Publications

Displaying 101 - 185 of 185
  • Little, H., Eryılmaz, K., & de Boer, B. (2015). Linguistic modality affects the creation of structure and iconicity in signals. In D. C. Noelle, R. Dale, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. Jennings, & P. Maglio (Eds.), The 37th annual meeting of the Cognitive Science Society (CogSci 2015) (pp. 1392-1398). Austin, TX: Cognitive Science Society.

    Abstract

    Different linguistic modalities (speech or sign) offer different levels at which signals can iconically represent the world. One hypothesis argues that this iconicity has an effect on how linguistic structure emerges. However, exactly how and why these effects might come about is in need of empirical investigation. In this contribution, we present a signal creation experiment in which both the signalling space and the meaning space are manipulated so that different levels and types of iconicity are available between the signals and meanings. Signals are produced using an infrared sensor that detects the hand position of participants to generate auditory feedback. We find evidence that iconicity may be maladaptive for the discrimination of created signals. Further, we implemented Hidden Markov Models to characterise the structure within signals, which was also used to inform a metric for iconicity.
  • Little, H., Perlman, M., & Eryilmaz, K. (2017). Repeated interactions can lead to more iconic signals. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 760-765). Austin, TX: Cognitive Science Society.

    Abstract

    Previous research has shown that repeated interactions can cause iconicity in signals to reduce. However, data from several recent studies has shown the opposite trend: an increase in iconicity as the result of repeated interactions. Here, we discuss whether signals may become less or more iconic as a result of the modality used to produce them. We review several recent experimental results before presenting new data from multi-modal signals, where visual input creates audio feedback. Our results show that the growth in iconicity present in the audio information may come at a cost to iconicity in the visual information. Our results have implications for how we think about and measure iconicity in artificial signalling experiments. Further, we discuss how iconicity in real world speech may stem from auditory, kinetic or visual information, but iconicity in these different modalities may conflict.
  • Lopopolo, A., Frank, S. L., Van den Bosch, A., Nijhof, A., & Willems, R. M. (2018). The Narrative Brain Dataset (NBD), an fMRI dataset for the study of natural language processing in the brain. In B. Devereux, E. Shutova, & C.-R. Huang (Eds.), Proceedings of LREC 2018 Workshop "Linguistic and Neuro-Cognitive Resources (LiNCR) (pp. 8-11). Paris: LREC.

    Abstract

    We present the Narrative Brain Dataset, an fMRI dataset that was collected during spoken presentation of short excerpts of three
    stories in Dutch. Together with the brain imaging data, the dataset contains the written versions of the stimulation texts. The texts are
    accompanied with stochastic (perplexity and entropy) and semantic computational linguistic measures. The richness and unconstrained
    nature of the data allows the study of language processing in the brain in a more naturalistic setting than is common for fMRI studies.
    We hope that by making NBD available we serve the double purpose of providing useful neural data to researchers interested in natural
    language processing in the brain and to further stimulate data sharing in the field of neuroscience of language.
  • Lupyan, G., Wendorf, A., Berscia, L. M., & Paul, J. (2018). Core knowledge or language-augmented cognition? The case of geometric reasoning. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 252-254). Toruń, Poland: NCU Press. doi:10.12775/3991-1.062.
  • Mai, F., Galke, L., & Scherp, A. (2018). Using deep learning for title-based semantic subject indexing to reach competitive performance to full-text. In J. Chen, M. A. Gonçalves, J. M. Allen, E. A. Fox, M.-Y. Kan, & V. Petras (Eds.), JCDL '18: Proceedings of the 18th ACM/IEEE on Joint Conference on Digital Libraries (pp. 169-178). New York: ACM.

    Abstract

    For (semi-)automated subject indexing systems in digital libraries, it is often more practical to use metadata such as the title of a publication instead of the full-text or the abstract. Therefore, it is desirable to have good text mining and text classification algorithms that operate well already on the title of a publication. So far, the classification performance on titles is not competitive with the performance on the full-texts if the same number of training samples is used for training. However, it is much easier to obtain title data in large quantities and to use it for training than full-text data. In this paper, we investigate the question how models obtained from training on increasing amounts of title training data compare to models from training on a constant number of full-texts. We evaluate this question on a large-scale dataset from the medical domain (PubMed) and from economics (EconBiz). In these datasets, the titles and annotations of millions of publications are available, and they outnumber the available full-texts by a factor of 20 and 15, respectively. To exploit these large amounts of data to their full potential, we develop three strong deep learning classifiers and evaluate their performance on the two datasets. The results are promising. On the EconBiz dataset, all three classifiers outperform their full-text counterparts by a large margin. The best title-based classifier outperforms the best full-text method by 9.4%. On the PubMed dataset, the best title-based method almost reaches the performance of the best full-text classifier, with a difference of only 2.9%.
  • Maslowski, M., Meyer, A. S., & Bosker, H. R. (2017). Whether long-term tracking of speech rate affects perception depends on who is talking. In Proceedings of Interspeech 2017 (pp. 586-590). doi:10.21437/Interspeech.2017-1517.

    Abstract

    Speech rate is known to modulate perception of temporally ambiguous speech sounds. For instance, a vowel may be perceived as short when the immediate speech context is slow, but as long when the context is fast. Yet, effects of long-term tracking of speech rate are largely unexplored. Two experiments tested whether long-term tracking of rate influences perception of the temporal Dutch vowel contrast /ɑ/-/a:/. In Experiment 1, one low-rate group listened to 'neutral' rate speech from talker A and to slow speech from talker B. Another high-rate group was exposed to the same neutral speech from A, but to fast speech from B. Between-group comparison of the 'neutral' trials revealed that the low-rate group reported a higher proportion of /a:/ in A's 'neutral' speech, indicating that A sounded faster when B was slow. Experiment 2 tested whether one's own speech rate also contributes to effects of long-term tracking of rate. Here, talker B's speech was replaced by playback of participants' own fast or slow speech. No evidence was found that one's own voice affected perception of talker A in larger speech contexts. These results carry implications for our understanding of the mechanisms involved in rate-dependent speech perception and of dialogue.
  • McQueen, J. M., & Cutler, A. (1998). Spotting (different kinds of) words in (different kinds of) context. In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: Vol. 6 (pp. 2791-2794). Sydney: ICSLP.

    Abstract

    The results of a word-spotting experiment are presented in which Dutch listeners tried to spot different types of bisyllabic Dutch words embedded in different types of nonsense contexts. Embedded verbs were not reliably harder to spot than embedded nouns; this suggests that nouns and verbs are recognised via the same basic processes. Iambic words were no harder to spot than trochaic words, suggesting that trochaic words are not in principle easier to recognise than iambic words. Words were harder to spot in consonantal contexts (i.e., contexts which themselves could not be words) than in longer contexts which contained at least one vowel (i.e., contexts which, though not words, were possible words of Dutch). A control experiment showed that this difference was not due to acoustic differences between the words in each context. The results support the claim that spoken-word recognition is sensitive to the viability of sound sequences as possible words.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Positive and negative influences of the lexicon on phonemic decision-making. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 3 (pp. 778-781). Beijing: China Military Friendship Publish.

    Abstract

    Lexical knowledge influences how human listeners make decisions about speech sounds. Positive lexical effects (faster responses to target sounds in words than in nonwords) are robust across several laboratory tasks, while negative effects (slower responses to targets in more word-like nonwords than in less word-like nonwords) have been found in phonetic decision tasks but not phoneme monitoring tasks. The present experiments tested whether negative lexical effects are therefore a task-specific consequence of the forced choice required in phonetic decision. We compared phoneme monitoring and phonetic decision performance using the same Dutch materials in each task. In both experiments there were positive lexical effects, but no negative lexical effects. We observe that in all studies showing negative lexical effects, the materials were made by cross-splicing, which meant that they contained perceptual evidence supporting the lexically-consistent phonemes. Lexical knowledge seems to influence phonemic decision-making only when there is evidence for the lexically-consistent phoneme in the speech signal.
  • McQueen, J. M., Cutler, A., & Norris, D. (2000). Why Merge really is autonomous and parsimonious. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 47-50). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    We briefly describe the Merge model of phonemic decision-making, and, in the light of general arguments about the possible role of feedback in spoken-word recognition, defend Merge's feedforward structure. Merge not only accounts adequately for the data, without invoking feedback connections, but does so in a parsimonious manner.
  • McQueen, J. M., & Cutler, A. (1992). Words within words: Lexical statistics and lexical access. In J. Ohala, T. Neary, & B. Derwing (Eds.), Proceedings of the Second International Conference on Spoken Language Processing: Vol. 1 (pp. 221-224). Alberta: University of Alberta.

    Abstract

    This paper presents lexical statistics on the pattern of occurrence of words embedded in other words. We report the results of an analysis of 25000 words, varying in length from two to six syllables, extracted from a phonetically-coded English dictionary (The Longman Dictionary of Contemporary English). Each syllable, and each string of syllables within each word was checked against the dictionary. Two analyses are presented: the first used a complete list of polysyllables, with look-up on the entire dictionary; the second used a sublist of content words, counting only embedded words which were themselves content words. The results have important implications for models of human speech recognition. The efficiency of these models depends, in different ways, on the number and location of words within words.
  • Merkx, D., & Scharenborg, O. (2018). Articulatory feature classification using convolutional neural networks. In Proceedings of Interspeech 2018 (pp. 2142-2146). doi:10.21437/Interspeech.2018-2275.

