Publications

Displaying 101 - 134 of 134
  • Petersson, K. M., Grenholm, P., & Forkstam, C. (2005). Artificial grammar learning and neural networks. In G. B. Bruna, L. Barsalou, & M. Bucciarelli (Eds.), Proceedings of the 27th Annual Conference of the Cognitive Science Society (pp. 1726-1731).

    Abstract

    Recent FMRI studies indicate that language related brain regions are engaged in artificial grammar (AG) processing. In the present study we investigate the Reber grammar by means of formal analysis and network simulations. We outline a new method for describing the network dynamics and propose an approach to grammar extraction based on the state-space dynamics of the network. We conclude that statistical frequency-based and rule-based acquisition procedures can be viewed as complementary perspectives on grammar learning, and more generally, that classical cognitive models can be viewed as a special case of a dynamical systems perspective on information processing
  • Poletiek, F. H. (2005). The proof of the pudding is in the eating: Translating Popper's philosophy into a model for testing behaviour. In K. I. Manktelow, & M. C. Chung (Eds.), Psychology of reasoning: Theoretical and historical perspectives (pp. 333-347). Hove: Psychology Press.
  • Roelofs, A. (2005). Spoken word planning, comprehending, and self-monitoring: Evaluation of WEAVER++. In R. Hartsuiker, R. Bastiaanse, A. Postma, & F. Wijnen (Eds.), Phonological encoding and monitoring in normal and pathological speech (pp. 42-63). Hove: Psychology press.
  • Roelofs, A. (2005). From Popper to Lakatos: A case for cumulative computational modeling. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 313-330). Mahwah,NJ: Erlbaum.
  • Sauter, D., Wiland, J., Warren, J., Eisner, F., Calder, A., & Scott, S. K. (2005). Sounds of joy: An investigation of vocal expressions of positive emotions [Abstract]. Journal of Cognitive Neuroscience, 61(Supplement), B99.

    Abstract

    A series of experiment tested Ekman’s (1992) hypothesis that there are a set of positive basic emotions that are expressed using vocal para-linguistic sounds, e.g. laughter and cheers. The proposed categories investigated were amusement, contentment, pleasure, relief and triumph. Behavioural testing using a forced-choice task indicated that participants were able to reliably recognize vocal expressions of the proposed emotions. A cross-cultural study in the preliterate Himba culture in Namibia confirmed that these categories are also recognized across cultures. A recognition test of acoustically manipulated emotional vocalizations established that the recognition of different emotions utilizes different vocal cues, and that these in turn differ from the cues used when comprehending speech. In a study using fMRI we found that relative to a signal correlated noise baseline, the paralinguistic expressions of emotion activated bilateral superior temporal gyri and sulci, lateral and anterior to primary auditory cortex, which is consistent with the processing of non linguistic vocal cues in the auditory ‘what’ pathway. Notably amusement was associated with greater activation extending into both temporal poles and amygdale and insular cortex. Overall, these results support the claim that ‘happiness’ can be fractionated into amusement, pleasure, relief and triumph.
  • Scharenborg, O., & Seneff, S. (2005). A two-pass strategy for handling OOVs in a large vocabulary recognition task. In Interspeech'2005 - Eurospeech, 9th European Conference on Speech Communication and Technology, (pp. 1669-1672). ISCA Archive.

    Abstract

    This paper addresses the issue of large-vocabulary recognition in a specific word class. We propose a two-pass strategy in which only major cities are explicitly represented in the first stage lexicon. An unknown word model encoded as a phone loop is used to detect OOV city names (referred to as rare city names). After which SpeM, a tool that can extract words and word-initial cohorts from phone graphs on the basis of a large fallback lexicon, provides an N-best list of promising city names on the basis of the phone sequences generated in the first stage. This N-best list is then inserted into the second stage lexicon for a subsequent recognition pass. Experiments were conducted on a set of spontaneous telephone-quality utterances each containing one rare city name. We tested the size of the N-best list and three types of language models (LMs). The experiments showed that SpeM was able to include nearly 85% of the correct city names into an N-best list of 3000 city names when a unigram LM, which also boosted the unigram scores of a city name in a given state, was used.
  • Scharenborg, O. (2005). Parallels between HSR and ASR: How ASR can contribute to HSR. In Interspeech'2005 - Eurospeech, 9th European Conference on Speech Communication and Technology (pp. 1237-1240). ISCA Archive.

