Publications

Displaying 101 - 200 of 278
  • Hagoort, P. (2009). The fractionation of spoken language understanding by measuring electrical and magnetic brain signals. In B. C. J. Moore, L. K. Tyler, & W. Marslen-Wilson (Eds.), The perception of speech: From sound to meaning (pp. 223-248). New York: Oxford University Press.
  • Hagoort, P. (2001). De verbeelding aan de macht: Hoe het menselijk taalvermogen zichtbaar wordt in de (beeld) analyse van hersenactiviteit. In J. Joosse (Ed.), Biologie en psychologie: Naar vruchtbare kruisbestuivingen (pp. 41-60). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.
  • Hagoort, P. (2005). Breintaal. In S. Knols, & D. Redeker (Eds.), NWO-Spinozapremies 2005 (pp. 21-34). Den Haag: NWO.
  • Hagoort, P. (2005). Broca's complex as the unification space for language. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 157-173). Mahwah, NJ: Erlbaum.
  • Hagoort, P. (2009). Reflections on the neurobiology of syntax. In D. Bickerton, & E. Szathmáry (Eds.), Biological foundations and origin of syntax (pp. 279-296). Cambridge, MA: MIT Press.

    Abstract

    This contribution focuses on the neural infrastructure for parsing and syntactic encoding. From an anatomical point of view, it is argued that Broca's area is an ill-conceived notion. Functionally, Broca's area and adjacent cortex (together Broca's complex) are relevant for language, but not exclusively for this domain of cognition. Its role can be characterized as providing the necessary infrastructure for unification (syntactic and semantic). A general proposal, but with required level of computational detail, is discussed to account for the distribution of labor between different components of the language network in the brain.Arguments are provided for the immediacy principle, which denies a privileged status for syntax in sentence processing. The temporal profile of event-related brain potential (ERP) is suggested to require predictive processing. Finally, since, next to speed, diversity is a hallmark of human languages, the language readiness of the brain might not depend on a universal, dedicated neural machinery for syntax, but rather on a shaping of the neural infrastructure of more general cognitive systems (e.g., memory, unification) in a direction that made it optimally suited for the purpose of communication through language.
  • Hagoort, P., Baggio, G., & Willems, R. M. (2009). Semantic unification. In M. S. Gazzaniga (Ed.), The cognitive neurosciences, 4th ed. (pp. 819-836). Cambridge, MA: MIT Press.

    Abstract

    Language and communication are about the exchange of meaning. A key feature of understanding and producing language is the construction of complex meaning from more elementary semantic building blocks. The functional characteristics of this semantic unification process are revealed by studies using event related brain potentials. These studies have found that word meaning is assembled into compound meaning in not more than 500 ms. World knowledge, information about the speaker, co-occurring visual input and discourse all have an immediate impact on semantic unification, and trigger similar electrophysiological responses as sentence-internal semantic information. Neuroimaging studies show that a network of brain areas, including the left inferior frontal gyrus, the left superior/middle temporal cortex, the left inferior parietal cortex and, to a lesser extent their right hemisphere homologues are recruited to perform semantic unification.
  • Hagoort, P. (2009). Taalontwikkeling: Meer dan woorden alleen. In M. Evenblij (Ed.), Brein in beeld: Beeldvorming bij heersenonderzoek (pp. 53-57). Den Haag: Stichting Bio-Wetenschappen en Maatschappij.
  • Hanulikova, A. (2009). The role of syllabification in the lexical segmentation of German and Slovak. In S. Fuchs, H. Loevenbruck, D. Pape, & P. Perrier (Eds.), Some aspects of speech and the brain (pp. 331-361). Frankfurt am Main: Peter Lang.

    Abstract

    Two experiments were carried out to examine the syllable affiliation of intervocalic consonant clusters and their effects on speech segmentation in two different languages. In a syllable reversal task, Slovak and German speakers divided bisyllabic non-words that were presented aurally into two parts, starting with the second syllable. Following the maximal onset principle, intervocalic consonants should be maximally assigned to the onset of the following syllable in conformity with language-specific restrictions, e.g., /du.gru/, /zu.kro:/ (dot indicates a syllable boundary). According to German phonology, syllables require branching rhymes (hence, /zuk.ro:/). In Slovak, both /du.gru/ and /dug.ru/ are possible syllabifications. Experiment 1 showed that German speakers more often closed the first syllable (/zuk.ro:/), following the requirement for a branching rhyme. In Experiment 2, Slovak speakers showed no clear preference; the first syllable was either closed (/dug.ru/) or open (/du.gru/). Correlation analyses on previously conducted word-spotting studies (Hanulíková, in press, 2008) suggest that speech segmentation is unaffected by these syllabification preferences.
  • Hellwig, B., Defina, R., Kidd, E., Allen, S. E. M., Davidson, L., & Kelly, B. F. (2021). Child language documentation: The sketch acquisition project. In G. Haig, S. Schnell, & F. Seifart (Eds.), Doing corpus-based typology with spoken language data: State of the art (pp. 29-58). Honolulu, HI: University of Hawai'i Press.

