Publications

Displaying 101 - 185 of 185
  • Klein, W., & Perdue, C. (1993). Utterance structure. In C. Perdue (Ed.), Adult language acquisition: Cross-linguistic perspectives: Vol. 2 The results (pp. 3-40). Cambridge: Cambridge University Press.
  • Lev-Ari, S. (2019). The influence of social network properties on language processing and use. In M. S. Vitevitch (Ed.), Network Science in Cognitive Psychology (pp. 10-29). New York, NY: Routledge.

    Abstract

    Language is a social phenomenon. The author learns, processes, and uses it in social contexts. In other words, the social environment shapes the linguistic knowledge and use of the knowledge. To a degree, this is trivial. A child exposed to Japanese will become fluent in Japanese, whereas a child exposed to only Spanish will not understand Japanese but will master the sounds, vocabulary, and grammar of Spanish. Language is a structured system. Sounds and words do not occur randomly but are characterized by regularities. Learners are sensitive to these regularities and exploit them when learning language. People differ in the sizes of their social networks. Some people tend to interact with only a few people, whereas others might interact with a wide range of people. This is reflected in people’s holiday greeting habits: some people might send cards to only a few people, whereas other would send greeting cards to more than 350 people.
  • Levelt, W. J. M. (2001). The architecture of normal spoken language use. In G. Gupta (Ed.), Cognitive science: Issues and perspectives (pp. 457-473). New Delhi: Icon Publications.
  • Levelt, W. J. M. (1993). Die konnektionistische Mode. In J. Engelkamp, & T. Pechmann (Eds.), Mentale Repräsentation (pp. 51-62). Bern: Huber Verlag.
  • Levelt, W. J. M., Sinclair, A., & Jarvella, R. J. (1978). Causes and functions of linguistic awareness in language acquisition: Some introductory remarks. In A. Sinclair, R. Jarvella, & W. J. M. Levelt (Eds.), The child's conception of language (pp. 1-14). Heidelberg: Springer.
  • Levelt, W. J. M. (1978). A survey of studies in sentence perception: 1970-1976. In W. J. M. Levelt, & G. Flores d'Arcais (Eds.), Studies in the perception of language (pp. 1-74). New York: Wiley.
  • Levelt, W. J. M. (1993). Accessing words in speech production: Stages, processes and representations. In W. J. M. Levelt (Ed.), Lexical access in speech production (pp. 1-22). Cambridge, MA: Blackwell Publishers.

