Publications

Displaying 101 - 200 of 300
  • Goriot, C. (2019). Early-English education works no miracles: Cognitive and linguistic development in mainstream, early-English, and bilingual primary-school pupils in the Netherlands. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Grabe, E. (1998). Comparative intonational phonology: English and German. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.2057683.
  • Gullberg, M., & Holmqvist, K. (2002). Visual attention towards gestures in face-to-face interaction vs. on screen. In I. Wachsmuth, & T. Sowa (Eds.), Gesture and sign languages in human-computer interaction (pp. 206-214). Berlin: Springer.
  • Gullberg, M. (2002). Gestures, languages, and language acquisition. In S. Strömqvist (Ed.), The diversity of languages and language learning (pp. 45-56). Lund: Lund University.
  • Hagoort, P. (2006). On Broca, brain and binding. In Y. Grodzinsky, & K. Amunts (Eds.), Broca's region (pp. 240-251). Oxford: Oxford University Press.
  • Hagoort, P. (2002). Het unieke menselijke taalvermogen: Van PAUS naar [paus] in een halve seconde. In J. G. van Hell, A. de Klerk, D. E. Strauss, & T. Torremans (Eds.), Taalontwikkeling en taalstoornissen: Theorie, diagnostiek en behandeling (pp. 51-67). Leuven/Apeldoorn: Garant.
  • Hagoort, P. (2006). Het zwarte gat tussen brein en bewustzijn. In J. Janssen, & J. Van Vugt (Eds.), Brein en bewustzijn: Gedachtensprongen tussen hersenen en mensbeeld (pp. 9-24). Damon: Nijmegen.
  • Hagoort, P. (2016). MUC (Memory, Unification, Control): A Model on the Neurobiology of Language Beyond Single Word Processing. In G. Hickok, & S. Small (Eds.), Neurobiology of language (pp. 339-347). Amsterdam: Elsever. doi:10.1016/B978-0-12-407794-2.00028-6.

    Abstract

    A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content.
  • Hagoort, P., & Beckmann, C. F. (2019). Key issues and future directions: The neural architecture for language. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 527-532). Cambridge, MA: MIT Press.
  • Hagoort, P. (2019). Introduction. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 1-6). Cambridge, MA: MIT Press.
  • Hagoort, P. (1998). The shadows of lexical meaning in patients with semantic impairments. In B. Stemmer, & H. Whitaker (Eds.), Handbook of neurolinguistics (pp. 235-248). New York: Academic Press.
  • Hagoort, P. (2016). Zij zijn ons brein. In J. Brockman (Ed.), Machines die denken: Invloedrijke denkers over de komst van kunstmatige intelligentie (pp. 184-186). Amsterdam: Maven Publishing.
  • Hammarström, H. (2019). An inventory of Bantu languages. In M. Van de Velde, K. Bostoen, D. Nurse, & G. Philippson (Eds.), The Bantu languages (2nd). London: Routledge.

    Abstract

    This chapter aims to provide an updated list of all Bantu languages known at present and to provide individual pointers to further information on the inventory. The area division has some correlation with what are perceived genealogical relations between Bantu languages, but they are not defined as such and do not change whenever there is an update in our understanding of genealogical relations. Given the popularity of Guthrie codes in Bantu linguistics, our listing also features a complete mapping to Guthrie codes. The language inventory listed excludes sign languages used in the Bantu area, speech registers, pidgins, drummed/whistled languages and urban youth languages. Pointers to such languages in the Bantu area are included in the continent-wide overview in Hammarstrom. The most important alternative names, subvarieties and spelling variants are given for each language, though such lists are necessarily incomplete and reflect some degree of arbitrary selection.
  • Hoiting, N., & Slobin, D. I. (2002). Transcription as a tool for understanding: The Berkeley Transcription System for sign language research (BTS). In G. Morgan, & B. Woll (Eds.), Directions in sign language acquisition (pp. 55-75). Amsterdam: John Benjamins.
  • Hoiting, N., & Slobin, D. I. (2002). What a deaf child needs to see: Advantages of a natural sign language over a sign system. In R. Schulmeister, & H. Reinitzer (Eds.), Progress in sign language research. In honor of Siegmund Prillwitz / Fortschritte in der Gebärdensprach-forschung. Festschrift für Siegmund Prillwitz (pp. 267-277). Hamburg: Signum.
  • Hömke, P. (2019). The face in face-to-face communication: Signals of understanding and non-understanding. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Indefrey, P. (2002). Listen und Regeln: Erwerb und Repräsentation der schwachen Substantivdeklination des Deutschen. PhD Thesis, Heinrich Heine Universität, Düsseldorf.
  • Indefrey, P., & Levelt, W. J. M. (2000). The neural correlates of language production. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences; 2nd ed. (pp. 845-865). Cambridge, MA: MIT Press.