    Abstract

    This paper reports on an on-going project designed to collect comparable corpus data on child language and child-directed language in under-researched languages. Despite a long history of cross-linguistic research, there is a severe empirical bias within language acquisition research: Data is available for less than 2% of the world's languages, heavily skewed towards the larger and better-described languages. As a result, theories of language development tend to be grounded in a non-representative sample, and we know little about the acquisition of typologically-diverse languages from different families, regions, or sociocultural contexts. It is very likely that the reasons are to be found in the forbidding methodological challenges of constructing child language corpora under fieldwork conditions with their strict requirements on participant selection, sampling intervals, and amounts of data. There is thus an urgent need for proposals that facilitate and encourage language acquisition research across a wide variety of languages. Adopting a language documentation perspective, we illustrate an approach that combines the construction of manageable corpora of natural interaction with and between children with a sketch description of the corpus data – resulting in a set of comparable corpora and comparable sketches that form the basis for cross-linguistic comparisons.
  • Hellwig, F. M., & Lüpke, F. (2001). Caused positions. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 126-128). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874644.

    Abstract

    What kinds of resources to languages have for describing location and position? For some languages, verbs have an important role to play in describing different kinds of situations (e.g., whether a bottle is standing or lying on the table). This task is designed to examine the use of positional verbs in locative constructions, with respect to the presence or absence of a human “positioner”. Participants are asked to describe video clips showing locative states that occur spontaneously, or because of active interference from a person. The task follows on from two earlier tools for the elicitation of static locative descriptions (BowPed and the Ameka picture book task). A number of additional variables (e.g. canonical v. non-canonical orientation of the figure) are also targeted in the stimuli set.

    Additional information

    2001_Caused_positions.zip
  • De Hoop, H., & Narasimhan, B. (2005). Differential case-marking in Hindi. In M. Amberber, & H. de Hoop (Eds.), Competition and variation in natural languages: The case for case (pp. 321-345). Amsterdam: Elsevier.
  • Hurford, J. R., & Dediu, D. (2009). Diversity in language, genes and the language faculty. In R. Botha, & C. Knight (Eds.), The cradle of language (pp. 167-188). Oxford: Oxford University Press.
  • Indefrey, P., & Davidson, D. J. (2009). Second language acquisition. In L. R. Squire (Ed.), Encyclopedia of neuroscience (pp. 517-523). London: Academic Press.

    Abstract

    This article reviews neurocognitive evidence on second language (L2) processing at speech sound, word, and sentence levels. Hemodynamic (functional magnetic resonance imaging and positron emission tomography) data suggest that L2s are implemented in the same brain structures as the native language but with quantitative differences in the strength of activation that are modulated by age of L2 acquisition and L2 proficiency. Electrophysiological data show a more complex pattern of first and L2 similarities and differences, providing some, although not conclusive, evidence for qualitative differences between L1 and L2 syntactic processing.
  • Janzen, G. (2005). Wie das mensliche Gehirn Orientierung ermöglicht. In G. Plehn (Ed.), Jahrbuch der Max-Planck-Gesellschaft (pp. 599-601). Göttingen: Vandenhoeck & Ruprecht.
  • Johnsrude, I., Davis, M., & Hervais-Adelman, A. (2005). From sound to meaning: Hierarchical processing in speech comprehension. In D. Pressnitzer, S. McAdams, A. DeCheveigne, & L. Collet (Eds.), Auditory Signal Processing: Physiology, Psychoacoustics, and Models (pp. 299-306). New York: Springer.
  • Jolink, A. (2009). Finiteness in children with SLI: A functional approach. In C. Dimroth, & P. Jordens (Eds.), Functional categories in learner language (pp. 235-260). Berlin: Mouton de Gruyter.
  • Jordan, F., & Mace, R. (2005). The evolution of human sex-ratio at birth: A bio-cultural analysis. In R. Mace, C. J. Holden, & S. Shennan (Eds.), The evolution of cultural diversity: A phylogenetic approach (pp. 207-216). London: UCL Press.
  • Jordens, P., & Dimroth, C. (2006). Finiteness in children and adults learning Dutch. In N. Gagarina, & I. Gülzow (Eds.), The acquisition of verbs and their grammar: The effect of particular languages (pp. 173-200). Dordrecht: Springer.
  • Jordens, P. (2006). Inversion as an artifact: The acquisition of topicalization in child L1- and adult L2-Dutch. In S. H. Foster-Cohen, M. Medved Krajnovic, & J. Mihaljevic Djigunovic (Eds.), EUROSLA Yearbook 6 (pp. 101-120).
  • Jordens, P. (2009). The acquisition of functional categories in child L1 and adult L2 acquisition. In C. Dimroth, & P. Jordens (Eds.), Functional categories in learner language (pp. 45-96). Berlin: Mouton de Gruyter.
  • Karaca, F., Brouwer, S., Unsworth, S., & Huettig, F. (2021). Prediction in bilingual children: The missing piece of the puzzle. In E. Kaan, & T. Grüter (Eds.), Prediction in Second Language Processing and Learning (pp. 116-137). Amsterdam: Benjamins.