    Abstract

    Originally published in Cognition International Journal of Cognitive Science, Volume 42, Numbers 1-3, 1992 This paper introduces a special issue of Cognition 011 lexical access in speech production. Over the last quarter century, the psycholinguistic study of speaking, and in particular of accessing words in speech, received a major new impetus from the analysis of speech errors, dysfluencies and hesMions, from aphasiology, and from new paradigms in reaction time research. The emerging theoretical picture partitions the accessing process into two subprocesses, the selection of an appropriate lexical item (and "lemma") from the mental lexicon, and the phonological encoding of that item, that is, the computation of a phonetic program for the item in the context of utterance These two theoretical domains are successively introduced by outlining some core issues that have been or still have to be addressed. The final section discusses the controversial question whether phonological encoding can affect lexical selection. This partitioning is also followed in this special issue as a whole. There are, first, four papers on lexical selection, then three papers on phonological encoding, and finally one on the interaction between selection and phonological encoding.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M. (1993). Lexical access in speech production. In E. Reuland, & W. Abraham (Eds.), Knowledge and language: Vol. 1. From Orwell's problem to Plato's problem (pp. 241-251). Dordrecht: Kluwer.
  • Levelt, W. J. M. (1993). Lexical selection, or how to bridge the major rift in language processing. In F. Beckmann, & G. Heyer (Eds.), Theorie und Praxis des Lexikons (pp. 164-172). Berlin: Walter de Gruyter.
  • Levelt, W. J. M. (1992). Psycholinguistics: An overview. In W. Bright (Ed.), International encyclopedia of linguistics (Vol. 3) (pp. 290-294). Oxford: Oxford University Press.
  • Levelt, W. J. M. (2001). Relations between speech production and speech perception: Some behavioral and neurological observations. In E. Dupoux (Ed.), Language, brain and cognitive development: Essays in honour of Jacques Mehler (pp. 241-256). Cambridge, MA: MIT Press.
  • Levelt, W. J. M. (2020). The alpha and omega of Jerome Bruner's contributions to the Max Planck Institute for Psycholinguistics. In M. E. Poulsen (Ed.), The Jerome Bruner Library: From New York to Nijmegen (pp. 11-18). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    Presentation of the official opening of the Jerome Bruner Library, January 8th, 2020
  • Levelt, W. J. M. (1993). The architecture of normal spoken language use. In G. Blanken, J. Dittman, H. Grimm, J. C. Marshall, & C.-W. Wallesch (Eds.), Linguistic disorders and pathologies: An international handbook (pp. 1-15). Berlin: Walter de Gruyter.
  • Levelt, W. J. M. (1993). Spreken als vaardigheid. In C. Blankenstijn, & A. Scheper (Eds.), Taalvaardigheid (pp. 1-16). Dordrecht: ICG Publications.
  • Levelt, W. J. M., Schreuder, R., & Hoenkamp, E. (1978). Structure and use of verbs of motion. In R. N. Campbell, & P. T. Smith (Eds.), Recent advances in the psychology of language: Vol 2. Formal and experimental approaches (pp. 137-162). New York: Plenum Press.
  • Levinson, S. C. (1992). Space in Australian Languages Questionnaire. In S. C. Levinson (Ed.), Space stimuli kit 1.2 (pp. 29-40). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    This questionnaire is designed to explore how spatial relations are encoded in Australian language, but may be of interest to researchers further afield.
  • Levinson, S. C. (1992). Space in Australian Languages Questionnaire. In S. C. Levinson (Ed.), Space stimuli kit 1.2 (pp. 29-40). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3512641.

    Abstract

    This questionnaire is designed to explore how spatial relations are encoded in Australian language, but may be of interest to researchers further afield.
  • Levinson, S. C. (2001). Motion Verb Stimulus (Moverb) version 2. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 9-13). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3513706.

    Abstract

    How do languages express ideas of movement, and how do they package different components of this domain, such as manner and path of motion? This task uses one large set of stimuli to gain knowledge of certain key aspects of motion verb meanings in the target language, and expands the investigation beyond simple verbs (e.g., go) to include the semantics of motion predications complete with adjuncts (e.g., go across something). Consultants are asked to view and briefly describe 96 animations of a few seconds each. The task is designed to get linguistic elicitations of motion predications under contrastive comparison with other animations in the same set. Unlike earlier tasks, the stimuli focus on inanimate moving items or “figures” (in this case, a ball).
  • Levinson, S. C. (1992). Activity types and language. In P. Drew, & J. Heritage (Eds.), Talk at work: Interaction in institutional settings (pp. 66-100). Cambridge University Press.
  • Levinson, S. C. (2001). Covariation between spatial language and cognition. In M. Bowerman, & S. C. Levinson (Eds.), Language acquisition and conceptual development (pp. 566-588). Cambridge: Cambridge University Press.
  • Levinson, S. C., Kita, S., & Ozyurek, A. (2001). Demonstratives in context: Comparative handicrafts. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 52-54). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874663.