    Abstract

    In this paper, we illustrate the close parallels between the research fields of human speech recognition (HSR) and automatic speech recognition (ASR) using a computational model of human word recognition, SpeM, which was built using techniques from ASR. We show that ASR has proven to be useful for improving models of HSR by relieving them of some of their shortcomings. However, in order to build an integrated computational model of all aspects of HSR, a lot of issues remain to be resolved. In this process, ASR algorithms and techniques definitely can play an important role.
  • Schiller, N. O. (2005). Verbal self-monitoring. In A. Cutler (Ed.), Twenty-first Century Psycholinguistics: Four cornerstones (pp. 245-261). Lawrence Erlbaum: Mahwah [etc.].
  • Schiller, N. O., Van Lieshout, P. H. H. M., Meyer, A. S., & Levelt, W. J. M. (1999). Does the syllable affiliation of intervocalic consonants have an articulatory basis? Evidence from electromagnetic midsagittal artculography. In B. Maassen, & P. Groenen (Eds.), Pathologies of speech and language. Advances in clinical phonetics and linguistics (pp. 342-350). London: Whurr Publishers.
  • Scott, D. R., & Cutler, A. (1982). Segmental cues to syntactic structure. In Proceedings of the Institute of Acoustics 'Spectral Analysis and its Use in Underwater Acoustics' (pp. E3.1-E3.4). London: Institute of Acoustics.
  • Senft, G. (1999). Bronislaw Kasper Malinowski. In J. Verschueren, J.-O. Östman, J. Blommaert, & C. Bulcaen (Eds.), Handbook of pragmatics: 1997 installment. Amsterdam: Benjamins.
  • Senft, G. (2005). Bronislaw Malinowski and linguistic pragmatics. In P. Cap (Ed.), Pragmatics today (pp. 139-155). Frankfurt am Main: Lang.
  • Seuren, P. A. M. (2005). The origin of grammatical terminology. In B. Smelik, R. Hofman, C. Hamans, & D. Cram (Eds.), A companion in linguistics: A Festschrift for Anders Ahlqvist on the occasion of his sixtieth birthday (pp. 185-196). Nijmegen: Stichting Uitgeverij de Keltische Draak.
  • Seuren, P. A. M. (2005). The role of lexical data in semantics. In A. Cruse, F. Hundsnurscher, M. Job, & P. R. Lutzeier (Eds.), Lexikologie / Lexicology. Ein internationales Handbuch zur Natur und Struktur von Wörtern und Wortschätzen/An international handbook on the nature and structure of words and vocabularies. 2. Halbband / Volume 2 (pp. 1690-1696). Berlin: Walter de Gruyter.
  • Seuren, P. A. M. (1982). Riorientamenti metodologici nello studio della variabilità linguistica. In D. Gambarara, & A. D'Atri (Eds.), Ideologia, filosofia e linguistica: Atti del Convegno Internazionale di Studi, Rende (CS) 15-17 Settembre 1978 ( (pp. 499-515). Roma: Bulzoni.
  • Seuren, P. A. M. (1999). The subject-predicate debate X-rayed. In D. Cram, A. Linn, & E. Nowak (Eds.), History of Linguistics 1996: Selected papers from the Seventh International Conference on the History of the Language Sciences (ICHOLS VII), Oxford, 12-17 September 1996. Volume 1: Traditions in Linguistics Worldwide (pp. 41-55). Amsterdam: Benjamins.
  • Seuren, P. A. M. (1999). Topic and comment. In C. F. Justus, & E. C. Polomé (Eds.), Language Change and Typological Variation: Papers in Honor of Winfred P. Lehmann on the Occasion of His 83rd Birthday. Vol. 2: Grammatical universals and typology (pp. 348-373). Washington, DC: Institute for the Study of Man.
  • Shattuck-Hufnagel, S., & Cutler, A. (1999). The prosody of speech error corrections revisited. In J. Ohala, Y. Hasegawa, M. Ohala, D. Granville, & A. Bailey (Eds.), Proceedings of the Fourteenth International Congress of Phonetic Sciences: Vol. 2 (pp. 1483-1486). Berkely: University of California.