    Abstract

    A wealth of studies has shown that more proficient monolingual speakers are better at predicting upcoming information during language comprehension. Similarly, prediction skills of adult second language (L2) speakers in their L2 have also been argued to be modulated by their L2 proficiency. How exactly language proficiency and prediction are linked, however, is yet to be systematically investigated. One group of language users which has the potential to provide invaluable insights into this link is bilingual children. In this paper, we compare bilingual children’s prediction skills with those of monolingual children and adult L2 speakers, and show how investigating bilingual children’s prediction skills may contribute to our understanding of how predictive processing works.
  • Kempen, G., & Harbusch, K. (2005). The relationship between grammaticality ratings and corpus frequencies: A case study into word order variability in the midfield of German clauses. In S. Kepser, & M. Reis (Eds.), Linguistic evidence - emperical, theoretical, and computational perspectives (pp. 329-349). Berlin: Mouton de Gruyter.
  • Kidd, E. (2006). The acquisition of complement clause constructions. In E. V. Clark, & B. F. Kelly (Eds.), Constructions in acquisition (pp. 311-332). Stanford: Center for the Study of Language and Information.
  • Kita, S., Danziger, E., & Stolz, C. (2001). Cultural specificity of spatial schemas, as manifested in spontaneous gestures. In M. Gattis (Ed.), Spatial Schemas and Abstract Thought (pp. 115-146). Cambridge, MA, USA: MIT Press.
  • Kita, S. (2001). Locally-anchored spatial gestures, version 2: Historical description of the local environment as a gesture elicitation task. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 132-135). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874647.

    Abstract

    Gesture is an integral part of face-to-face communication, and provides a rich area for cross-cultural comparison. “Locally-anchored spatial gestures” are gestures that are roughly oriented to the actual geographical direction of referents. For example, such gestures may point to a location or a thing, trace the shape of a path, or indicate the direction of a particular area. The goal of this task is to elicit locally-anchored spatial gestures across different cultures. The task follows an interview format, where one participant prompts another to talk in detail about a specific area that the main speaker knows well. The data can be used for additional purposes such as the investigation of demonstratives.
  • Kita, S. (2001). Recording recommendations for gesture studies. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 130-131). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Klaas, G. (2009). Hints and recommendations concerning field equipment. In A. Majid (Ed.), Field manual volume 12 (pp. VI-VII). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Klein, W. (2005). Söldner des Wissens. In R. Kiesow, R. Ogorek, & S. Simitis (Eds.), Summa: Dieter Simon zum 70. Geburtstag (pp. 319-332). Frankfurt am Main: Klostermann.
  • Klein, W. (2006). On finiteness. In V. Van Geenhoven (Ed.), Semantics in acquisition (pp. 245-272). Dordrecht: Springer.