    Abstract

    Demonstratives (e.g., words such as this and that in English) pivot on relationships between the item being talked about, and features of the speech act situation (e.g., where the speaker and addressee are standing or looking). However, they are only rarely investigated multi-modally, in natural language contexts. This task is designed to build a video corpus of cross-linguistically comparable discourse data for the study of “deixis in action”, while simultaneously supporting the investigation of joint attention as a factor in speaker selection of demonstratives. In the task, two or more speakers are asked to discuss and evaluate a group of similar items (e.g., examples of local handicrafts, tools, produce) that are placed within a relatively defined space (e.g., on a table). The task can additionally provide material for comparison of pointing gesture practices.
  • Levinson, S. C., Bohnemeyer, J., & Enfield, N. J. (2001). “Time and space” questionnaire for “space in thinking” subproject. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 14-20). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    This entry contains: 1. An invitation to think about to what extent the grammar of space and time share lexical and morphosyntactic resources − the suggestions here are only prompts, since it would take a long questionnaire to fully explore this; 2. A suggestion about how to collect gestural data that might show us to what extent the spatial and temporal domains, have a psychological continuity. This is really the goal − but you need to do the linguistic work first or in addition. The goal of this task is to explore the extent to which time is conceptualised on a spatial basis.
  • Levinson, S. C., Brown, P., Danzinger, E., De León, L., Haviland, J. B., Pederson, E., & Senft, G. (1992). Man and Tree & Space Games. In S. C. Levinson (Ed.), Space stimuli kit 1.2 (pp. 7-14). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.2458804.

    Abstract

    These classic tasks can be used to explore spatial reference in field settings. They provide a language-independent metric for eliciting spatial language, using a “director-matcher” paradigm. The Man and Tree task deals with location on the horizontal plane with both featured (man) and non-featured (e.g., tree) objects. The Space Games depict various objects (e.g. bananas, lemons) and elicit spatial contrasts not obviously lexicalisable in English.
  • Levinson, S. C. (2001). Maxim. In S. Duranti (Ed.), Key terms in language and culture (pp. 139-142). Oxford: Blackwell.
  • Levinson, S. C., & Toni, I. (2019). Key issues and future directions: Interactional foundations of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 257-261). Cambridge, MA: MIT Press.
  • Levinson, S. C., Enfield, N. J., & Senft, G. (2001). Kinship domain for 'space in thinking' subproject. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 85-88). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874655.
  • Levinson, S. C., & Wittenburg, P. (2001). Language as cultural heritage - Promoting research and public awareness on the Internet. In J. Renn (Ed.), ECHO - An Infrastructure to Bring European Cultural Heritage Online (pp. 104-111). Berlin: Max Planck Institute for the History of Science.

    Abstract

    The ECHO proposal aims to bring to life the cultural heritage of Europe, through internet technology that encourages collaboration across the Humanities disciplines which interpret it – at the same time making all this scholarship accessible to the citizens of Europe. An essential part of the cultural heritage of Europe is the diverse set of languages used on the continent, in their historical, literary and spoken forms. Amongst these are the ‘hidden languages’ used by minorities but of wide interest to the general public. We take the 18 Sign Languages of the EEC – the natural languages of the deaf - as an example. Little comparative information about these is available, despite their special scientific importance, the widespread public interest and the policy implications. We propose a research project on these languages based on placing fully annotated digitized moving images of each of these languages on the internet. This requires significant development of multi-media technology which would allow distributed annotation of a central corpus, together with the development of special search techniques. The technology would have widespread application to all cultural performances recorded as sound plus moving images. Such a project captures in microcosm the essence of the ECHO proposal: cultural heritage is nothing without the humanities research which contextualizes and gives it comparative assessment; by marrying information technology to humanities research, we can bring these materials to a wider public while simultaneously boosting Europe as a research area.
  • Levinson, S. C., Kita, S., & Enfield, N. J. (2001). Locally-anchored narrative. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 147). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874660.

