht: Reünistenvereniging Veritas.
  • Hammarström, H. (2019). An inventory of Bantu languages. In M. Van de Velde, K. Bostoen, D. Nurse, & G. Philippson (Eds.), The Bantu languages (2nd). London: Routledge.

    Abstract

    This chapter aims to provide an updated list of all Bantu languages known at present and to provide individual pointers to further information on the inventory. The area division has some correlation with what are perceived genealogical relations between Bantu languages, but they are not defined as such and do not change whenever there is an update in our understanding of genealogical relations. Given the popularity of Guthrie codes in Bantu linguistics, our listing also features a complete mapping to Guthrie codes. The language inventory listed excludes sign languages used in the Bantu area, speech registers, pidgins, drummed/whistled languages and urban youth languages. Pointers to such languages in the Bantu area are included in the continent-wide overview in Hammarstrom. The most important alternative names, subvarieties and spelling variants are given for each language, though such lists are necessarily incomplete and reflect some degree of arbitrary selection.
  • Harbusch, K., & Kempen, G. (2011). Automatic online writing support for L2 learners of German through output monitoring by a natural-language paraphrase generator. In M. Levy, F. Blin, C. Bradin Siskin, & O. Takeuchi (Eds.), WorldCALL: International perspectives on computer-assisted language learning (pp. 128-143). New York: Routledge.

    Abstract

    Students who are learning to write in a foreign language, often want feedback on the grammatical quality of the sentences they produce. The usual NLP approach to this problem is based on parsing student-generated text. Here, we propose a generation-based ap- proach aiming at preventing errors ("scaffolding"). In our ICALL system, the student constructs sentences by composing syntactic trees out of lexically anchored "treelets" via a graphical drag & drop user interface. A natural-language generator computes all possible grammatically well-formed sentences entailed by the student-composed tree. It provides positive feedback if the student-composed tree belongs to the well-formed set, and negative feedback otherwise. If so requested by the student, it can substantiate the positive or negative feedback based on a comparison between the student-composed tree and its own trees (informative feedback on demand). In case of negative feedback, the system refuses to build the structure attempted by the student. Frequently occurring errors are handled in terms of "malrules." The system we describe is a prototype (implemented in JAVA and C++) which can be parameterized with respect to L1 and L2, the size of the lexicon, and the level of detail of the visually presented grammatical structures.
  • Haun, D. B. M. (2011). How odd I am! In M. Brockman (Ed.), Future science: Essays from the cutting edge (pp. 228-235). New York: Random House.

    Abstract

    Cross-culturally, the human mind varies more than we generally assume
  • Haun, D. B. M., Jordan, F., Vallortigara, G., & Clayton, N. S. (2011). Origins of spatial, temporal and numerical cognition: Insights from comparative psychology [Reprint]. In S. Dehaene, & E. Brannon (Eds.), Space, time and number in the brain. Searching for the foundations of mathematical thought (pp. 191-206). London: Academic Press.