    Abstract

    The ultimate goal of our research is to improve an existing speech-based computational model of human speech recognition on the task of simulating the role of fine-grained phonetic information in human speech processing. As part of this work we are investigating articulatory feature classifiers that are able to create reliable and accurate transcriptions of the articulatory behaviour encoded in the acoustic speech signal. Articulatory feature (AF) modelling of speech has received a considerable amount of attention in automatic speech recognition research. Different approaches have been used to build AF classifiers, most notably multi-layer perceptrons. Recently, deep neural networks have been applied to the task of AF classification. This paper aims to improve AF classification by investigating two different approaches: 1) investigating the usefulness of a deep Convolutional neural network (CNN) for AF classification; 2) integrating the Mel filtering operation into the CNN architecture. The results showed a remarkable improvement in classification accuracy of the CNNs over state-of-the-art AF classification results for Dutch, most notably in the minority classes. Integrating the Mel filtering operation into the CNN architecture did not further improve classification performance.
  • Micklos, A., Macuch Silva, V., & Fay, N. (2018). The prevalence of repair in studies of language evolution. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 316-318). Toruń, Poland: NCU Press. doi:10.12775/3991-1.075.
  • Moers, C., Janse, E., & Meyer, A. S. (2015). Probabilistic reduction in reading aloud: A comparison of younger and older adults. In M. Wolters, J. Livingstone, B. Beattie, R. Smith, M. MacMahon, J. Stuart-Smith, & J. Scobbie (Eds.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015). London: International Phonetics Association.

    Abstract

    Frequent and predictable words are generally pronounced with less effort and are therefore acoustically more reduced than less frequent or unpredictable words. Local predictability can be operationalised by Transitional Probability (TP), which indicates how likely a word is to occur given its immediate context. We investigated whether and how probabilistic reduction effects on word durations change with adult age when reading aloud content words embedded in sentences. The results showed equally large frequency effects on verb and noun durations for both younger (Mage = 20 years) and older (Mage = 68 years) adults. Backward TP also affected word duration for younger and older adults alike. ForwardTP, however, had no significant effect on word duration in either age group. Our results resemble earlier findings of more robust BackwardTP effects compared to ForwardTP effects. Furthermore, unlike often reported decline in predictive processing with aging, probabilistic reduction effects remain stable across adulthood.
  • Moisik, S. R., & Dediu, D. (2015). Anatomical biasing and clicks: Preliminary biomechanical modelling. In H. Little (Ed.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015) Satellite Event: The Evolution of Phonetic Capabilities: Causes constraints, consequences (pp. 8-13). Glasgow: ICPhS.

    Abstract

    It has been observed by several researchers that the Khoisan palate tends to lack a prominent alveolar ridge. A preliminary biomechanical model of click production was created to examine if these sounds might be subject to an anatomical bias associated with alveolar ridge size. Results suggest the bias is plausible, taking the form of decreased articulatory effort and improved volume change characteristics, however, further modelling and experimental research is required to solidify the claim.
  • Monaghan, P., Brand, J., Frost, R. L. A., & Taylor, G. (2017). Multiple variable cues in the environment promote accurate and robust word learning. In G. Gunzelman, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 817-822). Retrieved from https://mindmodeling.org/cogsci2017/papers/0164/index.html.

    Abstract

    Learning how words refer to aspects of the environment is a complex task, but one that is supported by numerous cues within the environment which constrain the possibilities for matching words to their intended referents. In this paper we tested the predictions of a computational model of multiple cue integration for word learning, that predicted variation in the presence of cues provides an optimal learning situation. In a cross-situational learning task with adult participants, we varied the reliability of presence of distributional, prosodic, and gestural cues. We found that the best learning occurred when cues were often present, but not always. The effect of variability increased the salience of individual cues for the learner, but resulted in robust learning that was not vulnerable to individual cues’ presence or absence. Thus, variability of multiple cues in the language-learning environment provided the optimal circumstances for word learning.
  • Morano, L., Ernestus, M., & Ten Bosch, L. (2015). Schwa reduction in low-proficiency L2 speakers: Learning and generalization. In Scottish consortium for ICPhS, M. Wolters, J. Livingstone, B. Beattie, R. Smith, M. MacMahon, J. Stuart-Smith, & J. Scobbie (Eds.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015). Glasgow: University of Glasgow.

    Abstract

    This paper investigated the learnability and generalizability of French schwa alternation by Dutch low-proficiency second language learners. We trained 40 participants on 24 new schwa words by exposing them equally often to the reduced and full forms of these words. We then assessed participants' accuracy and reaction times to these newly learnt words as well as 24 previously encountered schwa words with an auditory lexical decision task. Our results show learning of the new words in both forms. This suggests that lack of exposure is probably the main cause of learners' difficulties with reduced forms. Nevertheless, the full forms were slightly better recognized than the reduced ones, possibly due to phonetic and phonological properties of the reduced forms. We also observed no generalization to previously encountered words, suggesting that our participants stored both of the learnt word forms and did not create a rule that applies to all schwa words.
  • Mulder, K., Ten Bosch, L., & Boves, L. (2018). Analyzing EEG Signals in Auditory Speech Comprehension Using Temporal Response Functions and Generalized Additive Models. In Proceedings of Interspeech 2018 (pp. 1452-1456). doi:10.21437/Interspeech.2018-1676.

    Abstract

    Analyzing EEG signals recorded while participants are listening to continuous speech with the purpose of testing linguistic hypotheses is complicated by the fact that the signals simultaneously reflect exogenous acoustic excitation and endogenous linguistic processing. This makes it difficult to trace subtle differences that occur in mid-sentence position. We apply an analysis based on multivariate temporal response functions to uncover subtle mid-sentence effects. This approach is based on a per-stimulus estimate of the response of the neural system to speech input. Analyzing EEG signals predicted on the basis of the response functions might then bring to light conditionspecific differences in the filtered signals. We validate this approach by means of an analysis of EEG signals recorded with isolated word stimuli. Then, we apply the validated method to the analysis of the responses to the same words in the middle of meaningful sentences.
  • Mulder, K., Brekelmans, G., & Ernestus, M. (2015). The processing of schwa reduced cognates and noncognates in non-native listeners of English. In Scottish consortium for ICPhS, M. Wolters, J. Livingstone, B. Beattie, R. Smith, M. MacMahon, J. Stuart-Smith, & J. Scobbie (Eds.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015). Glasgow: University of Glasgow.

    Abstract

    In speech, words are often reduced rather than fully pronounced (e.g., (/ˈsʌmri/ for /ˈsʌməri/, summary). Non-native listeners may have problems in processing these reduced forms, because they have encountered them less often. This paper addresses the question whether this also holds for highly proficient non-natives and for words with similar forms and meanings in the non-natives' mother tongue (i.e., cognates). In an English auditory lexical decision task, natives and highly proficient Dutch non-natives of English listened to cognates and non-cognates that were presented in full or without their post-stress schwa. The data show that highly proficient learners are affected by reduction as much as native speakers. Nevertheless, the two listener groups appear to process reduced forms differently, because non-natives produce more errors on reduced cognates than on non-cognates. While listening to reduced forms, non-natives appear to be hindered by the co-activated lexical representations of cognate forms in their native language.
  • Neger, T. M., Rietveld, T., & Janse, E. (2015). Adult age effects in auditory statistical learning. In M. Wolters, J. Livingstone, B. Beattie, R. Smith, M. MacMahon, J. Stuart-Smith, & J. Scobbie (Eds.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015). London: International Phonetic Association.

    Abstract

    Statistical learning plays a key role in language processing, e.g., for speech segmentation. Older adults have been reported to show less statistical learning on the basis of visual input than younger adults. Given age-related changes in perception and cognition, we investigated whether statistical learning is also impaired in the auditory modality in older compared to younger adults and whether individual learning ability is associated with measures of perceptual (i.e., hearing sensitivity) and cognitive functioning in both age groups. Thirty younger and thirty older adults performed an auditory artificial-grammar-learning task to assess their statistical learning ability. In younger adults, perceptual effort came at the cost of processing resources required for learning. Inhibitory control (as indexed by Stroop colornaming performance) did not predict auditory learning. Overall, younger and older adults showed the same amount of auditory learning, indicating that statistical learning ability is preserved over the adult life span.
  • Nijveld, A., Ten Bosch, L., & Ernestus, M. (2015). Exemplar effects arise in a lexical decision task, but only under adverse listening conditions. In Scottish consortium for ICPhS, M. Wolters, J. Livingstone, B. Beattie, R. Smith, M. MacMahon, J. Stuart-Smith, & J. Scobbie (Eds.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015). Glasgow: University of Glasgow.