    Abstract

    The distinction between finite and non-finite verb forms is well-established but not particularly well-defined. It cannot just be a matter of verb morphology, because it is also made when there is hardly any morphological difference: by far most English verb forms can be finite as well as non-finite. More importantly, many structural phenomena are clearly associated with the presence or absence of finiteness, a fact which is clearly reflected in the early stages of first and second language acquisition. In syntax, these include basic word order rules, gapping, the licensing of a grammatical subject and the licensing of expletives. In semantics, the specific interpretation of indefinite noun phrases is crucially linked to the presence of a finite element. These phenomena are surveyed, and it is argued that finiteness (a) links the descriptive content of the sentence (the 'sentence basis') to its topic component (in particular, to its topic time), and (b) it confines the illocutionary force to that topic component. In a declarative main clause, for example, the assertion is confined to a particular time, the topic time. It is shown that most of the syntactic and semantic effects connected to finiteness naturally follow from this assumption.
  • Klein, W. (2005). The grammar of varieties. In U. Ammon, N. Dittmar, K. J. Mattheier, & P. Trudgill (Eds.), Sociolinguistics: An international handbook of the Science of Language and Society (pp. 1163-1171). Berlin: Walter de Gruyter.
  • Klein, W. (2021). Das „Heidelberger Forschungsprojekt Pidgin-Deutsch “und die Folgen. In B. Ahrenholz, & M. Rost-Roth (Eds.), Ein Blick zurück nach vorn: Frühe deutsche Forschung zu Zweitspracherwerb, Migration, Mehrsprachigkeit und zweitsprachbezogener Sprachdidaktik sowie ihre Bedeutung heute (pp. 50-95). Berlin: De Gruyter.
  • Klein, W. (1969). Bibliographie zur maschinellen syntaktischen Analyse. In H. Eggers, & R. Dietrich (Eds.), Elektronische Syntaxanalyse der deutschen Gegenwartssprache (pp. 165-177). Tübingen: Niemeyer.
  • Klein, W. (2009). Concepts of time. In W. Klein, & P. Li (Eds.), The expression of time (pp. 5-38). Berlin: Mouton de Gruyter.
  • Klein, W. (2001). Das Ende vor Augen: Deutsch als Wissenschaftssprache. In F. Debus, F. Kollmann, & U. Pörken (Eds.), Deutsch als Wissenschaftssprache im 20. Jahrhundert (pp. 289-293). Mainz: Akademie der Wissenschaften und der Literatur.
  • Klein, W. (2001). Deiktische Orientierung. In M. Haspelmath, E. König, W. Oesterreicher, & W. Raible (Eds.), Sprachtypologie und sprachliche Universalien: Vol. 1/1 (pp. 575-590). Berlin: de Gruyter.
  • Klein, W. (2001). Elementary forms of linguistic organisation. In S. Ward, & J. Trabant (Eds.), The origins of language (pp. 81-102). Berlin: Mouton de Gruyter.
  • Klein, W. (2001). Die Linguistik ist anders geworden. In S. Anschütz, S. Kanngießer, & G. Rickheit (Eds.), A Festschrift for Manfred Briegel: Spektren der Linguistik (pp. 51-72). Wiesbaden: Deutscher Universitätsverlag.
  • Klein, W. (2005). Der alte und der neue Grimm. In Grimm-Sozietät (Ed.), Die Brüder Grimm in Berlin (pp. 167-176). Stuttgart: Hirzel.
  • Klein, W. (2009). Finiteness, universal grammar, and the language faculty. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 333-344). New York: Psychology Press.
  • Klein, W. (2009). How time is encoded. In W. Klein, & P. Li (Eds.), The expression of time (pp. 39-82). Berlin: Mouton de Gruyter.
  • Klein, W. (2001). Lexicology and lexicography. In N. Smelser, & P. Baltes (Eds.), International encyclopedia of the social & behavioral sciences: Vol. 13 (pp. 8764-8768). Amsterdam: Elsevier Science.
  • Klein, W., & Li, P. (2009). Introduction. In W. Klein, & P. Li (Eds.), The expression of time (pp. 1-4). Berlin: Mouton de Gruyter.
  • Klein, W. (1975). Sprachliche Variation. In K. Stocker (Ed.), Taschenlexikon der Literatur- und Sprachdidaktik (pp. 557-561). Kronberg/Ts.: Scriptor.
  • Klein, W. (2001). Second language acquisition. In N. Smelser, & P. Baltes (Eds.), International encyclopedia of the social & behavioral sciences: Vol. 20 (pp. 13768-13771). Amsterdam: Elsevier science.
  • Klein, W., & Musan, R. (2009). Werden. In W. Eins, & F. Schmoë (Eds.), Wie wir sprechen und schreiben: Festschrift für Helmut Glück zum 60. Geburtstag (pp. 45-61). Wiesbaden: Harrassowitz Verlag.
  • Klein, W. (2001). Time and again. In C. Féry, & W. Sternefeld (Eds.), Audiatur vox sapientiae: A festschrift for Arnim von Stechow (pp. 267-286). Berlin: Akademie Verlag.
  • Klein, W. (1969). Zum Begriff der syntaktischen Analyse. In H. Eggers, & R. Dietrich (Eds.), Elektronische Syntaxanalyse der deutschen Gegenwartssprache (pp. 20-37). Tübingen: Niemeyer.
  • Klein, W. (2001). Typen und Konzepte des Spracherwerbs. In L. Götze, G. Helbig, G. Henrici, & H. Krumm (Eds.), Deutsch als Fremdsprache (pp. 604-616). Berlin: de Gruyter.
  • Klein, W. (1975). Über Peter Handkes "Kaspar" und einige Fragen der poetischen Kommunikation. In A. Van Kesteren, & H. Schmid (Eds.), Einführende Bibliographie zur modernen Dramentheorie (pp. 300-317). Kronberg/Ts.: Scriptor Verlag.
  • Klein, W., & Dimroth, C. (2009). Untutored second language acquisition. In W. C. Ritchie, & T. K. Bhatia (Eds.), The new handbook of second language acquisition (2nd rev. ed., pp. 503-522). Bingley: Emerald.
  • Kopecka, A. (2006). The semantic structure of motion verbs in French: Typological perspectives. In M. Hickmann, & Roberts S. (Eds.), Space in languages: Linguistic systems and cognitive categories (pp. 83-102). Amsterdam: Benjamins.
  • Kopecka, A. (2009). Continuity and change in the representation of motion events in French. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Özçaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 415-426). New York: Psychology Press.
  • Kupisch, T., Pereira Soares, S. M., Puig-Mayenco, E., & Rothman, J. (2021). Multilingualism and Chomsky's Generative Grammar. In N. Allott (Ed.), A companion to Chomsky (pp. 232-242). doi:10.1002/9781119598732.ch15.