    Abstract

    This chapter reviews the findings of 58 word production experiments using different tasks and neuroimaging techniques. The reported cerebral activation sites are coded in a common anatomic reference system. Based on a functional model of language production, the different word production tasks are analyzed in terms of their processing components. This approach allows a distinction between the core process of word production and preceding task-specific processes (lead-in processes) such as visual or auditory stimulus recognition. The core process of word production is subserved by a left-lateralized perisylvian/thalamic language production network. Within this network there seems to be functional specialization for the processing stages of word production. In addition, this chapter includes a discussion of the available evidence on syntactic production, self-monitoring, and the time course of word production.
  • Ingvar, M., & Petersson, K. M. (2000). Functional maps and brain networks. In A. W. Toga (Ed.), Brain mapping: The systems (pp. 111-140). San Diego: Academic Press.
  • Irizarri van Suchtelen, P. (2016). Spanish as a heritage language in the Netherlands. A cognitive linguistic exploration. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Janzen, G., Herrmann, T., Katz, S., & Schweizer, K. (2000). Oblique Angled Intersections and Barriers: Navigating through a Virtual Maze. In Spatial Cognition II (pp. 277-294). Berlin: Springer.

    Abstract

    The configuration of a spatial layout has a substantial effect on the acquisition and the representation of the environment. In four experiments, we investigated navigation difficulties arising at oblique angled intersections. In the first three studies we investigated specific arrow-fork configurations. In dependence on the branch subjects use to enter the intersection different decision latencies and numbers of errors arise. If subjects see the intersection as a fork, it is more difficult to find the correct way as if it is seen as an arrow. In a fourth study we investigated different heuristics people use while making a detour around a barrier. Detour behaviour varies with the perspective. If subjects learn and navigate through the maze in a field perspective they use a heuristic of preferring right angled paths. If they have a view from above and acquire their knowledge in an observer perspective they use oblique angled paths more often.

    Files private

    Request files
  • St. John-Saaltink, E. (2016). When the past influences the present: Modulations of the sensory response by prior knowledge and task set. PhD Thesis, Radboud University, Nijmegen.
  • De Jong, N. H. (2002). Morphological families in the mental lexicon. PhD Thesis, University of Nijmegen, Nijmegen. doi:10.17617/2.57697.

    Abstract

    Words can occur as constituents of other words. Some words have a high morphological productivity, in that they occur in many complex words, whereas others are morphological islands. Previous studies have found that the size of a word's morphological family can co-determine response latencies in lexical decision tasks. This thesis shows, using lexical decision as well as otherexperimental tasks, that the effect of family size is a semantic effect,reflecting the spreading of activation in the mental lexicon along the lines of morphological and semantic relatedness between words.