    Abstract

    This paper studies the influence of adverse listening conditions on exemplar effects in priming experiments that do not instruct participants to use their episodic memories. We conducted two lexical decision experiments, in which a prime and a target represented the same word type and could be spoken by the same or a different speaker. In Experiment 1, participants listened to clear speech, and showed no exemplar effects: they recognised repetitions by the same speaker as quickly as different speaker repetitions. In Experiment 2, the stimuli contained noise, and exemplar effects did arise. Importantly, Experiment 1 elicited longer average RTs than Experiment 2, a result that contradicts the time-course hypothesis, according to which exemplars only play a role when processing is slow. Instead, our findings support the hypothesis that exemplar effects arise under adverse listening conditions, when participants are stimulated to use their episodic memories in addition to their mental lexicons.
  • Norris, D., McQueen, J. M., & Cutler, A. (1994). Competition and segmentation in spoken word recognition. In Proceedings of the Third International Conference on Spoken Language Processing: Vol. 1 (pp. 401-404). Yokohama: PACIFICO.

    Abstract

    This paper describes recent experimental evidence which shows that models of spoken word recognition must incorporate both inhibition between competing lexical candidates and a sensitivity to metrical cues to lexical segmentation. A new version of the Shortlist [1][2] model incorporating the Metrical Segmentation Strategy [3] provides a detailed simulation of the data.
  • Norris, D., Cutler, A., McQueen, J. M., Butterfield, S., & Kearns, R. K. (2000). Language-universal constraints on the segmentation of English. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP (Workshop on Spoken Word Access Processes) (pp. 43-46). Nijmegen: Max-Planck-Institute for Psycholinguistics.

    Abstract

    Two word-spotting experiments are reported that examine whether the Possible-Word Constraint (PWC) [1] is a language-specific or language-universal strategy for the segmentation of continuous speech. The PWC disfavours parses which leave an impossible residue between the end of a candidate word and a known boundary. The experiments examined cases where the residue was either a CV syllable with a lax vowel, or a CVC syllable with a schwa. Although neither syllable context is a possible word in English, word-spotting in both contexts was easier than with a context consisting of a single consonant. The PWC appears to be language-universal rather than language-specific.
  • Norris, D., Van Ooijen, B., & Cutler, A. (1992). Speeded detection of vowels and steady-state consonants. In J. Ohala, T. Neary, & B. Derwing (Eds.), Proceedings of the Second International Conference on Spoken Language Processing; Vol. 2 (pp. 1055-1058). Alberta: University of Alberta.

    Abstract

    We report two experiments in which vowels and steady-state consonants served as targets in a speeded detection task. In the first experiment, two vowels were compared with one voiced and once unvoiced fricative. Response times (RTs) to the vowels were longer than to the fricatives. The error rate was higher for the consonants. Consonants in word-final position produced the shortest RTs, For the vowels, RT correlated negatively with target duration. In the second experiment, the same two vowel targets were compared with two nasals. This time there was no significant difference in RTs, but the error rate was still significantly higher for the consonants. Error rate and length correlated negatively for the vowels only. We conclude that RT differences between phonemes are independent of vocalic or consonantal status. Instead, we argue that the process of phoneme detection reflects more finely grained differences in acoustic/articulatory structure within the phonemic repertoire.
  • Norris, D., Cutler, A., & McQueen, J. M. (2000). The optimal architecture for simulating spoken-word recognition. In C. Davis, T. Van Gelder, & R. Wales (Eds.), Cognitive Science in Australia, 2000: Proceedings of the Fifth Biennial Conference of the Australasian Cognitive Science Society. Adelaide: Causal Productions.

    Abstract

    Simulations explored the inability of the TRACE model of spoken-word recognition to model the effects on human listening of subcategorical mismatch in word forms. The source of TRACE's failure lay not in interactive connectivity, not in the presence of inter-word competition, and not in the use of phonemic representations, but in the need for continuously optimised interpretation of the input. When an analogue of TRACE was allowed to cycle to asymptote on every slice of input, an acceptable simulation of the subcategorical mismatch data was achieved. Even then, however, the simulation was not as close as that produced by the Merge model, which has inter-word competition, phonemic representations and continuous optimisation (but no interactive connectivity).
  • Ortega, G., Schiefner, A., & Ozyurek, A. (2017). Speakers’ gestures predict the meaning and perception of iconicity in signs. In G. Gunzelmann, A. Howe, & T. Tenbrink (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 889-894). Austin, TX: Cognitive Science Society.

    Abstract

    Sign languages stand out in that there is high prevalence of
    conventionalised linguistic forms that map directly to their
    referent (i.e., iconic). Hearing adults show low performance
    when asked to guess the meaning of iconic signs suggesting
    that their iconic features are largely inaccessible to them.
    However, it has not been investigated whether speakers’
    gestures, which also share the property of iconicity, may
    assist non-signers in guessing the meaning of signs. Results
    from a pantomime generation task (Study 1) show that
    speakers’ gestures exhibit a high degree of systematicity, and
    share different degrees of form overlap with signs (full,
    partial, and no overlap). Study 2 shows that signs with full
    and partial overlap are more accurately guessed and are
    assigned higher iconicity ratings than signs with no overlap.
    Deaf and hearing adults converge in their iconic depictions
    for some concepts due to the shared conceptual knowledge
    and manual-visual modality.
  • Otake, T., & Cutler, A. (2000). A set of Japanese word cohorts rated for relative familiarity. In B. Yuan, T. Huang, & X. Tang (Eds.), Proceedings of the Sixth International Conference on Spoken Language Processing: Vol. 3 (pp. 766-769). Beijing: China Military Friendship Publish.

    Abstract

    A database is presented of relative familiarity ratings for 24 sets of Japanese words, each set comprising words overlapping in the initial portions. These ratings are useful for the generation of material sets for research in the recognition of spoken words.
  • Ozyurek, A. (1998). An analysis of the basic meaning of Turkish demonstratives in face-to-face conversational interaction. In S. Santi, I. Guaitella, C. Cave, & G. Konopczynski (Eds.), Oralite et gestualite: Communication multimodale, interaction: actes du colloque ORAGE 98 (pp. 609-614). Paris: L'Harmattan.
  • Ozyurek, A. (1994). How children talk about a conversation. In K. Beals, J. Denton, R. Knippen, L. Melnar, H. Suzuki, & E. Zeinfeld (Eds.), Papers from the Thirtieth Regional Meeting of the Chicago Linguistic Society: Main Session (pp. 309-319). Chicago, Ill: Chicago Linguistic Society.
  • Ozyurek, A. (1994). How children talk about conversations: Development of roles and voices. In E. V. Clark (Ed.), Proceedings of the Twenty-Sixth Annual Child Language Research Forum (pp. 197-206). Stanford: CSLI Publications.
  • Ozyurek, A., & Ozcaliskan, S. (2000). How do children learn to conflate manner and path in their speech and gestures? Differences in English and Turkish. In E. V. Clark (Ed.), The proceedings of the Thirtieth Child Language Research Forum (pp. 77-85). Stanford: CSLI Publications.
  • Peeters, D., Snijders, T. M., Hagoort, P., & Ozyurek, A. (2015). The role of left inferior frontal Gyrus in the integration of point- ing gestures and speech. In G. Ferré, & M. Tutton (Eds.), Proceedings of the4th GESPIN - Gesture & Speech in Interaction Conference. Nantes: Université de Nantes.

    Abstract

    Comprehension of pointing gestures is fundamental to human communication. However, the neural mechanisms
    that subserve the integration of pointing gestures and speech in visual contexts in comprehension
    are unclear. Here we present the results of an fMRI study in which participants watched images of an
    actor pointing at an object while they listened to her referential speech. The use of a mismatch paradigm
    revealed that the semantic unication of pointing gesture and speech in a triadic context recruits left
    inferior frontal gyrus. Complementing previous ndings, this suggests that left inferior frontal gyrus
    semantically integrates information across modalities and semiotic domains.
  • Perlman, M., Paul, J., & Lupyan, G. (2015). Congenitally deaf children generate iconic vocalizations to communicate magnitude. In D. C. Noelle, R. Dale, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. R. Maglio (Eds.), Proceedings of the 37th Annual Cognitive Science Society Meeting (CogSci 2015) (pp. 315-320). Austin, TX: Cognitive Science Society.

    Abstract

    From an early age, people exhibit strong links between certain visual (e.g. size) and acoustic (e.g. duration) dimensions. Do people instinctively extend these crossmodal correspondences to vocalization? We examine the ability of congenitally deaf Chinese children and young adults (age M = 12.4 years, SD = 3.7 years) to generate iconic vocalizations to distinguish items with contrasting magnitude (e.g., big vs. small ball). Both deaf and hearing (M = 10.1 years, SD = 0.83 years) participants produced longer, louder vocalizations for greater magnitude items. However, only hearing participants used pitch—higher pitch for greater magnitude – which counters the hypothesized, innate size “frequency code”, but fits with Mandarin language and culture. Thus our results show that the translation of visible magnitude into the duration and intensity of vocalization transcends auditory experience, whereas the use of pitch appears more malleable to linguistic and cultural influence.
  • Perlman, M., Fusaroli, R., Fein, D., & Naigles, L. (2017). The use of iconic words in early child-parent interactions. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 913-918). Austin, TX: Cognitive Science Society.