    Abstract

    Like Einstein's general theory of relativity is concerned with explaining the basics of an observable experience – i.e., gravity – most people take for granted that Chomsky's theory of generative grammar (GG) is concerned with the basic nature of language. This chapter highlights a mere subset of central constructs in GG, showing how they have featured prominently and thus shaped formal linguistic studies in multilingualism. Because multilingualism includes a wide range of nonmonolingual populations, the constructs are divided across child bilingualism and adult third language for greater coverage. In the case of the former, the chapter examines how poverty of the stimulus has been investigated. Using the nascent field of L3/Ln acquisition as the backdrop, it discusses how the GG constructs of I-language versus E-language sit at the core of debates regarding the very notion of what linguistic transfer and mental representations should be taken to be.
  • Lai, V. T., & Frajzyngier, Z. (2009). Change of functions of the first person pronouns in Chinese. In M. Dufresne, M. Dupuis, & E. Vocaj (Eds.), Historical Linguistics 2007: Selected papers from the 18th International Conference on Historical Linguistics Montreal, 6-11 August 2007 (pp. 223-232). Amsterdam: John Benjamins.

    Abstract

    Selected papers from the 18th International Conference on Historical Linguistics, Montreal, 6-11 August 2007
  • Levelt, W. J. M. (1969). Semantic features: A psychological model and its mathematical analysis. In Heymans Bulletins Psychologische instituten R.U. Groningen, HB-69-45.
  • Levelt, W. J. M. (2001). The architecture of normal spoken language use. In G. Gupta (Ed.), Cognitive science: Issues and perspectives (pp. 457-473). New Delhi: Icon Publications.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M. (1969). Psycholinguistiek. In Winkler-Prins [Suppl.] (pp. A756-A757).
  • Levelt, W. J. M. (2001). Relations between speech production and speech perception: Some behavioral and neurological observations. In E. Dupoux (Ed.), Language, brain and cognitive development: Essays in honour of Jacques Mehler (pp. 241-256). Cambridge, MA: MIT Press.
  • Levelt, W. J. M. (1975). Systems, skills and language learning. In A. Van Essen, & J. Menting (Eds.), The context of foreign language learning (pp. 83-99). Assen: Van Gorcum.
  • Levelt, W. J. M., & Kempen, G. (1975). Semantic and syntactic aspects of remembering sentences: A review of some recent continental research. In A. Kennedy, & W. Wilkes (Eds.), Studies in long term memory (pp. 201-216). New York: Wiley.
  • Levinson, S. C., & Wilkins, D. P. (2006). Patterns in the data: Towards a semantic typology of spatial description. In S. C. Levinson, & D. P. Wilkins (Eds.), Grammars of space: Explorations in cognitive diversity (pp. 512-552). Cambridge: Cambridge University Press.
  • Levinson, S. C., & Wilkins, D. P. (2006). The background to the study of the language of space. In S. C. Levinson, & D. P. Wilkins (Eds.), Grammars of space: Explorations in cognitive diversity (pp. 1-23). Cambridge: Cambridge University Press.
  • Levinson, S. C. (2006). The language of space in Yélî Dnye. In S. C. Levinson, & D. P. Wilkins (Eds.), Grammars of space: Explorations in cognitive diversity (pp. 157-203). Cambridge: Cambridge University Press.
  • Levinson, S. C. (2001). Motion Verb Stimulus (Moverb) version 2. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 9-13). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3513706.

    Abstract

    How do languages express ideas of movement, and how do they package different components of this domain, such as manner and path of motion? This task uses one large set of stimuli to gain knowledge of certain key aspects of motion verb meanings in the target language, and expands the investigation beyond simple verbs (e.g., go) to include the semantics of motion predications complete with adjuncts (e.g., go across something). Consultants are asked to view and briefly describe 96 animations of a few seconds each. The task is designed to get linguistic elicitations of motion predications under contrastive comparison with other animations in the same set. Unlike earlier tasks, the stimuli focus on inanimate moving items or “figures” (in this case, a ball).
  • Levinson, S. C. (2001). Covariation between spatial language and cognition. In M. Bowerman, & S. C. Levinson (Eds.), Language acquisition and conceptual development (pp. 566-588). Cambridge: Cambridge University Press.
  • Levinson, S. C., Kita, S., & Ozyurek, A. (2001). Demonstratives in context: Comparative handicrafts. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 52-54). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874663.