    Abstract

    As for 'Locally-anchored spatial gestures task, version 2', a major goal of this task is to elicit locally-anchored spatial gestures across different cultures. “Locally-anchored spatial gestures” are gestures that are roughly oriented to the actual geographical direction of referents. Rather than set up an interview situation, this task involves recording informal, animated narrative delivered to a native-speaker interlocutor. Locally-anchored gestures produced in such narrative are roughly comparable to those collected in the interview task. The data collected can also be used to investigate a wide range of other topics.
  • Levinson, S. C. (2019). Interactional foundations of language: The interaction engine hypothesis. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 189-200). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2019). Natural forms of purposeful interaction among humans: What makes interaction effective? In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 111-126). Cambridge, MA: MIT Press.
  • Levinson, S. C. (1993). Raumkonzeptionen mit absoluten Systemen. In Max Planck Gesellschaft Jahrbuch 1993 (pp. 297-299).
  • Levinson, S. C. (2001). Space: Linguistic expression. In N. Smelser, & P. Baltes (Eds.), International Encyclopedia of Social and Behavioral Sciences: Vol. 22 (pp. 14749-14752). Oxford: Pergamon.
  • Levinson, S. C. (2001). Place and space in the sculpture of Anthony Gormley - An anthropological perspective. In S. D. McElroy (Ed.), Some of the facts (pp. 68-109). St Ives: Tate Gallery.
  • Levinson, S. C. (2001). Pragmatics. In N. Smelser, & P. Baltes (Eds.), International Encyclopedia of Social and Behavioral Sciences: Vol. 17 (pp. 11948-11954). Oxford: Pergamon.
  • Levinson, S. C., & Enfield, N. J. (2001). Preface and priorities. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 3). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C., & Annamalai, E. (1992). Why presuppositions aren't conventional. In R. N. Srivastava (Ed.), Language and text: Studies in honour of Ashok R. Kelkar (pp. 227-242). Dehli: Kalinga Publications.
  • Majid, A. (2019). Preface. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. vii-viii). Amsterdam: Benjamins.
  • McQueen, J. M., & Meyer, A. S. (2019). Key issues and future directions: Towards a comprehensive cognitive architecture for language use. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 85-96). Cambridge, MA: MIT Press.
  • McQueen, J. M., & Dilley, L. C. (2020). Prosody and spoken-word recognition. In C. Gussenhoven, & A. Chen (Eds.), The Oxford handbook of language prosody (pp. 509-521). Oxford: Oxford University Press.

    Abstract

    This chapter outlines a Bayesian model of spoken-word recognition and reviews how
    prosody is part of that model. The review focuses on the information that assists the lis­
    tener in recognizing the prosodic structure of an utterance and on how spoken-word
    recognition is also constrained by prior knowledge about prosodic structure. Recognition
    is argued to be a process of perceptual inference that ensures that listening is robust to
    variability in the speech signal. In essence, the listener makes inferences about the seg­
    mental content of each utterance, about its prosodic structure (simultaneously at differ­
    ent levels in the prosodic hierarchy), and about the words it contains, and uses these in­
    ferences to form an utterance interpretation. Four characteristics of the proposed
    prosody-enriched recognition model are discussed: parallel uptake of different informa­
    tion types, high contextual dependency, adaptive processing, and phonological abstrac­
    tion. The next steps that should be taken to develop the model are also discussed.
  • Meira, S., & Levinson, S. C. (2001). Topological tasks: General introduction. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 29-51). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874665.
  • Misersky, J., & Redl, T. (2020). A psycholinguistic view on stereotypical and grammatical gender: The effects and remedies. In C. D. J. Bulten, C. F. Perquin-Deelen, M. H. Sinninghe Damsté, & K. J. Bakker (Eds.), Diversiteit. Een multidisciplinaire terreinverkenning (pp. 237-255). Deventer: Wolters Kluwer.
  • O'Meara, C., Speed, L. J., San Roque, L., & Majid, A. (2019). Perception Metaphors: A view from diversity. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. 1-16). Amsterdam: Benjamins.