    Abstract

    This paper examines the use of iconic words in early conversations between children and caregivers. The longitudinal data include a span of six observations of 35 children-parent dyads in the same semi-structured activity. Our findings show that children’s speech initially has a high proportion of iconic words, and over time, these words become diluted by an increase of arbitrary words. Parents’ speech is also initially high in iconic words, with a decrease in the proportion of iconic words over time – in this case driven by the use of fewer iconic words. The level and development of iconicity are related to individual differences in the children’s cognitive skills. Our findings fit with the hypothesis that iconicity facilitates early word learning and may play an important role in learning to produce new words.
  • Perry, L., Perlman, M., & Lupyan, G. (2015). Iconicity in English vocabulary and its relation to toddlers’ word learning. In D. C. Noelle, R. Dale, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. R. Maglio (Eds.), Proceedings of the 37th Annual Cognitive Science Society Meeting (CogSci 2015) (pp. 315-320). Austin, TX: Cognitive Science Society.

    Abstract

    Scholars have documented substantial classes of iconic vocabulary in many non-Indo-European languages. In comparison, Indo-European languages like English are assumed to be arbitrary outside of a small number of onomatopoeic words. In three experiments, we asked English speakers to rate the iconicity of words from the MacArthur-Bates Communicative Developmental Inventory. We found English—contrary to common belief—exhibits iconicity that correlates with age of acquisition and differs across lexical classes. Words judged as most iconic are learned earlier, in accord with findings that iconic words are easier to learn. We also find that adjectives and verbs are more iconic than nouns, supporting the idea that iconicity provides an extra cue in learning more difficult abstract meanings. Our results provide new evidence for a relationship between iconicity and word learning and suggest iconicity may be a more pervasive property of spoken languages than previously thought.
  • Popov, V., Ostarek, M., & Tenison, C. (2017). Inferential Pitfalls in Decoding Neural Representations. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 961-966). Austin, TX: Cognitive Science Society.

    Abstract

    A key challenge for cognitive neuroscience is to decipher the representational schemes of the brain. A recent class of decoding algorithms for fMRI data, stimulus-feature-based encoding models, is becoming increasingly popular for inferring the dimensions of neural representational spaces from stimulus-feature spaces. We argue that such inferences are not always valid, because decoding can occur even if the neural representational space and the stimulus-feature space use different representational schemes. This can happen when there is a systematic mapping between them. In a simulation, we successfully decoded the binary representation of numbers from their decimal features. Since binary and decimal number systems use different representations, we cannot conclude that the binary representation encodes decimal features. The same argument applies to the decoding of neural patterns from stimulus-feature spaces and we urge caution in inferring the nature of the neural code from such methods. We discuss ways to overcome these inferential limitations.
  • Pouw, W., Aslanidou, A., Kamermans, K. L., & Paas, F. (2017). Is ambiguity detection in haptic imagery possible? Evidence for Enactive imaginings. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 2925-2930). Austin, TX: Cognitive Science Society.

    Abstract

    A classic discussion about visual imagery is whether it affords reinterpretation, like discovering two interpretations in the duck/rabbit illustration. Recent findings converge on reinterpretation being possible in visual imagery, suggesting functional equivalence with pictorial representations. However, it is unclear whether such reinterpretations are necessarily a visual-pictorial achievement. To assess this, 68 participants were briefly presented 2-d ambiguous figures. One figure was presented visually, the other via manual touch alone. Afterwards participants mentally rotated the memorized figures as to discover a novel interpretation. A portion (20.6%) of the participants detected a novel interpretation in visual imagery, replicating previous research. Strikingly, 23.6% of participants were able to reinterpret figures they had only felt. That reinterpretation truly involved haptic processes was further supported, as some participants performed co-thought gestures on an imagined figure during retrieval. These results are promising for further development of an Enactivist approach to imagination.
  • Räsänen, O., Seshadri, S., & Casillas, M. (2018). Comparison of syllabification algorithms and training strategies for robust word count estimation across different languages and recording conditions. In Proceedings of Interspeech 2018 (pp. 1200-1204). doi:10.21437/Interspeech.2018-1047.

    Abstract

    Word count estimation (WCE) from audio recordings has a number of applications, including quantifying the amount of speech that language-learning infants hear in their natural environments, as captured by daylong recordings made with devices worn by infants. To be applicable in a wide range of scenarios and also low-resource domains, WCE tools should be extremely robust against varying signal conditions and require minimal access to labeled training data in the target domain. For this purpose, earlier work has used automatic syllabification of speech, followed by a least-squares-mapping of syllables to word counts. This paper compares a number of previously proposed syllabifiers in the WCE task, including a supervised bi-directional long short-term memory (BLSTM) network that is trained on a language for which high quality syllable annotations are available (a “high resource language”), and reports how the alternative methods compare on different languages and signal conditions. We also explore additive noise and varying-channel data augmentation strategies for BLSTM training, and show how they improve performance in both matching and mismatching languages. Intriguingly, we also find that even though the BLSTM works on languages beyond its training data, the unsupervised algorithms can still outperform it in challenging signal conditions on novel languages.
  • Ravignani, A., Garcia, M., Gross, S., de Reus, K., Hoeksema, N., Rubio-Garcia, A., & de Boer, B. (2018). Pinnipeds have something to say about speech and rhythm. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 399-401). Toruń, Poland: NCU Press. doi:10.12775/3991-1.095.
  • Raviv, L., Meyer, A. S., & Lev-Ari, S. (2018). The role of community size in the emergence of linguistic structure. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 402-404). Toruń, Poland: NCU Press. doi:10.12775/3991-1.096.
  • Roberts, S. G., Everett, C., & Blasi, D. (2015). Exploring potential climate effects on the evolution of human sound systems. In H. Little (Ed.), Proceedings of the 18th International Congress of Phonetic Sciences [ICPhS 2015] Satellite Event: The Evolution of Phonetic Capabilities: Causes constraints, consequences (pp. 14-19). Glasgow: ICPHS.

    Abstract

    We suggest that it is now possible to conduct research on a topic which might be called evolutionary geophonetics. The main question is how the climate influences the evolution of language. This involves biological adaptations to the climate that may affect biases in production and perception; cultural evolutionary adaptations of the sounds of a language to climatic conditions; and influences of the climate on language diversity and contact. We discuss these ideas with special reference to a recent hypothesis that lexical tone is not adaptive in dry climates (Everett, Blasi & Roberts, 2015).
  • Rubio-Fernández, P., & Jara-Ettinger, J. (2018). Joint inferences of speakers’ beliefs and referents based on how they speak. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 991-996). Austin, TX: Cognitive Science Society.

    Abstract

    For almost two decades, the poor performance observed with the so-called Director task has been interpreted as evidence of limited use of Theory of Mind in communication. Here we propose a probabilistic model of common ground in referential communication that derives three inferences from an utterance: what the speaker is talking about in a visual context, what she knows about the context, and what referential expressions she prefers. We tested our model by comparing its inferences with those made by human participants and found that it closely mirrors their judgments, whereas an alternative model compromising the hearer’s expectations of cooperativeness and efficiency reveals a worse fit to the human data. Rather than assuming that common ground is fixed in a given exchange and may or may not constrain reference resolution, we show how common ground can be inferred as part of the process of reference assignment.
  • Saleh, A., Beck, T., Galke, L., & Scherp, A. (2018). Performance comparison of ad-hoc retrieval models over full-text vs. titles of documents. In M. Dobreva, A. Hinze, & M. Žumer (Eds.), Maturity and Innovation in Digital Libraries: 20th International Conference on Asia-Pacific Digital Libraries, ICADL 2018, Hamilton, New Zealand, November 19-22, 2018, Proceedings (pp. 290-303). Cham, Switzerland: Springer.

    Abstract

    While there are many studies on information retrieval models using full-text, there are presently no comparison studies of full-text retrieval vs. retrieval only over the titles of documents. On the one hand, the full-text of documents like scientific papers is not always available due to, e.g., copyright policies of academic publishers. On the other hand, conducting a search based on titles alone has strong limitations. Titles are short and therefore may not contain enough information to yield satisfactory search results. In this paper, we compare different retrieval models regarding their search performance on the full-text vs. only titles of documents. We use different datasets, including the three digital library datasets: EconBiz, IREON, and PubMed. The results show that it is possible to build effective title-based retrieval models that provide competitive results comparable to full-text retrieval. The difference between the average evaluation results of the best title-based retrieval models is only 3% less than those of the best full-text-based retrieval models.
  • Scharenborg, O., & Merkx, D. (2018). The role of articulatory feature representation quality in a computational model of human spoken-word recognition. In Proceedings of the Machine Learning in Speech and Language Processing Workshop (MLSLP 2018).