    Abstract

    Demonstratives (e.g., words such as this and that in English) pivot on relationships between the item being talked about, and features of the speech act situation (e.g., where the speaker and addressee are standing or looking). However, they are only rarely investigated multi-modally, in natural language contexts. This task is designed to build a video corpus of cross-linguistically comparable discourse data for the study of “deixis in action”, while simultaneously supporting the investigation of joint attention as a factor in speaker selection of demonstratives. In the task, two or more speakers are asked to discuss and evaluate a group of similar items (e.g., examples of local handicrafts, tools, produce) that are placed within a relatively defined space (e.g., on a table). The task can additionally provide material for comparison of pointing gesture practices.
  • Levinson, S. C. (2009). Cognitive anthropology. In G. Senft, J. O. Östman, & J. Verschueren (Eds.), Culture and language use (pp. 50-57). Amsterdam: Benjamins.
  • Levinson, S. C., Bohnemeyer, J., & Enfield, N. J. (2001). “Time and space” questionnaire for “space in thinking” subproject. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 14-20). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    This entry contains: 1. An invitation to think about to what extent the grammar of space and time share lexical and morphosyntactic resources − the suggestions here are only prompts, since it would take a long questionnaire to fully explore this; 2. A suggestion about how to collect gestural data that might show us to what extent the spatial and temporal domains, have a psychological continuity. This is really the goal − but you need to do the linguistic work first or in addition. The goal of this task is to explore the extent to which time is conceptualised on a spatial basis.
  • Levinson, S. C. (2006). Introduction: The evolution of culture in a microcosm. In S. C. Levinson, & P. Jaisson (Eds.), Evolution and culture: A Fyssen Foundation Symposium (pp. 1-41). Cambridge: MIT Press.
  • Levinson, S. C. (2009). Foreword. In J. Liep (Ed.), A Papuan plutocracy: Ranked exchange on Rossel Island (pp. ix-xxiii). Copenhagen: Aarhus University Press.
  • Levinson, S. C. (2001). Maxim. In S. Duranti (Ed.), Key terms in language and culture (pp. 139-142). Oxford: Blackwell.
  • Levinson, S. C., Enfield, N. J., & Senft, G. (2001). Kinship domain for 'space in thinking' subproject. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 85-88). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874655.
  • Levinson, S. C. (2009). Language and mind: Let's get the issues straight! In S. D. Blum (Ed.), Making sense of language: Readings in culture and communication (pp. 95-104). Oxford: Oxford University Press.
  • Levinson, S. C., & Wittenburg, P. (2001). Language as cultural heritage - Promoting research and public awareness on the Internet. In J. Renn (Ed.), ECHO - An Infrastructure to Bring European Cultural Heritage Online (pp. 104-111). Berlin: Max Planck Institute for the History of Science.

    Abstract

    The ECHO proposal aims to bring to life the cultural heritage of Europe, through internet technology that encourages collaboration across the Humanities disciplines which interpret it – at the same time making all this scholarship accessible to the citizens of Europe. An essential part of the cultural heritage of Europe is the diverse set of languages used on the continent, in their historical, literary and spoken forms. Amongst these are the ‘hidden languages’ used by minorities but of wide interest to the general public. We take the 18 Sign Languages of the EEC – the natural languages of the deaf - as an example. Little comparative information about these is available, despite their special scientific importance, the widespread public interest and the policy implications. We propose a research project on these languages based on placing fully annotated digitized moving images of each of these languages on the internet. This requires significant development of multi-media technology which would allow distributed annotation of a central corpus, together with the development of special search techniques. The technology would have widespread application to all cultural performances recorded as sound plus moving images. Such a project captures in microcosm the essence of the ECHO proposal: cultural heritage is nothing without the humanities research which contextualizes and gives it comparative assessment; by marrying information technology to humanities research, we can bring these materials to a wider public while simultaneously boosting Europe as a research area.
  • Levinson, S. C., Kita, S., & Enfield, N. J. (2001). Locally-anchored narrative. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 147). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874660.