    Abstract

    Our bodily experiences play an important role in the way that we think and speak. Abstract language is, however, difficult to reconcile with this body-centred view, unless we appreciate the role metaphors play. To explore the role of the senses across semantic domains, we focus on perception metaphors, and examine their realisation across diverse languages, methods, and approaches. To what extent do mappings in perception metaphor adhere to predictions based on our biological propensities; and to what extent is there space for cross-linguistic and cross-cultural variation? We find that while some metaphors have widespread commonality, there is more diversity attested than should be comfortable for universalist accounts.
  • Ozyurek, A., & Woll, B. (2019). Language in the visual modality: Cospeech gesture and sign language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 67-83). Cambridge, MA: MIT Press.
  • Perdue, C., & Klein, W. (Eds.). (1993). Concluding remarks. In Adult language acquisition: Cross-linguistic perspectives: Vol. 2 The results (pp. 253-272). Cambridge: Cambridge University Press.
  • Perdue, C., & Klein, W. (1992). Conclusions. In W. Klein, & C. Perdue (Eds.), Utterance structure: Developing grammars again (pp. 301-337). Amsterdam: Benjamins.
  • Perdue, C., & Klein, W. (1992). Introduction. In W. Klein, & C. Perdue (Eds.), Utterance structure: Developing grammars again (pp. 1-10). Amsterdam: Benjamins.
  • Piai, V., & Zheng, X. (2019). Speaking waves: Neuronal oscillations in language production. In K. D. Federmeier (Ed.), Psychology of Learning and Motivation (pp. 265-302). Elsevier.

    Abstract

    Language production involves the retrieval of information from memory, the planning of an articulatory program, and executive control and self-monitoring. These processes can be related to the domains of long-term memory, motor control, and executive control. Here, we argue that studying neuronal oscillations provides an important opportunity to understand how general neuronal computational principles support language production, also helping elucidate relationships between language and other domains of cognition. For each relevant domain, we provide a brief review of the findings in the literature with respect to neuronal oscillations. Then, we show how similar patterns are found in the domain of language production, both through review of previous literature and novel findings. We conclude that neurophysiological mechanisms, as reflected in modulations of neuronal oscillations, may act as a fundamental basis for bringing together and enriching the fields of language and cognition.
  • Ravignani, A., Chiandetti, C., & Kotz, S. (2019). Rhythm and music in animal signals. In J. Choe (Ed.), Encyclopedia of Animal Behavior (vol. 1) (2nd ed., pp. 615-622). Amsterdam: Elsevier.
  • Rojas-Berscia, L. M. (2019). Nominalization in Shawi/Chayahuita. In R. Zariquiey, M. Shibatani, & D. W. Fleck (Eds.), Nominalization in languages of the Americas (pp. 491-514). Amsterdam: Benjamins.