    Abstract

    Fine-Tracker is a speech-based model of human speech
    recognition. While previous work has shown that Fine-Tracker
    is successful at modelling aspects of human spoken-word
    recognition, its speech recognition performance is not
    comparable to that of human performance, possibly due to
    suboptimal intermediate articulatory feature (AF)
    representations. This study investigates the effect of improved
    AF representations, obtained using a state-of-the-art deep
    convolutional network, on Fine-Tracker’s simulation and
    recognition performance: Although the improved AF quality
    resulted in improved speech recognition; it, surprisingly, did
    not lead to an improvement in Fine-Tracker’s simulation power.
  • Scharenborg, O., Bouwman, G., & Boves, L. (2000). Connected digit recognition with class specific word models. In Proceedings of the COST249 Workshop on Voice Operated Telecom Services workshop (pp. 71-74).

    Abstract

    This work focuses on efficient use of the training material by selecting the optimal set of model topologies. We do this by training multiple word models of each word class, based on a subclassification according to a priori knowledge of the training material. We will examine classification criteria with respect to duration of the word, gender of the speaker, position of the word in the utterance, pauses in the vicinity of the word, and combinations of these. Comparative experiments were carried out on a corpus consisting of Dutch spoken connected digit strings and isolated digits, which are recorded in a wide variety of acoustic conditions. The results show, that classification based on gender of the speaker, position of the digit in the string, pauses in the vicinity of the training tokens, and models based on a combination of these criteria perform significantly better than the set with single models per digit.
  • Schmidt, J., Scharenborg, O., & Janse, E. (2015). Semantic processing of spoken words under cognitive load in older listeners. In M. Wolters, J. Livingstone, B. Beattie, R. Smith, M. MacMahon, J. Stuart-Smith, & J. Scobbie (Eds.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015). London: International Phonetic Association.

    Abstract

    Processing of semantic information in language comprehension has been suggested to be modulated by attentional resources. Consequently, cognitive load would be expected to reduce semantic priming, but studies have yielded inconsistent results. This study investigated whether cognitive load affects semantic activation in speech processing in older adults, and whether this is modulated by individual differences in cognitive and hearing abilities. Older adults participated in an auditory continuous lexical decision task in a low-load and high-load condition. The group analysis showed only a marginally significant reduction of semantic priming in the high-load condition compared to the low-load condition. The individual differences analysis showed that semantic priming was significantly reduced under increased load in participants with poorer attention-switching control. Hence, a resource-demanding secondary task may affect the integration of spoken words into a coherent semantic representation for listeners with poorer attentional skills.
  • Schubotz, L., Holler, J., & Ozyurek, A. (2015). Age-related differences in multi-modal audience design: Young, but not old speakers, adapt speech and gestures to their addressee's knowledge. In G. Ferré, & M. Tutton (Eds.), Proceedings of the 4th GESPIN - Gesture & Speech in Interaction Conference (pp. 211-216). Nantes: Université of Nantes.

    Abstract

    Speakers can adapt their speech and co-speech gestures for
    addressees. Here, we investigate whether this ability is
    modulated by age. Younger and older adults participated in a
    comic narration task in which one participant (the speaker)
    narrated six short comic stories to another participant (the
    addressee). One half of each story was known to both participants, the other half only to the speaker. Younger but
    not older speakers used more words and gestures when narrating novel story content as opposed to known content.
    We discuss cognitive and pragmatic explanations of these findings and relate them to theories of gesture production.
  • Schuerman, W. L., Nagarajan, S., & Houde, J. (2015). Changes in consonant perception driven by adaptation of vowel production to altered auditory feedback. In M. Wolters, J. Livingstone, B. Beattie, R. Smith, M. MacMahon, J. Stuart-Smith, & J. Scobbie (Eds.), Proceedings of the 18th International Congresses of Phonetic Sciences (ICPhS 2015). London: International Phonetic Association.

    Abstract

    Adaptation to altered auditory feedback has been shown to induce subsequent shifts in perception. However, it is uncertain whether these perceptual changes may generalize to other speech sounds. In this experiment, we tested whether exposing the production of a vowel to altered auditory feedback affects perceptual categorization of a consonant distinction. In two sessions, participants produced CVC words containing the vowel /i/, while intermittently categorizing stimuli drawn from a continuum between "see" and "she." In the first session feedback was unaltered, while in the second session the formants of the vowel were shifted 20% towards /u/. Adaptation to the altered vowel was found to reduce the proportion of perceived /S/ stimuli. We suggest that this reflects an alteration to the sensorimotor mapping that is shared between vowels and consonants.
  • Schuller, B., Steidl, S., Batliner, A., Bergelson, E., Krajewski, J., Janott, C., Amatuni, A., Casillas, M., Seidl, A., Soderstrom, M., Warlaumont, A. S., Hidalgo, G., Schnieder, S., Heiser, C., Hohenhorst, W., Herzog, M., Schmitt, M., Qian, K., Zhang, Y., Trigeorgis, G. and 2 moreSchuller, B., Steidl, S., Batliner, A., Bergelson, E., Krajewski, J., Janott, C., Amatuni, A., Casillas, M., Seidl, A., Soderstrom, M., Warlaumont, A. S., Hidalgo, G., Schnieder, S., Heiser, C., Hohenhorst, W., Herzog, M., Schmitt, M., Qian, K., Zhang, Y., Trigeorgis, G., Tzirakis, P., & Zafeiriou, S. (2017). The INTERSPEECH 2017 computational paralinguistics challenge: Addressee, cold & snoring. In Proceedings of Interspeech 2017 (pp. 3442-3446). doi:10.21437/Interspeech.2017-43.

    Abstract

    The INTERSPEECH 2017 Computational Paralinguistics Challenge addresses three different problems for the first time in research competition under well-defined conditions: In the Addressee sub-challenge, it has to be determined whether speech produced by an adult is directed towards another adult or towards a child; in the Cold sub-challenge, speech under cold has to be told apart from ‘healthy’ speech; and in the Snoring subchallenge, four different types of snoring have to be classified. In this paper, we describe these sub-challenges, their conditions, and the baseline feature extraction and classifiers, which include data-learnt feature representations by end-to-end learning with convolutional and recurrent neural networks, and bag-of-audiowords for the first time in the challenge series
  • Sekine, K. (2017). Gestural hesitation reveals children’s competence on multimodal communication: Emergence of disguised adaptor. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 3113-3118). Austin, TX: Cognitive Science Society.

    Abstract

    Speakers sometimes modify their gestures during the process of production into adaptors such as hair touching or eye scratching. Such disguised adaptors are evidence that the speaker can monitor their gestures. In this study, we investigated when and how disguised adaptors are first produced by children. Sixty elementary school children participated in this study (ten children in each age group; from 7 to 12 years old). They were instructed to watch a cartoon and retell it to their parents. The results showed that children did not produce disguised adaptors until the age of 8. The disguised adaptors accompany fluent speech until the children are 10 years old and accompany dysfluent speech until they reach 11 or 12 years of age. These results suggest that children start to monitor their gestures when they are 9 or 10 years old. Cognitive changes were considered as factors to influence emergence of disguised adaptors
  • Senft, G. (2000). COME and GO in Kilivila. In B. Palmer, & P. Geraghty (Eds.), SICOL. Proceedings of the second international conference on Oceanic linguistics: Volume 2, Historical and descriptive studies (pp. 105-136). Canberra: Pacific Linguistics.
  • Seuren, P. A. M. (1994). The computational lexicon: All lexical content is predicate. In Z. Yusoff (Ed.), Proceedings of the International Conference on Linguistic Applications 26-28 July 1994 (pp. 211-216). Penang: Universiti Sains Malaysia, Unit Terjemahan Melalui Komputer (UTMK).
  • Seuren, P. A. M. (1994). Translation relations in semantic syntax. In G. Bouma, & G. Van Noord (Eds.), CLIN IV: Papers from the Fourth CLIN Meeting (pp. 149-162). Groningen: Vakgroep Alfa-informatica, Rijksuniversiteit Groningen.
  • Slonimska, A., & Roberts, S. G. (2017). A case for systematic sound symbolism in pragmatics:The role of the first phoneme in question prediction in context. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 1090-1095). Austin, TX: Cognitive Science Society.

    Abstract

    Turn-taking in conversation is a cognitively demanding process that proceeds rapidly due to interlocutors utilizing a range of cues
    to aid prediction. In the present study we set out to test recent claims that content question words (also called wh-words) sound similar within languages as an adaptation to help listeners predict
    that a question is about to be asked. We test whether upcoming questions can be predicted based on the first phoneme of a turn and the prior context. We analyze the Switchboard corpus of English
    by means of a decision tree to test whether /w/ and /h/ are good statistical cues of upcoming questions in conversation. Based on the results, we perform a controlled experiment to test whether
    people really use these cues to recognize questions. In both studies
    we show that both the initial phoneme and the sequential context help predict questions. This contributes converging evidence that elements of languages adapt to pragmatic pressures applied during
    conversation.
  • Slonimska, A., Ozyurek, A., & Campisi, E. (2015). Ostensive signals: markers of communicative relevance of gesture during demonstration to adults and children. In G. Ferré, & M. Tutton (Eds.), Proceedings of the 4th GESPIN - Gesture & Speech in Interaction Conference (pp. 217-222). Nantes: Universite of Nantes.