    Abstract

    Contemporary comparative cognition has a large repertoire of animal models and methods, with concurrent theoretical advances that are providing initial answers to crucial questions about human cognition. What cognitive traits are uniquely human? What are the species-typical inherited predispositions of the human mind? What is the human mind capable of without certain types of specific experiences with the surrounding environment? Here, we review recent findings from the domains of space, time and number cognition. These findings are produced using different comparative methodologies relying on different animal species, namely birds and non-human great apes. The study of these species not only reveals the range of cognitive abilities across vertebrates, but also increases our understanding of human cognition in crucial ways.
  • Hayano, K. (2011). Claiming epistemic primacy: Yo-marked assessments in Japanese. In T. Stivers, L. Mondada, & J. Steensig (Eds.), The morality of knowledge in conversation (pp. 58-81). Cambridge: Cambridge University Press.
  • Hill, C. (2011). Collaborative narration and cross-speaker repetition in Umpila and Kuuku Ya'u. In B. Baker, R. Gardner, M. Harvey, & I. Mushin (Eds.), Indigenous language and social identity: Papers in honour of Michael Walsh (pp. 237-260). Canberra: Pacific Linguistics.
  • Holler, J., & Beattie, G. (2004). The interaction of iconic gesture and speech. In A. Cammurri, & G. Volpe (Eds.), Lecture Notes in Computer Science, 5th International Gesture Workshop, Genova, Italy, 2003; Selected Revised Papers (pp. 63-69). Heidelberg: Springer Verlag.
  • Huettig, F., & Altmann, G. T. M. (2004). The online processing of ambiguous and unambiguous words in context: Evidence from head-mounted eye-tracking. In M. Carreiras, & C. Clifton (Eds.), The on-line study of sentence comprehension: Eyetracking, ERP and beyond (pp. 187-207). New York: Psychology Press.
  • Huettig, F. (2011). The role of color during language-vision interactions. In R. K. Mishra, & N. Srinivasan (Eds.), Language-Cognition interface: State of the art (pp. 93-113). München: Lincom.
  • Hutton, J., & Kidd, E. (2011). Structural priming in comprehension of relative clause sentences: In search of a frequency x regularity interaction. In E. Kidd (Ed.), The acquisition of relative clauses: Processing, typology and function (pp. 227-242). Amsterdam: Benjamins.

    Abstract

    The current chapter discusses a structural priming experiment that investigated the on-line processing of English subject- and object- relative clauses. Sixty-one monolingual English-speaking adults participated in a self-paced reading experiment where they read prime-target pairs that fully crossed the relativised element within the relative clause (subject- versus object) across prime and target sentences. Following probabilistic theories of sentence processing, which predict that low frequency structures like object relatives are subject to greater priming effects due to their marked status, it was hypothesised that the normally-observed subject RC processing advantage would be eliminated following priming. The hypothesis was supported, identifying an important role for structural frequency in the processing of relative clause structures.
  • Indefrey, P., & Cutler, A. (2004). Prelexical and lexical processing in listening. In M. Gazzaniga (Ed.), The cognitive neurosciences III. (pp. 759-774). Cambridge, MA: MIT Press.

    Abstract

    This paper presents a meta-analysis of hemodynamic studies on passive auditory language processing. We assess the overlap of hemodynamic activation areas and activation maxima reported in experiments involving the presentation of sentences, words, pseudowords, or sublexical or non-linguistic auditory stimuli. Areas that have been reliably replicated are identified. The results of the meta-analysis are compared to electrophysiological, magnetencephalic (MEG), and clinical findings. It is concluded that auditory language input is processed in a left posterior frontal and bilateral temporal cortical network. Within this network, no processing leve l is related to a single cortical area. The temporal lobes seem to differ with respect to their involvement in post-lexical processing, in that the left temporal lobe has greater involvement than the right, and also in the degree of anatomical specialization for phonological, lexical, and sentence -level processing, with greater overlap on the right contrasting with a higher degree of differentiation on the left.
  • Indefrey, P. (2004). Hirnaktivierungen bei syntaktischer Sprachverarbeitung: Eine Meta-Analyse. In H. Müller, & G. Rickheit (Eds.), Neurokognition der Sprache (pp. 31-50). Tübingen: Stauffenburg.
  • Indefrey, P. (2011). Neurobiology of syntax. In P. C. Hogan (Ed.), The Cambridge encyclopedia of the language sciences (pp. 835-838). New York: Cambridge University Press.
  • Indefrey, P. (1997). PET research in language production. In W. Hulstijn, H. F. M. Peters, & P. H. H. M. Van Lieshout (Eds.), Speech production: motor control, brain research and fluency disorders (pp. 269-278). Amsterdam: Elsevier.