    Additional information

    full text via Radboud Repository
  • Jongman, S. R. (2016). Sustained attention in language production. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Jordens, P. (1998). Defaultformen des Präteritums. Zum Erwerb der Vergangenheitsmorphologie im Niederlänidischen. In H. Wegener (Ed.), Eine zweite Sprache lernen (pp. 61-88). Tübingen, Germany: Verlag Gunter Narr.
  • Jordens, P., & Dimroth, C. (2006). Finiteness in children and adults learning Dutch. In N. Gagarina, & I. Gülzow (Eds.), The acquisition of verbs and their grammar: The effect of particular languages (pp. 173-200). Dordrecht: Springer.
  • Jordens, P. (2006). Inversion as an artifact: The acquisition of topicalization in child L1- and adult L2-Dutch. In S. H. Foster-Cohen, M. Medved Krajnovic, & J. Mihaljevic Djigunovic (Eds.), EUROSLA Yearbook 6 (pp. 101-120).
  • Kempen, G., & Harbusch, K. (2002). Performance Grammar: A declarative definition. In A. Nijholt, M. Theune, & H. Hondorp (Eds.), Computational linguistics in the Netherlands 2001: Selected papers from the Twelfth CLIN Meeting (pp. 148-162). Amsterdam: Rodopi.

    Abstract

    In this paper we present a definition of Performance Grammar (PG), a psycholinguistically motivated syntax formalism, in declarative terms. PG aims not only at describing and explaining intuitive judgments and other data concerning the well–formedness of sentences of a language, but also at contributing to accounts of syntactic processing phenomena observable in language comprehension and language production. We highlight two general properties of human sentence generation, incrementality and late linearization,which make special demands on the design of grammar formalisms claiming psychological plausibility. In order to meet these demands, PG generates syntactic structures in a two-stage process. In the first and most important ‘hierarchical’ stage, unordered hierarchical structures (‘mobiles’) are assembled out of lexical building blocks. The key operation at work here is typed feature unification, which also delimits the positional options of the syntactic constituents in terms of so-called topological features. The second, much simpler stage takes care of arranging the branches of the mobile from left to right by ‘reading–out’ one positional option of every constituent. In this paper we concentrate on the structure assembly formalism in PG’s hierarchical component. We provide a declarative definition couched in an HPSG–style notation based on typed feature unification. Our emphasis throughout is on linear order constraints.
  • Kempen, G. (1998). Sentence parsing. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 213-228). Berlin: Springer.
  • Kidd, E. (2006). The acquisition of complement clause constructions. In E. V. Clark, & B. F. Kelly (Eds.), Constructions in acquisition (pp. 311-332). Stanford: Center for the Study of Language and Information.
  • Kita, S. (2002). Preface and priorities. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 3-4). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Klein, W., & Von Stutterheim, C. (2002). Quaestio and L-perspectivation. In C. F. Graumann, & W. Kallmeyer (Eds.), Perspective and perspectivation in discourse (pp. 59-88). Amsterdam: Benjamins.
  • Klein, W. (2006). On finiteness. In V. Van Geenhoven (Ed.), Semantics in acquisition (pp. 245-272). Dordrecht: Springer.

    Abstract

    The distinction between finite and non-finite verb forms is well-established but not particularly well-defined. It cannot just be a matter of verb morphology, because it is also made when there is hardly any morphological difference: by far most English verb forms can be finite as well as non-finite. More importantly, many structural phenomena are clearly associated with the presence or absence of finiteness, a fact which is clearly reflected in the early stages of first and second language acquisition. In syntax, these include basic word order rules, gapping, the licensing of a grammatical subject and the licensing of expletives. In semantics, the specific interpretation of indefinite noun phrases is crucially linked to the presence of a finite element. These phenomena are surveyed, and it is argued that finiteness (a) links the descriptive content of the sentence (the 'sentence basis') to its topic component (in particular, to its topic time), and (b) it confines the illocutionary force to that topic component. In a declarative main clause, for example, the assertion is confined to a particular time, the topic time. It is shown that most of the syntactic and semantic effects connected to finiteness naturally follow from this assumption.
  • Klein, W. (2002). The argument-time structure of recipient constructions in German. In W. Abraham, & J.-W. Zwart (Eds.), Issues in formal german(ic) typology (pp. 141-178). Amsterdam: Benjamins.