    Abstract

    Speakers adapt their speech and gestures in various ways for their audience. We investigated further whether they use
    ostensive signals (eye gaze, ostensive speech (e.g. like this, this) or a combination of both) in relation to their gestures
    when talking to different addressees, i.e., to another adult or a child in a multimodal demonstration task. While adults used
    more eye gaze towards their gestures with other adults than with children, they were more likely to use combined
    ostensive signals for children than for adults. Thus speakers mark the communicative relevance of their gestures with different types of ostensive signals and by taking different types of addressees into account.
  • Smorenburg, L., Rodd, J., & Chen, A. (2015). The effect of explicit training on the prosodic production of L2 sarcasm by Dutch learners of English. In M. Wolters, J. Livingstone, B. Beattie, R. Smith, M. MacMahon, J. Stuart-Smith, & J. Scobbie (Eds.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015). Glasgow, UK: University of Glasgow.

    Abstract

    Previous research [9] suggests that Dutch learners of (British) English are not able to express sarcasm prosodically in their L2. The present study investigates whether explicit training on the prosodic markers of sarcasm in English can improve learners’ realisation of sarcasm. Sarcastic speech was elicited in short simulated telephone conversations between Dutch advanced learners of English and a native British English-speaking ‘friend’ in two sessions, fourteen days apart. Between the two sessions, participants were trained by means of (1) a presentation, (2) directed independent practice, and (3) evaluation of participants’ production and individual feedback in small groups. L1 British English-speaking raters subsequently evaluated the degree of sarcastic sounding in the participants’ responses on a five-point scale. It was found that significantly higher sarcasm ratings were given to L2 learners’ production obtained after the training than that obtained before the training; explicit training on prosody has a positive effect on learners’ production of sarcasm.
  • Speed, L., & Majid, A. (2018). Music and odor in harmony: A case of music-odor synaesthesia. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 2527-2532). Austin, TX: Cognitive Science Society.

    Abstract

    We report an individual with music-odor synaesthesia who experiences automatic and vivid odor sensations when she hears music. S’s odor associations were recorded on two days, and compared with those of two control participants. Overall, S produced longer descriptions, and her associations were of multiple odors at once, in comparison to controls who typically reported a single odor. Although odor associations were qualitatively different between S and controls, ratings of the consistency of their descriptions did not differ. This demonstrates that crossmodal associations between music and odor exist in non-synaesthetes too. We also found that S is better at discriminating between odors than control participants, and is more likely to experience emotion, memories and evaluations triggered by odors, demonstrating the broader impact of her synaesthesia.

    Additional information

    link to conference website
  • Stanojevic, M., & Alhama, R. G. (2017). Neural discontinuous constituency parsing. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing (pp. 1666-1676). Association for Computational Linguistics.

    Abstract

    One of the most pressing issues in dis-
    continuous constituency transition-based
    parsing is that the relevant information for
    parsing decisions could be located in any
    part of the stack or the buffer. In this pa-
    per, we propose a solution to this prob-
    lem by replacing the structured percep-
    tron model with a recursive neural model
    that computes a global representation of
    the configuration, therefore allowing even
    the most remote parts of the configura-
    tion to influence the parsing decisions. We
    also provide a detailed analysis of how
    this representation should be built out of
    sub-representations of its core elements
    (words, trees and stack). Additionally, we
    investigate how different types of swap or-
    acles influence the results. Our model is
    the first neural discontinuous constituency
    parser, and it outperforms all the previ-
    ously published models on three out of
    four datasets while on the fourth it obtains
    second place by a tiny difference.

    Additional information

    http://aclweb.org/anthology/D17-1174
  • Sumer, B., Grabitz, C., & Küntay, A. (2017). Early produced signs are iconic: Evidence from Turkish Sign Language. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 3273-3278). Austin, TX: Cognitive Science Society.

    Abstract

    Motivated form-meaning mappings are pervasive in sign languages, and iconicity has recently been shown to facilitate sign learning from early on. This study investigated the role of iconicity for language acquisition in Turkish Sign Language (TID). Participants were 43 signing children (aged 10 to 45 months) of deaf parents. Sign production ability was recorded using the adapted version of MacArthur Bates Communicative Developmental Inventory (CDI) consisting of 500 items for TID. Iconicity and familiarity ratings for a subset of 104 signs were available. Our results revealed that the iconicity of a sign was positively correlated with the percentage of children producing a sign and that iconicity significantly predicted the percentage of children producing a sign, independent of familiarity or phonological complexity. Our results are consistent with previous findings on sign language acquisition and provide further support for the facilitating effect of iconic form-meaning mappings in sign learning.
  • Ten Bosch, L., Ernestus, M., & Boves, L. (2018). Analyzing reaction time sequences from human participants in auditory experiments. In Proceedings of Interspeech 2018 (pp. 971-975). doi:10.21437/Interspeech.2018-1728.

    Abstract

    Sequences of reaction times (RT) produced by participants in an experiment are not only influenced by the stimuli, but by many other factors as well, including fatigue, attention, experience, IQ, handedness, etc. These confounding factors result in longterm effects (such as a participant’s overall reaction capability) and in short- and medium-time fluctuations in RTs (often referred to as ‘local speed effects’). Because stimuli are usually presented in a random sequence different for each participant, local speed effects affect the underlying ‘true’ RTs of specific trials in different ways across participants. To be able to focus statistical analysis on the effects of the cognitive process under study, it is necessary to reduce the effect of confounding factors as much as possible. In this paper we propose and compare techniques and criteria for doing so, with focus on reducing (‘filtering’) the local speed effects. We show that filtering matters substantially for the significance analyses of predictors in linear mixed effect regression models. The performance of filtering is assessed by the average between-participant correlation between filtered RT sequences and by Akaike’s Information Criterion, an important measure of the goodness-of-fit of linear mixed effect regression models.
  • Ten Bosch, L., Boves, L., & Ernestus, M. (2015). DIANA, an end-to-end computational model of human word comprehension. In Scottish consortium for ICPhS, M. Wolters, J. Livingstone, B. Beattie, R. Smith, M. MacMahon, J. Stuart-Smith, & J. Scobbie (Eds.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015). Glasgow: University of Glasgow.

    Abstract

    This paper presents DIANA, a new computational model of human speech processing. It is the first model that simulates the complete processing chain from the on-line processing of an acoustic signal to the execution of a response, including reaction times. Moreover it assumes minimal modularity. DIANA consists of three components. The activation component computes a probabilistic match between the input acoustic signal and representations in DIANA’s lexicon, resulting in a list of word hypotheses changing over time as the input unfolds. The decision component operates on this list and selects a word as soon as sufficient evidence is available. Finally, the execution component accounts for the time to execute a behavioral action. We show that DIANA well simulates the average participant in a word recognition experiment.
  • Ten Bosch, L., Boves, L., Tucker, B., & Ernestus, M. (2015). DIANA: Towards computational modeling reaction times in lexical decision in North American English. In Proceedings of Interspeech 2015: The 16th Annual Conference of the International Speech Communication Association (pp. 1576-1580).

    Abstract

    DIANA is an end-to-end computational model of speech processing, which takes as input the speech signal, and provides as output the orthographic transcription of the stimulus, a word/non-word judgment and the associated estimated reaction time. So far, the model has only been tested for Dutch. In this paper, we extend DIANA such that it can also process North American English. The model is tested by having it simulate human participants in a large scale North American English lexical decision experiment. The simulations show that DIANA can adequately approximate the reaction times of an average participant (r = 0.45). In addition, they indicate that DIANA does not yet adequately model the cognitive processes that take place after stimulus offset.
  • Ten Bosch, L., & Boves, L. (2018). Information encoding by deep neural networks: what can we learn? In Proceedings of Interspeech 2018 (pp. 1457-1461). doi:10.21437/Interspeech.2018-1896.

    Abstract

    The recent advent of deep learning techniques in speech tech-nology and in particular in automatic speech recognition hasyielded substantial performance improvements. This suggeststhat deep neural networks (DNNs) are able to capture structurein speech data that older methods for acoustic modeling, suchas Gaussian Mixture Models and shallow neural networks failto uncover. In image recognition it is possible to link repre-sentations on the first couple of layers in DNNs to structuralproperties of images, and to representations on early layers inthe visual cortex. This raises the question whether it is possi-ble to accomplish a similar feat with representations on DNNlayers when processing speech input. In this paper we presentthree different experiments in which we attempt to untanglehow DNNs encode speech signals, and to relate these repre-sentations to phonetic knowledge, with the aim to advance con-ventional phonetic concepts and to choose the topology of aDNNs more efficiently. Two experiments investigate represen-tations formed by auto-encoders. A third experiment investi-gates representations on convolutional layers that treat speechspectrograms as if they were images. The results lay the basisfor future experiments with recursive networks.
  • Ten Bosch, L., Boves, L., & Ernestus, M. (2017). The recognition of compounds: A computational account. In Proceedings of Interspeech 2017 (pp. 1158-1162). doi:10.21437/Interspeech.2017-1048.