    Abstract

    The aim of this paper is to discuss an inherent difficulty of PET (and fMRI) research in language production. On the one hand, language production presupposes some degree of freedom for the subject, on the other hand, interpretability of results presupposes restrictions of this freedom. This difficulty is reflected in the existing PET literature in some neglect of the general principle to design experiments in such a way that the results do not allow for alternative interpretations. It is argued that by narrowing down the scope of experiments a gain in interpretability can be achieved.
  • Jordens, P. (1998). Defaultformen des Präteritums. Zum Erwerb der Vergangenheitsmorphologie im Niederlänidischen. In H. Wegener (Ed.), Eine zweite Sprache lernen (pp. 61-88). Tübingen, Germany: Verlag Gunter Narr.
  • Jordens, P. (2004). Morphology in Second Language Acquisition. In G. Booij (Ed.), Morphologie: Ein internationales Handbuch zur Flexion und Wortbildung (pp. 1806-1816). Berlin: Walter de Gruyter.
  • Kempen, G. (2004). Terug naar Wundt: Pleidooi voor integraal onderzoek van taal, taalkennis en taalgedrag. In Koninklijke Nederlandse Akademie van Wetenschappen (Ed.), Gij letterdames en gij letterheren': Nieuwe mogelijkheden voor taalkundig en letterkundig onderzoek in Nederland. (pp. 174-188). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.
  • Kempen, G., & Vosse, T. (1992). A language-sensitive text editor for Dutch. In P. O’Brian Holt, & N. Williams (Eds.), Computers and writing: State of the art (pp. 68-77). Dordrecht: Kluwer Academic Publishers.

    Abstract

    Modern word processors begin to offer a range of facilities for spelling, grammar and style checking in English. For the Dutch language hardly anything is available as yet. Many commercial word processing packages do include a hyphenation routine and a lexicon-based spelling checker but the practical usefulness of these tools is limited due to certain properties of Dutch orthography, as we will explain below. In this chapter we describe a text editor which incorporates a great deal of lexical, morphological and syntactic knowledge of Dutch and monitors the orthographical quality of Dutch texts. Section 1 deals with those aspects of Dutch orthography which pose problems to human authors as well as to computational language sensitive text editing tools. In section 2 we describe the design and the implementation of the text editor we have built. Section 3 is mainly devoted to a provisional evaluation of the system.
  • Kempen, G., & Harbusch, K. (2004). A corpus study into word order variation in German subordinate clauses: Animacy affects linearization independently of grammatical function assignment. In T. Pechmann, & C. Habel (Eds.), Multidisciplinary approaches to language production (pp. 173-181). Berlin: Mouton de Gruyter.
  • Kempen, G., & Harbusch, K. (2004). Generating natural word orders in a semi-free word order language: Treebank-based linearization preferences for German. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing (pp. 350-354). Berlin: Springer.

    Abstract

    We outline an algorithm capable of generating varied but natural sounding sequences of argument NPs in subordinate clauses of German, a semi-free word order language. In order to attain the right level of output flexibility, the algorithm considers (1) the relevant lexical properties of the head verb (not only transitivity type but also reflexivity, thematic relations expressed by the NPs, etc.), and (2) the animacy and definiteness values of the arguments, and their length. The relevant statistical data were extracted from the NEGRA–II treebank and from hand-coded features for animacy and definiteness. The algorithm maps the relevant properties onto “primary” versus “secondary” placement options in the generator. The algorithm is restricted in that it does not take into account linear order determinants related to the sentence’s information structure and its discourse context (e.g. contrastiveness). These factors may modulate the above preferences or license “tertiary” linear orders beyond the primary and secondary options considered here.
  • Kempen, G. (1992). Generation. In W. Bright (Ed.), International encyclopedia of linguistics (pp. 59-61). New York: Oxford University Press.
  • Kempen, G. (1992). Language technology and language instruction: Computational diagnosis of word level errors. In M. Swartz, & M. Yazdani (Eds.), Intelligent tutoring systems for foreign language learning: The bridge to international communication (pp. 191-198). Berlin: Springer.
  • Kempen, G. (1998). Sentence parsing. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 213-228). Berlin: Springer.
  • Kempen, G. (1997). Taalpsychologie week. In Wetenschappelijke Scheurkalender 1998. Beek: Natuur & Techniek.