    Abstract

    This paper deals with the Shawi nominalizing suffixes -su’~-ru’~-nu’ ‘general nominalizer’, -napi/-te’/-tun‘performer/agent nominalizer’, -pi’‘patient nominalizer’, and -nan ‘instrument nominalizer’. The goal of this article is to provide a description of nominalization in Shawi. Throughout this paper I apply the Generalized Scale Model (GSM) (Malchukov, 2006) to Shawi verbal nominalizations, with the intention of presenting a formal representation that will provide a basis for future areal and typological studies of nominalization. In addition, I dialogue with Shibatani’s model to see how the loss or gain of categories correlates with the lexical or grammatical nature of nominalizations. strong nominalization in Shawi correlates with lexical nominalization, whereas weak nominalizations correlate with grammatical nominalization. A typology which takes into account the productivity of the nominalizers is also discussed.
  • Rowland, C. F., & Kidd, E. (2019). Key issues and future directions: How do children acquire language? In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 181-185). Cambridge, MA: MIT Press.
  • Rowland, C. F. (2020). Introduction. In M. E. Poulsen (Ed.), The Jerome Bruner Library: From New York to Nijmegen. Nijmegen: Max Planck Institute for Psycholinguistics.
  • Rubio-Fernández, P. (2019). Theory of mind. In C. Cummins, & N. Katsos (Eds.), The Handbook of Experimental Semantics and Pragmatics (pp. 524-536). Oxford: Oxford University Press.
  • Senft, G. (2020). Kampfschild - vayola. In T. Brüderlin, S. Schien, & S. Stoll (Eds.), Ausgepackt! 125Jahre Geschichte[n] im Museum Natur und Mensch (pp. 58-59). Freiburg: Michael Imhof Verlag.
  • Senft, G. (2020). 32 Kampfschild - dance or war shield - vayola. In T. Brüderlin, & S. Stoll (Eds.), Ausgepackt! 125Jahre Geschichte[n] im Museum Natur und Mensch. Texte zur Ausstellung, Städtische Museen Freiburg, vom 20. Juni 2020 bis 10. Januar 2021 (pp. 76-77). Freiburg: Städtische Museen.
  • Senft, G. (2001). Das Präsentieren des Forschers im Felde: Eine Einführung auf den Trobriand Inseln. In C. Sütterlin, & F. S. Salter (Eds.), Irenäus Eibl-Eibesfeldt: Zu Person und Werk, Festschrift zum 70. Geburtstag (pp. 188-197). Frankfurt am Main: Peter Lang.
  • Senft, G., & Labov, W. (1978). Einige Prinzipien linguistischer Methodologie [transl. from English by Gunter Senft]. In N. Dittmar, & B. O. Rieck (Eds.), William Labov: Sprache im sozialen Kontext, vol. 2 (pp. 187-207). Königstein: Scriptor.
  • Senft, G. (1992). As time goes by..: Changes observed in Trobriand Islanders' culture and language, Milne Bay Province, Papua New Guinea. In T. Dutton (Ed.), Culture change, language change: Case studies from Melanesia (pp. 67-89). Canberra: Pacific Linguistics.
  • Senft, G., & Labov, W. (1978). Hyperkorrektheit der unteren Mittelschicht als Faktor im Sprachwandel; [transl. from English by Gunter Senft]. In N. Dittmar, & B. O. Rieck (Eds.), William Labov: Sprache im sozialen Kontext, Vol.2 (pp. 129-146). Königstein: Scriptor.
  • Senft, G. (1993). Mwasawa - Spiel und Spaß bei den Trobriandern. In W. Schievenhövel, J. Uher, & R. Krell (Eds.), Eibl-Eibesfeldt - Sein Schlüssel zur Verhaltensforschung (pp. 100-109). München: Langen Müller.
  • Senft, B., & Senft, G. (1993). Mwasawa - Spiel und Spass bei den Trobriandern. In W. Schiefenhövel, J. Uher, & R. Krell (Eds.), Im Spiegel der Anderen - Aus dem Lebenswerk des Verhaltenforschers Irenäus Eibl-Eibesfeldt (pp. 100-109). München: Realis.
  • Senft, G. (2001). Kevalikuliku: Earthquake magic from the Tobriand Islands (for Unshakebles). In A. Pawley, M. Ross, & D. Tryon (Eds.), The boy from Bundaberg: Studies in Melanesian linguistics in honour of Tom Dutton (pp. 323-331). Canberra: Pacific Linguistics.
  • Senft, G. (2001). Sprache, Kognition und Konzepte des Raumes in verschiedenen Kulturen: Affiziert sprachliche Relativität die Philosophie? In L. Salwiczek, & W. Wickler (Eds.), Wie wir die Welt erkennen: Erkenntnisweisen im interdisziplinären Diskurs (pp. 203-242). Freiburg: Karl Alber.
  • Senft, G. (2019). Rituelle Kommunikation. In F. Liedtke, & A. Tuchen (Eds.), Handbuch Pragmatik (pp. 423-430). Stuttgart: J. B. Metzler. doi:10.1007/978-3-476-04624-6_41.