    Abstract

    As for 'Locally-anchored spatial gestures task, version 2', a major goal of this task is to elicit locally-anchored spatial gestures across different cultures. “Locally-anchored spatial gestures” are gestures that are roughly oriented to the actual geographical direction of referents. Rather than set up an interview situation, this task involves recording informal, animated narrative delivered to a native-speaker interlocutor. Locally-anchored gestures produced in such narrative are roughly comparable to those collected in the interview task. The data collected can also be used to investigate a wide range of other topics.
  • Levinson, S. C. (2001). Space: Linguistic expression. In N. Smelser, & P. Baltes (Eds.), International Encyclopedia of Social and Behavioral Sciences: Vol. 22 (pp. 14749-14752). Oxford: Pergamon.
  • Levinson, S. C. (2001). Place and space in the sculpture of Anthony Gormley - An anthropological perspective. In S. D. McElroy (Ed.), Some of the facts (pp. 68-109). St Ives: Tate Gallery.
  • Levinson, S. C. (2001). Pragmatics. In N. Smelser, & P. Baltes (Eds.), International Encyclopedia of Social and Behavioral Sciences: Vol. 17 (pp. 11948-11954). Oxford: Pergamon.
  • Levinson, S. C., & Enfield, N. J. (2001). Preface and priorities. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 3). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C., & Majid, A. (2009). Preface and priorities. In A. Majid (Ed.), Field manual volume 12 (pp. III). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C., & Majid, A. (2009). The role of language in mind. In S. Nolen-Hoeksema, B. Fredrickson, G. Loftus, & W. Wagenaar (Eds.), Atkinson and Hilgard's introduction to psychology (15th ed., pp. 352). London: Cengage learning.
  • Levshina, N. (2021). Conditional inference trees and random forests. In M. Paquot, & T. Gries (Eds.), Practical Handbook of Corpus Linguistics (pp. 611-643). New York: Springer.
  • Liszkowski, U. (2006). Infant pointing at twelve months: Communicative goals, motives, and social-cognitive abilities. In N. J. Enfield, & S. C. Levinson (Eds.), Roots of human sociality: culture, cognition and interaction (pp. 153-178). New York: Berg.
  • Magyari, L. (2005). A nyelv miért nem olyan, mint a szem? (Why is language not like vertebrate eye?). In J. Gervain, K. Kovács, Á. Lukács, & M. Racsmány (Eds.), Az ezer arcú elme (The mind with thousand faces) (first edition, pp. 452-460). Budapest: Akadémiai Kiadó.
  • Majid, A., van Leeuwen, T., & Dingemanse, M. (2009). Synaesthesia: A cross-cultural pilot. In A. Majid (Ed.), Field manual volume 12 (pp. 8-13). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.883570.

    Abstract

    Synaesthesia is a condition in which stimulation of one sensory modality (e.g. hearing) causes additional experiences in a second, unstimulated modality (e.g. seeing colours). The goal of this task is to explore the types (and incidence) of synaesthesia in different cultures. Two simple tests can ascertain the existence of synaesthesia in your community.

    Additional information

    2009_Synaesthesia_audio_files.zip
  • Mak, M., & Willems, R. M. (2021). Mental simulation during literary reading. In D. Kuiken, & A. M. Jacobs (Eds.), Handbook of empirical literary studies (pp. 63-84). Berlin: De Gruyter.

    Abstract

    Readers experience a number of sensations during reading. They do
    not – or do not only – process words and sentences in a detached, abstract
    manner. Instead they “perceive” what they read about. They see descriptions of
    scenery, feel what characters feel, and hear the sounds in a story. These sensa-
    tions tend to be grouped under the umbrella terms “mental simulation” and
    “mental imagery.” This chapter provides an overview of empirical research on
    the role of mental simulation during literary reading. Our chapter also discusses
    what mental simulation is and how it relates to mental imagery. Moreover, it
    explores how mental simulation plays a role in leading models of literary read-
    ing and investigates under what circumstances mental simulation occurs dur-
    ing literature reading. Finally, the effect of mental simulation on the literary
    reader’s experience is discussed, and suggestions and unresolved issues in this
    field are formulated.
  • Massaro, D. W., & Jesse, A. (2005). The magic of reading: Too many influences for quick and easy explanations. In T. Trabasso, J. Sabatini, D. W. Massaro, & R. C. Calfee (Eds.), From orthography to pedagogy: Essays in honor of Richard L. Venezky. (pp. 37-61). Mahwah, NJ: Lawrence Erlbaum Associates.

    Abstract

    Words are fundamental to reading and yet over a century of research has not masked the controversies around how words are recognized. We review some old and new research that disproves simple ideas such as words are read as wholes or are simply mapped directly to spoken language. We also review theory and research relevant to the question of sublexical influences in word recognition. We describe orthography and phonology, how they are related to each other and describe a series of new experiments on how these sources of information are processed. Tasks include lexical decision, perceptual identification, and naming. Dependent measures are reaction time, accuracy of performance, and a new measure, initial phoneme duration, that refers to the duration of the first phoneme when the target word is pronounced. Important factors in resolving the controversies include the realization that reading has multiple determinants, as well as evaluating the type of task, proper controls such as familiarity of the test items and accuracy of measurement of the response. We also address potential limitations with measures related to the mapping between orthography and phonology, and show that the existence of a sound-to-spelling consistency effect does not require interactive activation, but can be explained and predicted by a feedforward model, the Fuzzy logical model of perception.
  • McQueen, J. M. (2005). Speech perception. In K. Lamberts, & R. Goldstone (Eds.), The Handbook of Cognition (pp. 255-275). London: Sage Publications.
  • McQueen, J. M. (2005). Spoken word recognition and production: Regular but not inseparable bedfellows. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 229-244). Mahwah, NJ: Erlbaum.
  • Meira, S., & Levinson, S. C. (2001). Topological tasks: General introduction. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 29-51). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874665.
  • Mitterer, H., & Cutler, A. (2006). Speech perception. In K. Brown (Ed.), Encyclopedia of Language and Linguistics (vol. 11) (pp. 770-782). Amsterdam: Elsevier.