    Abstract

    It is generally assumed that verbs have an ‘argument structure’, which imposes various constraints on the noun phrases that can or must go with the verb, and an ‘event structure’, which characterises the particular temporal characteristics of the ‘event’ which the verb relates to: this event may be a state, a process, an activity, an ‘event in the narrow sense’, and others. In this paper, it is argued that that argument structure and event structure should be brought together. The lexical content of a verb assigns descriptive properties to one or more arguments at one or more times, hence verbs have an ‘argument time-structure’ (AT-structure). Numerous morphological and syntactical operations, such as participle formation or complex verb constructions, modify this AT-structure. This is illustrated with German recipient constructions such as ein Buch geschenkt bekommen or das Fenster geöffnet kriegen.
  • Klein, W. (2002). Why case marking? In I. Kaufmann, & B. Stiebels (Eds.), More than words: Festschrift for Dieter Wunderlich (pp. 251-273). Berlin: Akademie Verlag.
  • Klein, W. (2000). Der Mythos vom Sprachverfall. In Berlin-Brandenburgische Akademie der Wissenschaften (Ed.), Jahrbuch 1999: Berlin-Brandenburgische Akademie der Wissenschaften (pp. 139-158). Berlin: Akademie Verlag.
  • Klein, W. (1998). Ein Blick zurück auf die Varietätengrammatik. In U. Ammon, K. Mattheier, & P. Nelde (Eds.), Sociolinguistica: Internationales Jahrbuch für europäische Soziolinguistik (pp. 22-38). Tübingen: Niemeyer.
  • Klein, W. (1998). Assertion and finiteness. In N. Dittmar, & Z. Penner (Eds.), Issues in the theory of language acquisition: Essays in honor of Jürgen Weissenborn (pp. 225-245). Bern: Peter Lang.
  • Klein, W., & Musan, R. (2002). (A)Symmetry in language: seit and bis, and others. In C. Maienborn (Ed.), (A)Symmetrien - (A)Symmetry. Beiträge zu Ehren von Ewald Lang - Papers in Honor of Ewald Lang (pp. 283-295). Tübingen: Stauffenburg.
  • Klein, W. (2000). Prozesse des Zweitspracherwerbs. In H. Grimm (Ed.), Enzyklopädie der Psychologie: Vol. 3 (pp. 538-570). Göttingen: Hogrefe.
  • Klein, W. (1975). Sprachliche Variation. In K. Stocker (Ed.), Taschenlexikon der Literatur- und Sprachdidaktik (pp. 557-561). Kronberg/Ts.: Scriptor.
  • Klein, W., & Vater, H. (1998). The perfect in English and German. In L. Kulikov, & H. Vater (Eds.), Typology of verbal categories: Papers presented to Vladimir Nedjalkov on the occasion of his 70th birthday (pp. 215-235). Tübingen: Niemeyer.
  • Klein, W. (1975). Über Peter Handkes "Kaspar" und einige Fragen der poetischen Kommunikation. In A. Van Kesteren, & H. Schmid (Eds.), Einführende Bibliographie zur modernen Dramentheorie (pp. 300-317). Kronberg/Ts.: Scriptor Verlag.
  • Kopecka, A. (2006). The semantic structure of motion verbs in French: Typological perspectives. In M. Hickmann, & Roberts S. (Eds.), Space in languages: Linguistic systems and cognitive categories (pp. 83-102). Amsterdam: Benjamins.
  • Kouwenhoven, H. (2016). Situational variation in non-native communication: Studies into register variation, discourse management and pronunciation in Spanish English. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Krämer, I. (2000). Interpreting indefinites: An experimental study of children's language comprehension. PhD Thesis, University of Utrecht, Utrecht. doi:10.17617/2.2057626.
  • Krott, A., Schreuder, R., & Baayen, R. H. (2002). Analogical hierarchy: Exemplar-based modeling of linkers in Dutch noun-noun compounds. In R. Skousen (Ed.), Analogical modeling: An exemplar-based approach to language (pp. 181-206). Amsterdam: Benjamins.
  • Kuijpers, C. T., Coolen, R., Houston, D., & Cutler, A. (1998). Using the head-turning technique to explore cross-linguistic performance differences. In C. Rovee-Collier, L. Lipsitt, & H. Hayne (Eds.), Advances in infancy research: Vol. 12 (pp. 205-220). Stamford: Ablex.
  • Lam, K. J. Y. (2016). Understanding action-related language: Sensorimotor contributions to meaning. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Lartseva, A. (2016). Reading emotions: How people with Autism Spectrum Disorders process emotional language. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Lev-Ari, S. (2019). The influence of social network properties on language processing and use. In M. S. Vitevitch (Ed.), Network Science in Cognitive Psychology (pp. 10-29). New York, NY: Routledge.