    Abstract

    [Seven one-page psycholinguistic sketches]
  • Kempen, G. (1992). Second language acquisition as a hybrid learning process. In F. Engel, D. Bouwhuis, T. Bösser, & G. d'Ydewalle (Eds.), Cognitive modelling and interactive environments in language learning (pp. 139-144). Berlin: Springer.
  • Kendoli, K. Y. (2011). Yuna pikono [translated by Lila San Roque]. In A. Rumsey, & D. Niles (Eds.), Sung tales from the Papua New Guinea Highlands: Studies in form, meaning and sociocultural context (pp. 39-47). Canberra: ANU E Press.
  • Kidd, E. (2011). Introduction. The acquisition of relative clauses: Processing, typology, and function. In E. Kidd (Ed.), The acquisition of relative clauses: Processing, typology and function (pp. 1-12). Amsterdam: Benjamins.
  • Kita, S. (1997). Miburi to Kotoba [gesture and speech]. In H. Kobayashi, & M. Sasaki (Eds.), Kodomotachi no gengokakutoku [Child language development] (pp. 68-84). Tokyo, Japan: Taishukan.
  • Klein, W. (1992). Der Fall Horten gegen Delius, oder: Der Laie, der Fachmann und das Recht. In G. Grewendorf (Ed.), Rechtskultur als Sprachkultur: Zur forensischen Funktion der Sprachanalyse (pp. 284-313). Frankfurt am Main: Suhrkamp.
  • Klein, W. (1998). Ein Blick zurück auf die Varietätengrammatik. In U. Ammon, K. Mattheier, & P. Nelde (Eds.), Sociolinguistica: Internationales Jahrbuch für europäische Soziolinguistik (pp. 22-38). Tübingen: Niemeyer.
  • Klein, W. (1998). Assertion and finiteness. In N. Dittmar, & Z. Penner (Eds.), Issues in the theory of language acquisition: Essays in honor of Jürgen Weissenborn (pp. 225-245). Bern: Peter Lang.
  • Klein, W. (2004). Das Digitale Wörterbuch der deutschen Sprache des 20. Jahrhunderts (DWDS). In J. Scharnhorst (Ed.), Sprachkultur und Lexikographie (pp. 281-311). Berlin: Peter Lang.
  • Klein, W. (1967). Einführende Bibliographie zu "Mathematik und Dichtung". In H. Kreuzer, & R. Gunzenhäuser (Eds.), Mathematik und Dichtung (pp. 347-359). München: Nymphenburger.
  • Klein, W., & Perdue, C. (1992). Framework. In W. Klein, & C. Perdue (Eds.), Utterance structure: Developing grammars again (pp. 11-59). Amsterdam: Benjamins.
  • Klein, W., & Nüse, R. (1997). La complexité du simple: L'éxpression de la spatialité dans le langage humain. In M. Denis (Ed.), Langage et cognition spatiale (pp. 1-23). Paris: Masson.
  • Klein, W. (1997). On the "Imperfective paradox" and related problems. In M. Schwarz, C. Dürscheid, & K.-H. Ramers (Eds.), Sprache im Fokus: Festschrift für Heinz Vater (pp. 387-397). Tübingen: Niemeyer.
  • Klein, W., & Carroll, M. (1992). The acquisition of German. In W. Klein, & C. Perdue (Eds.), Utterance structure: Developing grammars again (pp. 123-188). Amsterdam: Benjamins.
  • Klein, W., & Vater, H. (1998). The perfect in English and German. In L. Kulikov, & H. Vater (Eds.), Typology of verbal categories: Papers presented to Vladimir Nedjalkov on the occasion of his 70th birthday (pp. 215-235). Tübingen: Niemeyer.
  • Klein, W. (1997). Und nur dieses allein haben wir. In D. Rosenstein, & A. Kreutz (Eds.), Begegnungen, Facetten eines Jahrhunderts (pp. 445-449). Siegen: Carl Boeschen Verlag.
  • Kuijpers, C. T., Coolen, R., Houston, D., & Cutler, A. (1998). Using the head-turning technique to explore cross-linguistic performance differences. In C. Rovee-Collier, L. Lipsitt, & H. Hayne (Eds.), Advances in infancy research: Vol. 12 (pp. 205-220). Stamford: Ablex.
  • Lev-Ari, S. (2019). The influence of social network properties on language processing and use. In M. S. Vitevitch (Ed.), Network Science in Cognitive Psychology (pp. 10-29). New York, NY: Routledge.