    Abstract

    A corpus of digitized speech errors is used to compare the prosody of correction patterns for word-level vs. sound-level errors. Results for both peak F0 and perceived prosodic markedness confirm that speakers are more likely to mark corrections of word-level errors than corrections of sound-level errors, and that errors ambiguous between word-level and soundlevel (such as boat for moat) show correction patterns like those for sound level errors. This finding increases the plausibility of the claim that word-sound-ambiguous errors arise at the same level of processing as sound errors that do not form words.
  • Sprenger, S. A., & Van Rijn, H. (2005). Clock time naming: Complexities of a simple task. In B. G. Bara, L. Barsalou, & M. Bucciarelli (Eds.), Proceedings of the 27th Annual Meeting of the Cognitive Science Society (pp. 2062-2067).
  • ten Bosch, L., & Scharenborg, O. (2005). ASR decoding in a computational model of human word recognition. In Interspeech'2005 - Eurospeech, 9th European Conference on Speech Communication and Technology (pp. 1241-1244). ISCA Archive.

    Abstract

    This paper investigates the interaction between acoustic scores and symbolic mismatch penalties in multi-pass speech decoding techniques that are based on the creation of a segment graph followed by a lexical search. The interaction between acoustic and symbolic mismatches determines to a large extent the structure of the search space of these multipass approaches. The background of this study is a recently developed computational model of human word recognition, called SpeM. SpeM is able to simulate human word recognition data and is built as a multi-pass speech decoder. Here, we focus on unravelling the structure of the search space that is used in SpeM and similar decoding strategies. Finally, we elaborate on the close relation between distances in this search space, and distance measures in search spaces that are based on a combination of acoustic and phonetic features.
  • Trilsbeek, P., & Wittenburg, P. (2005). Archiving challenges. In J. Gippert, N. Himmelmann, & U. Mosel (Eds.), Essentials of language documentation (pp. 311-335). Berlin: Mouton de Gruyter.
  • Van Valin Jr., R. D. (1999). A typology of the interaction of focus structure and syntax. In E. V. Rachilina, & J. G. Testelec (Eds.), Typology and linguistic theory from description to explanation: For the 60th birthday of Aleksandr E. Kibrik (pp. 511-524). Moscow: Languages of Russian Culture.
  • Van Geenhoven, V. (1999). A before-&-after picture of when-, before-, and after-clauses. In T. Matthews, & D. Strolovitch (Eds.), Proceedings of the 9th Semantics and Linguistic Theory Conference (pp. 283-315). Ithaca, NY, USA: Cornell University.
  • Van Wijk, C., & Kempen, G. (1982). Kost zinsbouw echt tijd? In R. Stuip, & W. Zwanenberg (Eds.), Handelingen van het zevenendertigste Nederlands Filologencongres (pp. 223-231). Amsterdam: APA-Holland University Press.
  • Walsh Dickey, L. (1999). Syllable count and Tzeltal segmental allomorphy. In J. Rennison, & K. Kühnhammer (Eds.), Phonologica 1996. Proceedings of the 8th International Phonology Meeting (pp. 323-334). Holland Academic Graphics.

    Abstract

    Tzeltal, a Mayan language spoken in southern Mexico, exhibits allo-morphy of an unusual type. The vowel quality of the perfective suffix is determined by the number of syllables in the stem to which it is attaching. This paper presents previously unpublished data of this allomorphy and demonstrates that a syllable-count analysis of the phenomenon is the proper one. This finding is put in a more general context of segment-prosody interaction in allomorphy.
  • Wilkins, D. (1999). A questionnaire on motion lexicalisation and motion description. In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 96-115). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3002706.