    Abstract

    Language is a social phenomenon. The author learns, processes, and uses it in social contexts. In other words, the social environment shapes the linguistic knowledge and use of the knowledge. To a degree, this is trivial. A child exposed to Japanese will become fluent in Japanese, whereas a child exposed to only Spanish will not understand Japanese but will master the sounds, vocabulary, and grammar of Spanish. Language is a structured system. Sounds and words do not occur randomly but are characterized by regularities. Learners are sensitive to these regularities and exploit them when learning language. People differ in the sizes of their social networks. Some people tend to interact with only a few people, whereas others might interact with a wide range of people. This is reflected in people’s holiday greeting habits: some people might send cards to only a few people, whereas other would send greeting cards to more than 350 people.
  • Levelt, W. J. M. (2002). Phonological encoding in speech production: Comments on Jurafsky et al., Schiller et al., and van Heuven & Haan. In C. Gussenhoven, & N. Warner (Eds.), Laboratory phonology VII (pp. 87-99). Berlin: Mouton de Gruyter.
  • Levelt, W. J. M. (2016). Localism versus holism. Historical origins of studying language in the brain. In R. Rubens, & M. Van Dijk (Eds.), Sartoniana vol. 29 (pp. 37-60). Ghent: Ghent University.
  • Levelt, W. J. M. (2016). The first golden age of psycholinguistics 1865-World War I. In R. Rubens, & M. Van Dyck (Eds.), Sartoniana vol. 29 (pp. 15-36). Ghent: Ghent University.
  • Levelt, W. J. M., & De Swaan, A. (2016). Levensbericht Nico Frijda. In Koninklijke Nederlandse Akademie van Wetenschappen (Ed.), Levensberichten en herdenkingen 2016 (pp. 16-25). Amsterdam: KNAW.
  • Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (2002). A theory of lexical access in speech production. In G. T. Altmann (Ed.), Psycholinguistics: critical concepts in psychology (pp. 278-377). London: Routledge.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M. (2000). Introduction Section VII: Language. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences; 2nd ed. (pp. 843-844). Cambridge: MIT Press.
  • Levelt, W. J. M. (2000). Psychology of language. In K. Pawlik, & M. R. Rosenzweig (Eds.), International handbook of psychology (pp. 151-167). London: SAGE publications.
  • Levelt, W. J. M. (2000). Speech production. In A. E. Kazdin (Ed.), Encyclopedia of psychology (pp. 432-433). Oxford University Press.
  • Levelt, W. J. M. (1975). Systems, skills and language learning. In A. Van Essen, & J. Menting (Eds.), The context of foreign language learning (pp. 83-99). Assen: Van Gorcum.
  • Levelt, W. J. M., & Kempen, G. (1975). Semantic and syntactic aspects of remembering sentences: A review of some recent continental research. In A. Kennedy, & W. Wilkes (Eds.), Studies in long term memory (pp. 201-216). New York: Wiley.
  • Levelt, W. J. M., & Indefrey, P. (2000). The speaking mind/brain: Where do spoken words come from? In A. Marantz, Y. Miyashita, & W. O'Neil (Eds.), Image, language, brain: Papers from the First Mind Articulation Project Symposium (pp. 77-94). Cambridge, Mass.: MIT Press.
  • Levinson, S. C., & Wilkins, D. P. (2006). Patterns in the data: Towards a semantic typology of spatial description. In S. C. Levinson, & D. P. Wilkins (Eds.), Grammars of space: Explorations in cognitive diversity (pp. 512-552). Cambridge: Cambridge University Press.
  • Levinson, S. C., & Wilkins, D. P. (2006). The background to the study of the language of space. In S. C. Levinson, & D. P. Wilkins (Eds.), Grammars of space: Explorations in cognitive diversity (pp. 1-23). Cambridge: Cambridge University Press.
  • Levinson, S. C. (2006). The language of space in Yélî Dnye. In S. C. Levinson, & D. P. Wilkins (Eds.), Grammars of space: Explorations in cognitive diversity (pp. 157-203). Cambridge: Cambridge University Press.
  • Levinson, S. C. (1998). Deixis. In J. L. Mey (Ed.), Concise encyclopedia of pragmatics (pp. 200-204). Amsterdam: Elsevier.
  • Levinson, S. C. (2002). Appendix to the 2002 Supplement, version 1, for the “Manual” for the field season 2001. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 62-64). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C. (2006). Introduction: The evolution of culture in a microcosm. In S. C. Levinson, & P. Jaisson (Eds.), Evolution and culture: A Fyssen Foundation Symposium (pp. 1-41). Cambridge: MIT Press.