    Abstract

    Die Sprachwissenschaft hat den Begriff und das Konzept ›Rituelle Kommunikation‹ von der vergleichenden Verhaltensforschung übernommen. Humanethologen unterscheiden eine Reihe von sogenannten ›Ausdrucksbewegungen‹, die in der Mimik, der Gestik, der Personaldistanz (Proxemik) und der Körperhaltung (Kinesik) zum Ausdruck kommen. Viele dieser Ausdrucksbewegungen haben sich zu spezifischen Signalen entwickelt. Ethologen definieren Ritualisierung als Veränderung von Verhaltensweisen im Dienst der Signalbildung. Die zu Signalen ritualisierten Verhaltensweisen sind Rituale. Im Prinzip kann jede Verhaltensweise zu einem Signal werden, entweder im Laufe der Evolution oder durch Konventionen, die in einer bestimmten Gemeinschaft gültig sind, die solche Signale kulturell entwickelt hat und die von ihren Mitgliedern tradiert und gelernt werden.
  • Seuren, P. A. M. (1978). Language and communication in primates. In D. J. Chivers, & J. Herbert (Eds.), Recent advances in primatology. Vol. 1: Behaviour (pp. 909-917). New York: Academic Press.
  • Seuren, P. A. M. (2001). Language and philosophy. In N. J. Smelser, & P. B. Baltes (Eds.), International encyclopedia of the social and behavioral sciences. Volume 12 (pp. 8297-8303). Amsterdam, NL: Elsevier.
  • Seuren, P. A. M. (1978). Grammar as an underground process. In A. Sinclair, R. J. Jarvella, & W. J. M. Levelt (Eds.), The child's conception of language (pp. 201-223). Berlin: Springer.
  • Seuren, P. A. M. (1993). The question of predicate clefting in the Indian Ocean Creoles. In F. Byrne, & D. Winford (Eds.), Focus and grammatical relations in Creole languages (pp. 53-64). Amsterdam: Benjamins.
  • Sjerps, M. J., & Chang, E. F. (2019). The cortical processing of speech sounds in the temporal lobe. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 361-379). Cambridge, MA: MIT Press.
  • Skiba, R. (1993). Funktionale Analyse des Spracherwerbs einer polnischen Deutschlernerin. In A. Katny (Ed.), Beiträge zur Sprachwissenschaft, Psycho- und Soziolinguistik: Probleme des Deutschen als Mutter-, Fremd- und Zweitsprache (pp. 201-225). Rzeszów: WSP.
  • Skiba, R. (1993). Modal verbs and their syntactical characteristics in elementary learner varieties. In N. Dittmar, & A. Reich (Eds.), Modality in language acquisition (pp. 247-260). Berlin: Walter de Gruyter.
  • Terrill, A. (2001). Warlpiri. In J. Garry, & C. Rubino (Eds.), Facts about the world’s languages: An encyclopedia of the world's major languages past and present (pp. 801-803). New York: H.W. Wilson Press.
  • Thomaz, A. L., Lieven, E., Cakmak, M., Chai, J. Y., Garrod, S., Gray, W. D., Levinson, S. C., Paiva, A., & Russwinkel, N. (2019). Interaction for task instruction and learning. In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 91-110). Cambridge, MA: MIT Press.
  • Van Berkum, J. J. A., & Nieuwland, M. S. (2019). A cognitive neuroscience perspective on language comprehension in context. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 429-442). Cambridge, MA: MIT Press.
  • Van Valin Jr., R. D. (2001). Functional linguistics. In M. Aronoff, & J. Rees-Miller (Eds.), The handbook of Linguistics (pp. 319-336). Oxford: Blackwell.
  • Van Staden, M., Senft, G., Enfield, N. J., & Bohnemeyer, J. (2001). Staged events. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 115-125). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874668.

    Abstract

    The term “event” is a controversial concept, and the “same” activity or situation can be linguistically encoded in many different ways. The aim of this task is to explore features of event representation in the language of study, in particular, multi-verb constructions, event typicality, and event complexity. The task consists of a description and recollection task using film stimuli, and a subsequent re-enactment of certain scenes by other participants on the basis of these descriptions. The first part of the task collects elaborate and concise descriptions of complex events in order to examine how these are segmented into macro-events, what kind of information is expressed, and how the information is ordered. The re-enactment task is designed to examine what features of the scenes are stereotypically implied.
  • Vernes, S. C. (2019). Neuromolecular approaches to the study of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 577-593). Cambridge, MA: MIT Press.
  • Wilkins, D. (1993). Route Description Elicitation. In S. C. Levinson (Ed.), Cognition and space kit 1.0 (pp. 15-28). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3513141.