    Abstract

    This paper investigates the processes in comprehending spoken noun-noun compounds, using data from the BALDEY database. BALDEY contains lexicality judgments and reaction times (RTs) for Dutch stimuli for which also linguistic information is included. Two different approaches are combined. The first is based on regression by Dynamic Survival Analysis, which models decisions and RTs as a consequence of the fact that a cumulative density function exceeds some threshold. The parameters of that function are estimated from the observed RT data. The second approach is based on DIANA, a process-oriented computational model of human word comprehension, which simulates the comprehension process with the acoustic stimulus as input. DIANA gives the identity and the number of the word candidates that are activated at each 10 ms time step.

    Both approaches show how the processes involved in comprehending compounds change during a stimulus. Survival Analysis shows that the impact of word duration varies during the course of a stimulus. The density of word and non-word hypotheses in DIANA shows a corresponding pattern with different regimes. We show how the approaches complement each other, and discuss additional ways in which data and process models can be combined.
  • Terband, H., Rodd, J., & Maas, E. (2015). Simulations of feedforward and feedback control in apraxia of speech (AOS): Effects of noise masking on vowel production in the DIVA model. In M. Wolters, J. Livingstone, B. Beattie, R. Smith, M. MacMahan, J. Stuart-Smith, & J. Scobbie (Eds.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015).

    Abstract

    Apraxia of Speech (AOS) is a motor speech disorder whose precise nature is still poorly understood. A recent behavioural experiment featuring a noise masking paradigm suggests that AOS reflects a disruption of feedforward control, whereas feedback control is spared and plays a more prominent role in achieving and maintaining segmental contrasts [10]. In the present study, we set out to validate the interpretation of AOS as a feedforward impairment by means of a series of computational simulations with the DIVA model [6, 7] mimicking the behavioural experiment. Simulation results showed a larger reduction in vowel spacing and a smaller vowel dispersion in the masking condition compared to the no-masking condition for the simulated feedforward deficit, whereas the other groups showed an opposite pattern. These results mimic the patterns observed in the human data, corroborating the notion that AOS can be conceptualized as a deficit in feedforward control
  • Thompson, B., & Lupyan, G. (2018). Automatic estimation of lexical concreteness in 77 languages. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 1122-1127). Austin, TX: Cognitive Science Society.

    Abstract

    We estimate lexical Concreteness for millions of words across 77 languages. Using a simple regression framework, we combine vector-based models of lexical semantics with experimental norms of Concreteness in English and Dutch. By applying techniques to align vector-based semantics across distinct languages, we compute and release Concreteness estimates at scale in numerous languages for which experimental norms are not currently available. This paper lays out the technique and its efficacy. Although this is a difficult dataset to evaluate immediately, Concreteness estimates computed from English correlate with Dutch experimental norms at $\rho$ = .75 in the vocabulary at large, increasing to $\rho$ = .8 among Nouns. Our predictions also recapitulate attested relationships with word frequency. The approach we describe can be readily applied to numerous lexical measures beyond Concreteness
  • Thompson, B., Roberts, S., & Lupyan, G. (2018). Quantifying semantic similarity across languages. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 2551-2556). Austin, TX: Cognitive Science Society.

    Abstract

    Do all languages convey semantic knowledge in the same way? If language simply mirrors the structure of the world, the answer should be a qualified “yes”. If, however, languages impose structure as much as reflecting it, then even ostensibly the “same” word in different languages may mean quite different things. We provide a first pass at a large-scale quantification of cross-linguistic semantic alignment of approximately 1000 meanings in 55 languages. We find that the translation equivalents in some domains (e.g., Time, Quantity, and Kinship) exhibit high alignment across languages while the structure of other domains (e.g., Politics, Food, Emotions, and Animals) exhibits substantial cross-linguistic variability. Our measure of semantic alignment correlates with known phylogenetic distances between languages: more phylogenetically distant languages have less semantic alignment. We also find semantic alignment to correlate with cultural distances between societies speaking the languages, suggesting a rich co-adaptation of language and culture even in domains of experience that appear most constrained by the natural world
  • Torreira, F. (2015). Melodic alternations in Spanish. In The Scottish Consortium for ICPhS 2015 (Ed.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015) (pp. 946.1-5). Glasgow, UK: The University of Glasgow. Retrieved from http://www.icphs2015.info/pdfs/Papers/ICPHS0946.pdf.

    Abstract

    This article describes how the tonal elements of two common Spanish intonation contours –the falling statement and the low-rising-falling request– align with the segmental string in broad-focus utterances differing in number of prosodic words. Using an imitation-and-completion task, we show that (i) the last stressed syllable of the utterance, traditionally viewed as carrying the ‘nuclear’ accent, associates with either a high or a low tonal element depending on phrase length (ii) that certain tonal elements can be realized or omitted depending on the availability of specific metrical positions in their intonational phrase, and (iii) that the high tonal element of the request contour associates with either a stressed syllable or an intonational phrase edge depending on phrase length. On the basis of these facts, and in contrast to previous descriptions of Spanish intonation relying on obligatory and constant nuclear contours (e.g., L* L% for all neutral statements), we argue for a less constrained intonational morphology involving tonal units linked to the segmental string via contour-specific principles.
  • Tourtouri, E. N., Delogu, F., & Crocker, M. W. (2015). ERP indices of situated reference in visual contexts. In D. Noelle, R. Dale, A. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (Eds.), Proceedings of the 37th Annual Meeting of the Cognitive Science Society (CogSci 2015) (pp. 2422-2427). Austin: Cognitive Science Society.

    Abstract

    Violations of the maxims of Quantity occur when utterances provide more (over-specified) or less (under-specified) information than strictly required for referent identification. While behavioural datasuggest that under-specified expressions lead to comprehension difficulty and communicative failure, there is no consensus as to whether over-specified expressions are also detrimental to comprehension. In this study we shed light on this debate, providing neurophysiological evidence supporting the view that extra information facilitates comprehension. We further present novel evidence that referential failure due to under-specification is qualitatively different from explicit cases of referential failure, when no matching referential candidate is available in the context.
  • Tourtouri, E. N., Delogu, F., & Crocker, M. W. (2018). Specificity and entropy reduction in situated referential processing. In G. Gunzelmann, A. Howes, T. Tenbrink, & E. Davelaar (Eds.), Proceedings of the 39th Annual Conference of the Cognitive Science Society (CogSci 2017) (pp. 3356-3361). Austin: Cognitive Science Society.

    Abstract

    In situated communication, reference to an entity in the shared visual context can be established using eitheranexpression that conveys precise (minimally specified) or redundant (over-specified) information. There is, however, along-lasting debate in psycholinguistics concerningwhether the latter hinders referential processing. We present evidence from an eyetrackingexperiment recordingfixations as well asthe Index of Cognitive Activity –a novel measure of cognitive workload –supporting the view that over-specifications facilitate processing. We further present originalevidence that, above and beyond the effect of specificity,referring expressions thatuniformly reduce referential entropyalso benefitprocessing
  • Trilsbeek, P., Broeder, D., Elbers, W., & Moreira, A. (2015). A sustainable archiving software solution for The Language Archive. In Proceedings of the 4th International Conference on Language Documentation and Conservation (ICLDC).
  • Tsoukala, C., Frank, S. L., & Broersma, M. (2017). “He's pregnant": Simulating the confusing case of gender pronoun errors in L2 English. In Proceedings of the 39th Annual Meeting of the Cognitive Science Society (CogSci 2017) (pp. 3392-3397). Austin, TX, USA: Cognitive Science Society.

    Abstract

    Even advanced Spanish speakers of second language English tend to confuse the pronouns ‘he’ and ‘she’, often without even noticing their mistake (Lahoz, 1991). A study by AntónMéndez (2010) has indicated that a possible reason for this error is the fact that Spanish is a pro-drop language. In order to test this hypothesis, we used an extension of Dual-path (Chang, 2002), a computational cognitive model of sentence production, to simulate two models of bilingual speech production of second language English. One model had Spanish (ES) as a native language, whereas the other learned a Spanish-like language that used the pronoun at all times (non-pro-drop Spanish, NPD_ES). When tested on L2 English sentences, the bilingual pro-drop Spanish model produced significantly more gender pronoun errors, confirming that pronoun dropping could indeed be responsible for the gender confusion in natural language use as well.
  • Vagliano, I., Galke, L., Mai, F., & Scherp, A. (2018). Using adversarial autoencoders for multi-modal automatic playlist continuation. In C.-W. Chen, P. Lamere, M. Schedl, & H. Zamani (Eds.), RecSys Challenge '18: Proceedings of the ACM Recommender Systems Challenge 2018 (pp. 5.1-5.6). New York: ACM. doi:10.1145/3267471.3267476.