  • Levinson, S. C. (1998). Minimization and conversational inference. In A. Kasher (Ed.), Pragmatics: Vol. 4 Presupposition, implicature and indirect speech acts (pp. 545-612). London: Routledge.
  • Levinson, S. C., & Toni, I. (2019). Key issues and future directions: Interactional foundations of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 257-261). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2002). Landscape terms and place names in Yélî Dnye, the language of Rossel Island, PNG. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 8-13). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C. (2016). Language and mind: Let's get the issues straight! In S. D. Blum (Ed.), Making sense of language: Readings in culture and communication [3rd ed.] (pp. 68-80). Oxford: Oxford University Press.
  • Levinson, S. C. (2019). Interactional foundations of language: The interaction engine hypothesis. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 189-200). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2019). Natural forms of purposeful interaction among humans: What makes interaction effective? In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 111-126). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2016). The countable singulare tantum. In A. Reuneker, R. Boogaart, & S. Lensink (Eds.), Aries netwerk: Een constructicon (pp. 145-146). Leiden: Leiden University.
  • Liszkowski, U. (2000). A belief about theory of mind: The relation between children's inhibitory control and their common sense psychological knowledge. Master Thesis, University of Essex.
  • Liszkowski, U. (2006). Infant pointing at twelve months: Communicative goals, motives, and social-cognitive abilities. In N. J. Enfield, & S. C. Levinson (Eds.), Roots of human sociality: culture, cognition and interaction (pp. 153-178). New York: Berg.
  • Majid, A. (2019). Preface. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. vii-viii). Amsterdam: Benjamins.
  • Majid, A. (2016). Was wir von anderen Kulturen über den Geruchsinn lernen können. In Museum Tinguely (Ed.), Belle Haleine – Der Duft der Kunst. Interdisziplinäres Symposium (pp. 73-79). Heidelberg: Kehrer.
  • Majid, A. (2016). What other cultures can tell us about the sense of smell. In Museum Tinguely (Ed.), Belle haleine - the scent of art: interdisciplinary symposium (pp. 72-77). Heidelberg: Kehrer.
  • Martin, A., & Van Turennout, M. (2002). Searching for the neural correlates of object priming. In L. R. Squire, & D. L. Schacter (Eds.), The Neuropsychology of Memory (pp. 239-247). New York: Guilford Press.
  • Maslowski, M. (2019). Fast speech can sound slow: Effects of contextual speech rate on word recognition. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Matić, D., Hammond, J., & Van Putten, S. (2016). Left-dislocation, sentences and clauses in Avatime, Tundra Yukaghir and Whitesands. In J. Fleischhauer, A. Latrouite, & R. Osswald (Eds.), Exploring the Syntax-Semantics Interface. Festschrift for Robert D. Van Valin, Jr. (pp. 339-367). Düsseldorf: Düsseldorf University Press.
  • Matić, D. (2016). Tag questions and focus markers: Evidence from the Tompo dialect of Even. In M. M. J. Fernandez-Vest, & R. D. Van Valin Jr. (Eds.), Information structure and spoken language in a cross-linguistic perspective (pp. 167-190). Berlin: Mouton de Gruyter.
  • Mauner, G., Koenig, J.-P., Melinger, A., & Bienvenue, B. (2002). The lexical source of unexpressed participants and their role in sentence and discourse understanding. In P. Merlo, & S. Stevenson (Eds.), The Lexical Basis of Sentence Processing: Formal, Computational and Experimental Issues (pp. 233-254). Amsterdam: John Benjamins.
  • Mauth, K. (2002). Morphology in speech comprehension. PhD Thesis, University of Nijmegen, Nijmegen. doi:10.17617/2.60024.
  • McDonough, L., Choi, S., Bowerman, M., & Mandler, J. M. (1998). The use of preferential looking as a measure of semantic development. In C. Rovee-Collier, L. P. Lipsitt, & H. Hayne (Eds.), Advances in Infancy Research. Volume 12. (pp. 336-354). Stamford, CT: Ablex Publishing.
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • McQueen, J. M., & Meyer, A. S. (2019). Key issues and future directions: Towards a comprehensive cognitive architecture for language use. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 85-96). Cambridge, MA: MIT Press.
  • Mitterer, H., & Cutler, A. (2006). Speech perception. In K. Brown (Ed.), Encyclopedia of Language and Linguistics (vol. 11) (pp. 770-782). Amsterdam: Elsevier.