    Abstract

    Language is a social phenomenon. The author learns, processes, and uses it in social contexts. In other words, the social environment shapes the linguistic knowledge and use of the knowledge. To a degree, this is trivial. A child exposed to Japanese will become fluent in Japanese, whereas a child exposed to only Spanish will not understand Japanese but will master the sounds, vocabulary, and grammar of Spanish. Language is a structured system. Sounds and words do not occur randomly but are characterized by regularities. Learners are sensitive to these regularities and exploit them when learning language. People differ in the sizes of their social networks. Some people tend to interact with only a few people, whereas others might interact with a wide range of people. This is reflected in people’s holiday greeting habits: some people might send cards to only a few people, whereas other would send greeting cards to more than 350 people.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M. (2004). Language. In G. Adelman, & B. H. Smith (Eds.), Elsevier's encyclopedia of neuroscience [CD-ROM] (3rd). Amsterdam: Elsevier.
  • Levelt, W. J. M. (1997). Language. In G. Adelman, & B. H. Smith (Eds.), Elsevier's encyclopedia of neuroscience (CD-ROM edition). Amsterdam: Elsevier Science.
  • Levelt, W. J. M. (1992). Psycholinguistics: An overview. In W. Bright (Ed.), International encyclopedia of linguistics (Vol. 3) (pp. 290-294). Oxford: Oxford University Press.
  • Levinson, S. C. (1992). Space in Australian Languages Questionnaire. In S. C. Levinson (Ed.), Space stimuli kit 1.2 (pp. 29-40). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    This questionnaire is designed to explore how spatial relations are encoded in Australian language, but may be of interest to researchers further afield.
  • Levinson, S. C. (1992). Space in Australian Languages Questionnaire. In S. C. Levinson (Ed.), Space stimuli kit 1.2 (pp. 29-40). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3512641.

    Abstract

    This questionnaire is designed to explore how spatial relations are encoded in Australian language, but may be of interest to researchers further afield.
  • Levinson, S. C. (1992). Activity types and language. In P. Drew, & J. Heritage (Eds.), Talk at work: Interaction in institutional settings (pp. 66-100). Cambridge University Press.
  • Levinson, S. C. (1997). Contextualizing 'contextualization cues'. In S. Eerdmans, C. Prevignano, & P. Thibault (Eds.), Discussing communication analysis 1: John J. Gumperz (pp. 24-30). Lausanne: Beta Press.
  • Levinson, S. C. (1997). Deixis. In P. V. Lamarque (Ed.), Concise encyclopedia of philosophy of language (pp. 214-219). Oxford: Elsevier.
  • Levinson, S. C. (1998). Deixis. In J. L. Mey (Ed.), Concise encyclopedia of pragmatics (pp. 200-204). Amsterdam: Elsevier.
  • Levinson, S. C. (2011). Deixis [Reprint]. In D. Archer, & P. Grundy (Eds.), The pragmatics reader (pp. 163-185). London: Routledge.