    Abstract

    The task of automatic playlist continuation is generating a list of recommended tracks that can be added to an existing playlist. By suggesting appropriate tracks, i. e., songs to add to a playlist, a recommender system can increase the user engagement by making playlist creation easier, as well as extending listening beyond the end of current playlist. The ACM Recommender Systems Challenge 2018 focuses on such task. Spotify released a dataset of playlists, which includes a large number of playlists and associated track listings. Given a set of playlists from which a number of tracks have been withheld, the goal is predicting the missing tracks in those playlists. We participated in the challenge as the team Unconscious Bias and, in this paper, we present our approach. We extend adversarial autoencoders to the problem of automatic playlist continuation. We show how multiple input modalities, such as the playlist titles as well as track titles, artists and albums, can be incorporated in the playlist continuation task.
  • Van Dooren, A., Dieuleveut, A., Cournane, A., & Hacquard, V. (2017). Learning what must and can must and can mean. In A. Cremers, T. Van Gessel, & F. Roelofsen (Eds.), Proceedings of the 21st Amsterdam Colloquium (pp. 225-234). Amsterdam: ILLC.

    Abstract

    This corpus study investigates how children figure out that functional modals
    like must can express various flavors of modality. We examine how modality is
    expressed in speech to and by children, and find that the way speakers use
    modals may obscure their polysemy. Yet, children eventually figure it out. Our
    results suggest that some do before age 3. We show that while root and
    epistemic flavors are not equally well-represented in the input, there are robust
    correlations between flavor and aspect, which learners could exploit to discover
    modal polysemy.
  • Van Dooren, A. (2017). Dutch must more structure. In A. Lamont, & K. Tetzloff (Eds.), NELS 47: Proceedings of the Forty-Seventh Annual Meeting of the North East Linguistic Society (pp. 165-175). Amherst: GLSA.
  • Van Valin Jr., R. D. (2000). Focus structure or abstract syntax? A role and reference grammar account of some ‘abstract’ syntactic phenomena. In Z. Estrada Fernández, & I. Barreras Aguilar (Eds.), Memorias del V Encuentro Internacional de Lingüística en el Noroeste: (2 v.) Estudios morfosintácticos (pp. 39-62). Hermosillo: Editorial Unison.
  • Verhoef, T., Roberts, S. G., & Dingemanse, M. (2015). Emergence of systematic iconicity: Transmission, interaction and analogy. In D. Noelle, R. Dale, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (Eds.), Proceedings of the 37th Annual Meeting of the Cognitive Science Society (CogSci 2015) (pp. 2481-2486). Austin, Tx: Cognitive Science Society.

    Abstract

    Languages combine arbitrary and iconic signals. How do iconic signals emerge and when do they persist? We present an experimental study of the role of iconicity in the emergence of structure in an artificial language. Using an iterated communication game in which we control the signalling medium as well as the meaning space, we study the evolution of communicative signals in transmission chains. This sheds light on how affordances of the communication medium shape and constrain the mappability and transmissibility of form-meaning pairs. We find that iconic signals can form the building blocks for wider compositional patterns
  • Vernes, S. C. (2018). Vocal learning in bats: From genes to behaviour. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 516-518). Toruń, Poland: NCU Press. doi:10.12775/3991-1.128.
  • Von Holzen, K., & Bergmann, C. (2018). A Meta-Analysis of Infants’ Mispronunciation Sensitivity Development. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 1159-1164). Austin, TX: Cognitive Science Society.

    Abstract

    Before infants become mature speakers of their native language, they must acquire a robust word-recognition system which allows them to strike the balance between allowing some variation (mood, voice, accent) and recognizing variability that potentially changes meaning (e.g. cat vs hat). The current meta-analysis quantifies how the latter, termed mispronunciation sensitivity, changes over infants’ first three years, testing competing predictions of mainstream language acquisition theories. Our results show that infants were sensitive to mispronunciations, but accepted them as labels for target objects. Interestingly, and in contrast to predictions of mainstream theories, mispronunciation sensitivity was not modulated by infant age, suggesting that a sufficiently flexible understanding of native language phonology is in place at a young age.
  • Wanrooij, K., De Vos, J., & Boersma, P. (2015). Distributional vowel training may not be effective for Dutch adults. In Scottish consortium for ICPhS 2015, M. Wolters, J. Livingstone, B. Beattie, R. Smith, M. MacMahon, J. Stuart-Smith, & J. Scobbie (Eds.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015). Glasgow: University of Glasgow.

    Abstract

    Distributional vowel training for adults has been reported as “effective” for Spanish and Bulgarian learners of Dutch vowels, in studies using a behavioural task. A recent study did not yield a similar clear learning effect for Dutch learners of the English vowel contrast /æ/~/ε/, as measured with event-related potentials (ERPs). The present study aimed to examine the possibility that the latter result was related to the method. As in the ERP study, we tested whether distributional training improved Dutch adult learners’ perception of English /æ/~/ε/. However, we measured behaviour instead of ERPs, in a design identical to that used in the previous studies with Spanish learners. The results do not support an effect of distributional training and thus “replicate” the ERP study. We conclude that it remains unclear whether distributional vowel training is effective for Dutch adults.
  • Weber, A. (1998). Listening to nonnative language which violates native assimilation rules. In D. Duez (Ed.), Proceedings of the European Scientific Communication Association workshop: Sound patterns of Spontaneous Speech (pp. 101-104).

    Abstract

    Recent studies using phoneme detection tasks have shown that spoken-language processing is neither facilitated nor interfered with by optional assimilation, but is inhibited by violation of obligatory assimilation. Interpretation of these results depends on an assessment of their generality, specifically, whether they also obtain when listeners are processing nonnative language. Two separate experiments are presented in which native listeners of German and native listeners of Dutch had to detect a target fricative in legal monosyllabic Dutch nonwords. All of the nonwords were correct realisations in standard Dutch. For German listeners, however, half of the nonwords contained phoneme strings which violate the German fricative assimilation rule. Whereas the Dutch listeners showed no significant effects, German listeners detected the target fricative faster when the German fricative assimilation was violated than when no violation occurred. The results might suggest that violation of assimilation rules does not have to make processing more difficult per se.
  • Weber, A. (2000). Phonotactic and acoustic cues for word segmentation in English. In Proceedings of the 6th International Conference on Spoken Language Processing (ICSLP 2000) (pp. 782-785).

    Abstract

    This study investigates the influence of both phonotactic and acoustic cues on the segmentation of spoken English. Listeners detected embedded English words in nonsense sequences (word spotting). Words aligned with phonotactic boundaries were easier to detect than words without such alignment. Acoustic cues to boundaries could also have signaled word boundaries, especially when word onsets lacked phonotactic alignment. However, only one of several durational boundary cues showed a marginally significant correlation with response times (RTs). The results suggest that word segmentation in English is influenced primarily by phonotactic constraints and only secondarily by acoustic aspects of the speech signal.
  • Weber, A. (2000). The role of phonotactics in the segmentation of native and non-native continuous speech. In A. Cutler, J. M. McQueen, & R. Zondervan (Eds.), Proceedings of SWAP, Workshop on Spoken Word Access Processes. Nijmegen: MPI for Psycholinguistics.

    Abstract

    Previous research has shown that listeners make use of their knowledge of phonotactic constraints to segment speech into individual words. The present study investigates the influence of phonotactics when segmenting a non-native language. German and English listeners detected embedded English words in nonsense sequences. German listeners also had knowledge of English, but English listeners had no knowledge of German. Word onsets were either aligned with a syllable boundary or not, according to the phonotactics of the two languages. Words aligned with either German or English phonotactic boundaries were easier for German listeners to detect than words without such alignment. Responses of English listeners were influenced primarily by English phonotactic alignment. The results suggest that both native and non-native phonotactic constraints influence lexical segmentation of a non-native, but familiar, language.
  • Wittek, A. (1998). Learning verb meaning via adverbial modification: Change-of-state verbs in German and the adverb "wieder" again. In A. Greenhill, M. Hughes, H. Littlefield, & H. Walsh (Eds.), Proceedings of the 22nd Annual Boston University Conference on Language Development (pp. 779-790). Somerville, MA: Cascadilla Press.
  • Zhang, Y., & Yu, C. (2017). How misleading cues influence referential uncertainty in statistical cross-situational learning. In M. LaMendola, & J. Scott (Eds.), Proceedings of the 41st Annual Boston University Conference on Language Development (BUCLD 41) (pp. 820-833). Boston, MA: Cascadilla Press.
  • Zhang, Y., Yurovsky, D., & Yu, C. (2015). Statistical word learning is a continuous process: Evidence from the human simulation paradigm. In D. Noelle, R. Dale, A. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (Eds.), Proceedings of the 37th Annual Meeting of the Cognitive Science Society (CogSci 2015) (pp. 2422-2427). Austin: Cognitive Science Society.

    Abstract

    In the word-learning domain, both adults and young children are able to find the correct referent of a word from highly ambiguous contexts that involve many words and objects by computing distributional statistics across the co-occurrences of words and referents at multiple naming moments (Yu & Smith, 2007; Smith & Yu, 2008). However, there is still debate regarding how learners accumulate distributional information to learn object labels in natural learning environments, and what underlying learning mechanism learners are most likely to adopt. Using the Human Simulation Paradigm (Gillette, Gleitman, Gleitman & Lederer, 1999), we found that participants’ learning performance gradually improved and that their ability to remember and carry over partial knowledge from past learning instances facilitated subsequent learning. These results support the statistical learning model that word learning is a continuous process.

Share this page