    Abstract

    The goal of speech perception is understanding a speaker's message. To achieve this, listeners must recognize the words that comprise a spoken utterance. This in turn implies distinguishing these words from other minimally different words (e.g., word from bird, etc.), and this involves making phonemic distinctions. The article summarizes research on the perception of phonemic distinctions, on how listeners cope with the continuity and variability of speech signals, and on how phonemic information is mapped onto the representations of words. Particular attention is paid to theories of speech perception and word recognition.
  • Morgan, A., Fisher, S. E., Scheffer, I., & Hildebrand, M. (2016). FOXP2-related speech and language disorders. In R. A. Pagon, M. P. Adam, H. H. Ardinger, S. E. Wallace, A. Amemiya, L. J. Bean, T. D. Bird, C.-T. Fong, H. C. Mefford, R. J. Smith, & K. Stephens (Eds.), GeneReviews® [internet]. Seattle (WA): University of Washington, Seattle. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK368474/.
  • Müller, O. (2006). Retrieving semantic and syntactic word properties: ERP studies on the time course in language comprehension. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.57543.

    Abstract

    The present doctoral thesis investigates the temporal characteristics of the retrieval of semantic and syntactic word properties in language comprehension. In particular, an attempt is made to assess the retrieval order of semantic category and grammatical gender information, using the lateralized readiness potential and the inhibition-related N2 effect. Chapter 1 contains a general introduction. Chapter 2 reports an experiment that employs the two-choice go/nogo task in combination with EEG recordings to establish the retrieval order of semantic category and grammatical gender for written words presented in isolation. The results point to a time course where semantic information becomes available before syntactic information. Chapter 3 focuses on the retrieval of grammatical gender. In order to examine whether gender retrieval can be speeded up by context, nouns are presented in gender congruent and gender incongruent prime-target pairs and reaction times for gender decisions are measured. For stimulus onset asynchronies of 100 ms and 0 ms, gender congruent pairs show faster responses than incongruent ones, whereas there is no effect of gender congruity for a stimulus onset asynchrony of 300 ms. A simulation with a localist computational model that implements competition between gender representations (WEAVER; Roelofs, 1992) is able to capture these findings. In chapter 4, the gender congruency manipulation is transferred to another ERP experiment with the two-choice go/nogo task. As the time course of gender retrieval is altered through primes, the order relative to semantic category retrieval is assessed again. The results indicate that with gender congruent primes, grammatical gender becomes available before semantic category. Such a reversal of retrieval order, as compared to chapter 2, implies a parallel rather than a serial discrete arrangement of the retrieval processes, since the latter variant precludes changes in retrieval order. Finally, chapter 5 offers a summary and general discussion of the main findings.