    Abstract

    Reproduced with permission of Blackwell Publishing from: Levinson, S. C. (2004) 'Deixis'. In: Horn, L.R. and Ward, G. (Eds.) The Handbook of Pragmatics. Oxford: Blackwell Publishing, pp. 100-121
  • Levinson, S. C. (2004). Deixis. In L. Horn (Ed.), The handbook of pragmatics (pp. 97-121). Oxford: Blackwell.
  • Levinson, S. C. (2011). Foreword. In D. M. Mark, A. G. Turk, N. Burenhult, & D. Stea (Eds.), Landscape in language: Transdisciplinary perspectives (pp. ix-x). Amsterdam: John Benjamins.
  • Levinson, S. C. (1997). From outer to inner space: Linguistic categories and non-linguistic thinking. In J. Nuyts, & E. Pederson (Eds.), Language and conceptualization (pp. 13-45). Cambridge University Press.
  • Levinson, S. C., Brown, P., Danzinger, E., De León, L., Haviland, J. B., Pederson, E., & Senft, G. (1992). Man and Tree & Space Games. In S. C. Levinson (Ed.), Space stimuli kit 1.2 (pp. 7-14). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.2458804.

    Abstract

    These classic tasks can be used to explore spatial reference in field settings. They provide a language-independent metric for eliciting spatial language, using a “director-matcher” paradigm. The Man and Tree task deals with location on the horizontal plane with both featured (man) and non-featured (e.g., tree) objects. The Space Games depict various objects (e.g. bananas, lemons) and elicit spatial contrasts not obviously lexicalisable in English.
  • Levinson, S. C. (1998). Minimization and conversational inference. In A. Kasher (Ed.), Pragmatics: Vol. 4 Presupposition, implicature and indirect speech acts (pp. 545-612). London: Routledge.
  • Levinson, S. C., & Toni, I. (2019). Key issues and future directions: Interactional foundations of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 257-261). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2019). Interactional foundations of language: The interaction engine hypothesis. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 189-200). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2019). Natural forms of purposeful interaction among humans: What makes interaction effective? In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 111-126). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2011). Presumptive meanings [Reprint]. In D. Archer, & P. Grundy (Eds.), The pragmatics reader (pp. 86-98). London: Routledge.

    Abstract

    Reprinted with permission of The MIT Press from Levinson (2000) Presumptive meanings: The theory of generalized conversational implicature, pp. 112-118, 116-167, 170-173, 177-180. MIT Press
  • Levinson, S. C. (2011). Reciprocals in Yélî Dnye, the Papuan language of Rossel Island. In N. Evans, A. Gaby, S. C. Levinson, & A. Majid (Eds.), Reciprocals and semantic typology (pp. 177-194). Amsterdam: Benjamins.

    Abstract

    Yélî Dnye has two discernable dedicated constructions for reciprocal marking. The first and main construction uses a dedicated reciprocal pronoun numo, somewhat like English each other. We can recognise two subconstructions. First, the ‘numo-construction’, where the reciprocal pronoun is a patient of the verb, and where the invariant pronoun numo is obligatorily incorporated, triggering intransitivisation (e.g. A-NPs become absolutive). This subconstruction has complexities, for example in the punctual aspect only, the verb is inflected like a transitive, but with enclitics mismatching actual person/number. In the second variant or subconstruction, the ‘noko-construction’, the same reciprocal pronoun (sometimes case-marked as noko) occurs but now in oblique positions with either transitive or intransitive verbs. The reciprocal element here has some peculiar binding properties. Finally, the second independent construction is a dedicated periphrastic (or woni…woni) construction, glossing ‘the one did X to the other, and the other did X to the one’. It is one of the rare cross-serial dependencies that show that natural languages cannot be modelled by context-free phrase-structure grammars. Finally, the usage of these two distinct constructions is discussed.
  • Levinson, S. C., Pederson, E., & Senft, G. (1997). Sprache und menschliche Orientierungsfähigkeiten. In Jahrbuch der Max-Planck-Gesellschaft (pp. 322-327). München: Generalverwaltung der Max-Planck-Gesellschaft.
  • Levinson, S. C. (2011). Three levels of meaning: Essays in honor of Sir John Lyons [Reprint]. In A. Kasher (Ed.), Pragmatics II. London: Routledge.