    Abstract

    When we want to describe a path through space, but do not share a common perceptual field with a conversation partner, language has to work doubly hard. This task investigates how people communicate the navigation of space in the absence of shared visual cues, as well as collecting data on motion verbs and the roles of symmetry and landmarks in route description. Two speakers (separated by a curtain or other barrier) are each given a model of a landscape, and one participant describes standard routes through this landscape for the other to match.
  • Wilkins, D., & Hill, D. (1993). Preliminary 'Come' and 'Go' Questionnaire. In S. C. Levinson (Ed.), Cognition and space kit 1.0 (pp. 29-46). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3513125.

    Abstract

    The encoding of apparently ‘simple’ movement concepts such as ‘COME’ and ‘GO’ can differ widely across languages (e.g., in regard to specifying direction of motion relative to the speaker). This questionnaire is used to identify the range of use of basic motion verbs in a language, and investigate semantic parameters that are involved in high frequency ‘COME’ and ‘GO’-like terms.
  • Wilkins, D. (2001). Eliciting contrastive use of demonstratives for objects within close personal space (all objects well within arm’s reach). In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 164-168). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Wilkins, D., Kita, S., & Enfield, N. J. (2001). Ethnography of pointing questionnaire version 2. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 136-141). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Wilkins, D. (2001). The 1999 demonstrative questionnaire: “This” and “that” in comparative perspective. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 149-163). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Zhang, Y., Chen, C.-h., & Yu, C. (2019). Mechanisms of cross-situational learning: Behavioral and computational evidence. In Advances in Child Development and Behavior; vol. 56 (pp. 37-63).

    Abstract

    Word learning happens in everyday contexts with many words and many potential referents for those words in view at the same time. It is challenging for young learners to find the correct referent upon hearing an unknown word at the moment. This problem of referential uncertainty has been deemed as the crux of early word learning (Quine, 1960). Recent empirical and computational studies have found support for a statistical solution to the problem termed cross-situational learning. Cross-situational learning allows learners to acquire word meanings across multiple exposures, despite each individual exposure is referentially uncertain. Recent empirical research shows that infants, children and adults rely on cross-situational learning to learn new words (Smith & Yu, 2008; Suanda, Mugwanya, & Namy, 2014; Yu & Smith, 2007). However, researchers have found evidence supporting two very different theoretical accounts of learning mechanisms: Hypothesis Testing (Gleitman, Cassidy, Nappa, Papafragou, & Trueswell, 2005; Markman, 1992) and Associative Learning (Frank, Goodman, & Tenenbaum, 2009; Yu & Smith, 2007). Hypothesis Testing is generally characterized as a form of learning in which a coherent hypothesis regarding a specific word-object mapping is formed often in conceptually constrained ways. The hypothesis will then be either accepted or rejected with additional evidence. However, proponents of the Associative Learning framework often characterize learning as aggregating information over time through implicit associative mechanisms. A learner acquires the meaning of a word when the association between the word and the referent becomes relatively strong. In this chapter, we consider these two psychological theories in the context of cross-situational word-referent learning. By reviewing recent empirical and cognitive modeling studies, our goal is to deepen our understanding of the underlying word learning mechanisms by examining and comparing the two theoretical learning accounts.
  • Zinken, J., Rossi, G., & Reddy, V. (2020). Doing more than expected: Thanking recognizes another's agency in providing assistance. In C. Taleghani-Nikazm, E. Betz, & P. Golato (Eds.), Mobilizing others: Grammar and lexis within larger activities (pp. 253-278). Amsterdam: John Benjamins.

    Abstract

    In informal interaction, speakers rarely thank a person who has complied with a request. Examining data from British English, German, Italian, Polish, and Telugu, we ask when speakers do thank after compliance. The results show that thanking treats the other’s assistance as going beyond what could be taken for granted in the circumstances. Coupled with the rareness of thanking after requests, this suggests that cooperation is to a great extent governed by expectations of helpfulness, which can be long-standing, or built over the course of a particular interaction. The higher frequency of thanking in some languages (such as English or Italian) suggests that cultures differ in the importance they place on recognizing the other’s agency in doing as requested.
  • Zuidema, W., & Fitz, H. (2019). Key issues and future directions: Models of human language and speech processing. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 353-358). Cambridge, MA: MIT Press.

Share this page