    Additional information

    full text via Radboud Repository
  • Muntendam, A., & Torreira, F. (2016). Focus and prosody in Spanish and Quechua: Insights from an interactive task. In M. E. Armstrong, N. Hendriksen, & M. Del Mar Vanrell (Eds.), Intonational Grammar in Ibero-Romance: Approaches across linguistic subfields (pp. 69-90). Amsterdam: Benjmanins.

    Abstract

    This paper reports the results of a study on the prosodic marking of broad and contrastive focus in three language varieties of which two are in contact: bilingual Peruvian Spanish, Quechua and Peninsular Spanish. An interactive communicative task revealed that the prosodic marking of contrastive focus was limited in all three language varieties. No systematic correspondence was observed between specific contour/accent types and focus, and the phonetic marking of contrastive focus was weak and restricted to phrase-final position. Interestingly, we identified two contours for bilingual Peruvian Spanish that were present in Quechua, but not in Peninsular Spanish, providing evidence for a prosodic transfer from Quechua to Spanish in Quechua-Spanish bilinguals.
  • Nijveld, A. (2019). The role of exemplars in speech comprehension. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • De Nooijer, J. A., & Willems, R. M. (2016). What can we learn about cognition from studying handedness? Insights from cognitive neuroscience. In F. Loffing, N. Hagemann, B. Strauss, & C. MacMahon (Eds.), Laterality in sports: Theories and applications (pp. 135-153). Amsterdam: Elsevier.

    Abstract

    Can studying left- and right-handers inform us about cognition? In this chapter, we give an overview of research showing that studying left- and right-handers is informative for understanding the way the brain is organized (i.e., lateralized), as there appear to be differences between left- and right-handers in this respect, but also on the behavioral level handedness studies can provide new insights. According to theories of embodied cognition, our body can influence cognition. Given that left- and right-handers use their bodies differently, this might reflect their performance on an array of cognitive tasks. Indeed, handedness can have an influence on, for instance, what side of space we judge as more positive, the way we gesture, how we remember things, and how we learn new words. Laterality research can, therefore, provide valuable information as to how we act and why
  • Noordman, L. G., & Vonk, W. (1998). Discourse comprehension. In A. D. Friederici (Ed.), Language comprehension: a biological perspective (pp. 229-262). Berlin: Springer.

    Abstract

    The human language processor is conceived as a system that consists of several interrelated subsystems. Each subsystem performs a specific task in the complex process of language comprehension and production. A subsystem receives a particular input, performs certain specific operations on this input and yields a particular output. The subsystems can be characterized in terms of the transformations that relate the input representations to the output representations. An important issue in describing the language processing system is to identify the subsystems and to specify the relations between the subsystems. These relations can be conceived in two different ways. In one conception the subsystems are autonomous. They are related to each other only by the input-output channels. The operations in one subsystem are not affected by another system. The subsystems are modular, that is they are independent. In the other conception, the different subsystems influence each other. A subsystem affects the processes in another subsystem. In this conception there is an interaction between the subsystems.
  • O'Connor, L. (2006). Sobre los predicados complejos en el Chontal de la baja. In A. Oseguera (Ed.), Historia y etnografía entre los Chontales de Oaxaca (pp. 119-161). Oaxaca: Instituto Nacional de Antroplogía e Historia.
  • O'Meara, C., Speed, L. J., San Roque, L., & Majid, A. (2019). Perception Metaphors: A view from diversity. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. 1-16). Amsterdam: Benjamins.

    Abstract

    Our bodily experiences play an important role in the way that we think and speak. Abstract language is, however, difficult to reconcile with this body-centred view, unless we appreciate the role metaphors play. To explore the role of the senses across semantic domains, we focus on perception metaphors, and examine their realisation across diverse languages, methods, and approaches. To what extent do mappings in perception metaphor adhere to predictions based on our biological propensities; and to what extent is there space for cross-linguistic and cross-cultural variation? We find that while some metaphors have widespread commonality, there is more diversity attested than should be comfortable for universalist accounts.
  • Ortega, G. (2016). Language acquisition and development. In G. Gertz (Ed.), The SAGE Deaf Studies Encyclopedia. Vol. 3 (pp. 547-551). London: SAGE Publications Inc.

Share this page