    Abstract

    Reprint from Stephen C. Levinson, ‘Three Levels of Meaning’, in Frank Palmer (ed.), Grammar and Meaning: Essays in Honor of Sir John Lyons (Cambridge University Press, 1995), pp. 90–115
  • Levinson, S. C., & Annamalai, E. (1992). Why presuppositions aren't conventional. In R. N. Srivastava (Ed.), Language and text: Studies in honour of Ashok R. Kelkar (pp. 227-242). Dehli: Kalinga Publications.
  • Levinson, S. C. (2011). Universals in pragmatics. In P. C. Hogan (Ed.), The Cambridge encyclopedia of the language sciences (pp. 654-657). New York: Cambridge University Press.

    Abstract

    Changing Prospects for Universals in Pragmatics
    The term PRAGMATICS has come to denote the study of general principles of language use. It is usually understood to contrast with SEMANTICS, the study of encoded meaning, and also, by some authors, to contrast with SOCIOLINGUISTICS
    and the ethnography of speaking, which are more concerned with local sociocultural practices. Given that pragmaticists come from disciplines as varied as philosophy, sociology,
    linguistics, communication studies, psychology, and anthropology, it is not surprising that definitions of pragmatics vary. Nevertheless, most authors agree on a list of topics
    that come under the rubric, including DEIXIS, PRESUPPOSITION,
    implicature (see CONVERSATIONAL IMPLICATURE), SPEECH-ACTS, and conversational organization (see CONVERSATIONAL ANALYSIS). Here, we can use this extensional definition as a starting point (Levinson 1988; Huang 2007).
  • Lindström, E. (2004). Melanesian kinship and culture. In A. Majid (Ed.), Field Manual Volume 9 (pp. 70-73). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.1552190.
  • Majid, A. (2019). Preface. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. vii-viii). Amsterdam: Benjamins.
  • Majid, A., Evans, N., Gaby, A., & Levinson, S. C. (2011). The semantics of reciprocal constructions across languages: An extensional approach. In N. Evans, A. Gaby, S. C. Levinson, & A. Majid (Eds.), Reciprocals and semantic typology (pp. 29-60). Amsterdam: Benjamins.

    Abstract

    How similar are reciprocal constructions in the semantic parameters they encode? We investigate this question by using an extensional approach, which examines similarity of meaning by examining how constructions are applied over a set of 64 videoclips depicting reciprocal events (Evans et al. 2004). We apply statistical modelling to descriptions from speakers of 20 languages elicited using the videoclips. We show that there are substantial differences in meaning between constructions of different languages.

    Files private

    Request files
  • Marcus, G., & Fisher, S. E. (2011). Genes and language. In P. Hogan (Ed.), The Cambridge encyclopedia of the language sciences (pp. 341-344). New York: Cambridge University Press.
  • Mark, D. M., Turk, A., Burenhult, N., & Stea, D. (2011). Landscape in language: An introduction. In D. M. Mark, A. G. Turk, N. Burenhult, & D. Stea (Eds.), Landscape in language: Transdisciplinary perspectives (pp. 1-24). Amsterdam: John Benjamins.
  • McDonough, L., Choi, S., Bowerman, M., & Mandler, J. M. (1998). The use of preferential looking as a measure of semantic development. In C. Rovee-Collier, L. P. Lipsitt, & H. Hayne (Eds.), Advances in Infancy Research. Volume 12. (pp. 336-354). Stamford, CT: Ablex Publishing.
  • McQueen, J. M., & Cutler, A. (1997). Cognitive processes in speech perception. In W. J. Hardcastle, & J. D. Laver (Eds.), The handbook of phonetic sciences (pp. 556-585). Oxford: Blackwell.
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • McQueen, J. M., & Meyer, A. S. (2019). Key issues and future directions: Towards a comprehensive cognitive architecture for language use. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 85-96). Cambridge, MA: MIT Press.
  • Meyer, A. S. (2004). The use of eye tracking in studies of sentence generation. In J. M. Henderson, & F. Ferreira (Eds.), The interface of language, vision, and action: Eye movements and the visual world (pp. 191-212). Hove: Psychology Press.
  • Narasimhan, B., Bowerman, M., Brown, P., Eisenbeiss, S., & Slobin, D. I. (2004). "Putting things in places": Effekte linguisticher Typologie auf die Sprachentwicklung. In G. Plehn (Ed.), Jahrbuch der Max-Planck Gesellschaft (pp. 659-663). Göttingen: Vandenhoeck & Ruprecht.