    Abstract

    The goal of speech perception is understanding a speaker's message. To achieve this, listeners must recognize the words that comprise a spoken utterance. This in turn implies distinguishing these words from other minimally different words (e.g., word from bird, etc.), and this involves making phonemic distinctions. The article summarizes research on the perception of phonemic distinctions, on how listeners cope with the continuity and variability of speech signals, and on how phonemic information is mapped onto the representations of words. Particular attention is paid to theories of speech perception and word recognition.
  • Narasimhan, B., & Brown, P. (2009). Getting the inside story: Learning to talk about containment in Tzeltal and Hindi. In V. C. Mueller-Gathercole (Ed.), Routes to language: Studies in honor of Melissa Bowerman (pp. 97-132). New York: Psychology Press.

    Abstract

    The present study examines young children's uses of semantically specific and general relational containment terms (e.g. in, enter) in Hindi and Tzeltal, and the extent to which their usage patterns are influenced by input frequency. We hypothesize that if children have a preference for relational terms that are semantically specific, this will be reflected in early acquisition of more semantically specific expressions and underextension of semantically general ones, regardless of the distributional patterns of use of these terms in the input. Our findings however show a strong role for input frequency in guiding children's patterns of use of containment terms in the two languages. Yet language-specific lexicalization patterns play a role as well, since object-specific containment verbs are used as early as the semantically general 'enter' verb by children acquiring Tzeltal.
  • O'Connor, L. (2006). Sobre los predicados complejos en el Chontal de la baja. In A. Oseguera (Ed.), Historia y etnografía entre los Chontales de Oaxaca (pp. 119-161). Oaxaca: Instituto Nacional de Antroplogía e Historia.
  • Petersson, K. M., & Reis, A. (2006). Characteristics of illiterate and literate cognitive processing: Implications of brain- behavior co-constructivism. In P. B. Baltes, P. Reuter-Lorenz, & F. Rösler (Eds.), Lifespan development and the brain: The perspective of biocultural co-constructivism (pp. 279-305). Cambridge: Cambridge University Press.

    Abstract

    Literacy and education represent essential aspects of contemporary society and subserve important aspects of socialization and cultural transmission. The study of illiterate subjects represents one approach to investigate the interactions between neurobiological and cultural factors in cognitive development, individual learning, and their influence on the functional organization of the brain. In this chapter we review some recent cognitive, neuroanatomic, and functional neuroimaging results indicating that formal education influences important aspects of the human brain. Taken together this provides strong support for the idea that the brain is modulated by literacy and formal education, which in turn change the brains capacity to interact with its environment, including the individual's contemporary culture. In other words, the individual is able to participate in, interact with, and actively contribute to the process of cultural transmission in new ways through acquired cognitive skills.
  • Petersson, K. M., Ingvar, M., & Reis, A. (2009). Language and literacy from a cognitive neuroscience perspective. In D. Olsen, & N. Torrance (Eds.), Cambridge handbook of literacy (pp. 152-181). Cambridge: Cambridge University Press.
  • Poletiek, F. H. (2006). Natural sampling of stimuli in (artificial) grammar learning. In K. Fiedler, & P. Juslin (Eds.), Information sampling and adaptive cognition (pp. 440-455). Cambridge: Cambridge University Press.
  • Poletiek, F. H. (2005). The proof of the pudding is in the eating: Translating Popper's philosophy into a model for testing behaviour. In K. I. Manktelow, & M. C. Chung (Eds.), Psychology of reasoning: Theoretical and historical perspectives (pp. 333-347). Hove: Psychology Press.
  • Ramus, F., & Fisher, S. E. (2009). Genetics of language. In M. S. Gazzaniga (Ed.), The cognitive neurosciences, 4th ed. (pp. 855-871). Cambridge, MA: MIT Press.

    Abstract

    It has long been hypothesised that the human faculty to acquire a language is in some way encoded in our genetic program. However, only recently has genetic evidence been available to begin to substantiate the presumed genetic basis of language. Here we review the first data from molecular genetic studies showing association between gene variants and language disorders (specific language impairment, speech sound disorder, developmental dyslexia), we discuss the biological function of these genes, and we further speculate on the more general question of how the human genome builds a brain that can learn a language.
  • Rapold, C. J., & Zaugg-Coretti, S. (2009). Exploring the periphery of the central Ethiopian Linguistic area: Data from Yemsa and Benchnon. In J. Crass, & R. Meyer (Eds.), Language contact and language change in Ethiopia (pp. 59-81). Köln: Köppe.

Share this page