    Abstract

    How do languages express ideas of movement, and how do they package features that can be part of motion, such as path and cause? This questionnaire is used to gain a picture of the lexical resources a language draws on for motion expressions. It targets issues of semantic conflation (i.e., what other semantic information besides motion may be encoded in a verb root) and patterns of semantic distribution (i.e., what types of information are encoded in the morphemes that come together to build a description of a motion event). It was originally designed for Australian languages, but has since been used around the world.
  • Wilkins, D. (1999). Eliciting contrastive use of demonstratives for objects within close personal space (all objects well within arm’s reach). In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 25-28). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.2573796.

    Abstract

    Contrastive reference, where a speaker presents or identifies one item in explicit contrast to another (I like this book but that one is boring), has special communicative and information structure properties. This can be reflected in rules of demonstrative use. For example, in some languages, terms equivalent to this and that can be used for contrastive reference in almost any spatial context. But other two-term languages stick more closely to “distance rules” for demonstratives, allowing a this-like term in close space only. This task elicits data concerning one context of contrastive reference, focusing on whether (and how) non-proximal demonstratives can be used to distinguish objects within a proximal area. The task runs like a memory game, with the consultant being asked to identify the locations of two or three hidden items arranged within arm’s reach.
  • Wilkins, D. (1999). The 1999 demonstrative questionnaire: “This” and “that” in comparative perspective. In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 1-24). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.2573775.

    Abstract

    Demonstrative terms (e.g., this and that) are key to understanding how a language constructs and interprets spatial relationships. They are tricky to pin down, typically having functions that do not match “idealized” uses, and that can become invisible in narrow elicitation settings. This questionnaire is designed to identify the range(s) of use of certain spatial demonstrative terms, and help assess the roles played by gesture, access, attention, and addressee knowledge in demonstrative use. The stimuli consist of 25 diagrammed “elicitation settings” to be created by the researcher.
  • Wittek, A. (1999). Zustandsveränderungsverben im Deutschen - wie lernt das Kind die komplexe Semantik? In J. Meibauer, & M. Rothweiler (Eds.), Das Lexikon im Spracherwerb (pp. 278-296). Tübingen: Francke.

    Abstract

    Angelika Wittek untersuchte Zustandsveränderungsverben bei vier- bis sechsjährigen Kindern. Englischsprechende Kinder verstehen bis zum Alter von 8 Jahren diese Verben als Bewegungsverben und ignorieren, daß sie zusätzlich die Information über einen Endzustand im Sinne der Negation des Ausgangszustands beeinhalten. Wittek zeigte, daß entgegen der Erwartung transparente, morphologisch komplexe Formen (wachmachen), in denen die Partikel den Endzustand explizit macht, nicht besser verstanden werden als Simplizia (wecken). Zudem diskutierte sie, inwieweit die Verwendung des Adverbs wieder in restitutiver Lesart Hinweise auf den Erwerb dieser Verben geben kann.
  • Zavala, R. M. (1999). External possessor in Oluta Popoluca (Mixean): Applicatives and incorporation of relational terms. In D. L. Payne, & I. Barshi (Eds.), External possession (pp. 339-372). Amsterdam: Benjamins.
  • Zeshan, U. (2005). Sign languages. In M. Haspelmath, M. S. Dryer, D. Gil, & B. Comrie (Eds.), The world atlas of language structures (pp. 558-559). Oxford: Oxford University Press.
  • Zeshan, U. (2005). Question particles in sign languages. In M. Haspelmath, M. S. Dryer, D. Gil, & B. Comrie (Eds.), The world atlas of language structures (pp. 564-567). Oxford: Oxford University Press.
  • Zeshan, U., Pfau, R., & Aboh, E. (2005). When a wh-word is not a wh-word: the case of Indian sign language. In B. Tanmoy (Ed.), Yearbook of South Asian languages and linguistics 2005 (pp. 11-43). Berlin: Mouton de Gruyter.
  • Zeshan, U. (2005). Irregular negatives in sign languages. In M. Haspelmath, M. S. Dryer, D. Gil, & B. Comrie (Eds.), The world atlas of language structures (pp. 560-563). Oxford: Oxford University Press.

Share this page