    Abstract

    Effekte linguisticher Typologie auf die Sprach-entwicklung. In G. Plehn (Ed.), Jahrbuch der Max-Planck Gesellsch
  • Neijt, A., Schreuder, R., & Baayen, R. H. (2004). Seven years later: The effect of spelling on interpretation. In L. Cornips, & J. Doetjes (Eds.), Linguistics in the Netherlands 2004 (pp. 134-145). Amsterdam: Benjamins.
  • Noordman, L. G., & Vonk, W. (1998). Discourse comprehension. In A. D. Friederici (Ed.), Language comprehension: a biological perspective (pp. 229-262). Berlin: Springer.

    Abstract

    The human language processor is conceived as a system that consists of several interrelated subsystems. Each subsystem performs a specific task in the complex process of language comprehension and production. A subsystem receives a particular input, performs certain specific operations on this input and yields a particular output. The subsystems can be characterized in terms of the transformations that relate the input representations to the output representations. An important issue in describing the language processing system is to identify the subsystems and to specify the relations between the subsystems. These relations can be conceived in two different ways. In one conception the subsystems are autonomous. They are related to each other only by the input-output channels. The operations in one subsystem are not affected by another system. The subsystems are modular, that is they are independent. In the other conception, the different subsystems influence each other. A subsystem affects the processes in another subsystem. In this conception there is an interaction between the subsystems.
  • Noordman, L. G., & Vonk, W. (1997). The different functions of a conjunction in constructing a representation of the discourse. In J. Costermans, & M. Fayol (Eds.), Processing interclausal relationships: studies in the production and comprehension of text (pp. 75-94). Mahwah, NJ: Lawrence Erlbaum.
  • Norcliffe, E., Enfield, N. J., Majid, A., & Levinson, S. C. (2011). The grammar of perception. In K. Kendrick, & A. Majid (Eds.), Field manual volume 14 (pp. 1-10). Nijmegen: Max Planck Institute for Psycholinguistics.
  • O'Connor, L. (2004). Going getting tired: Associated motion through space and time in Lowland Chontal. In M. Achard, & S. Kemmer (Eds.), Language, culture and mind (pp. 181-199). Stanford: CSLI.
  • O'Meara, C., Speed, L. J., San Roque, L., & Majid, A. (2019). Perception Metaphors: A view from diversity. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. 1-16). Amsterdam: Benjamins.

    Abstract

    Our bodily experiences play an important role in the way that we think and speak. Abstract language is, however, difficult to reconcile with this body-centred view, unless we appreciate the role metaphors play. To explore the role of the senses across semantic domains, we focus on perception metaphors, and examine their realisation across diverse languages, methods, and approaches. To what extent do mappings in perception metaphor adhere to predictions based on our biological propensities; and to what extent is there space for cross-linguistic and cross-cultural variation? We find that while some metaphors have widespread commonality, there is more diversity attested than should be comfortable for universalist accounts.
  • Ozyurek, A., & Woll, B. (2019). Language in the visual modality: Cospeech gesture and sign language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 67-83). Cambridge, MA: MIT Press.
  • Ozyurek, A., & Perniss, P. M. (2011). Event representations in signed languages. In J. Bohnemeyer, & E. Pederson (Eds.), Event representations in language and cognition (pp. 84-107). New York: Cambridge University Press.
  • Perdue, C., & Klein, W. (1992). Conclusions. In W. Klein, & C. Perdue (Eds.), Utterance structure: Developing grammars again (pp. 301-337). Amsterdam: Benjamins.
  • Perdue, C., & Klein, W. (1992). Introduction. In W. Klein, & C. Perdue (Eds.), Utterance structure: Developing grammars again (pp. 1-10). Amsterdam: Benjamins.

Share this page