Publications

Displaying 101 - 200 of 331
  • Enfield, N. J. (2005). Micro and macro dimensions in linguistic systems. In S. Marmaridou, K. Nikiforidou, & E. Antonopoulou (Eds.), Reviewing linguistic thought: Converging trends for the 21st Century (pp. 313-326). Berlin: Mouton de Gruyter.
  • Enfield, N. J. (2004). Repair sequences in interaction. In A. Majid (Ed.), Field Manual Volume 9 (pp. 48-52). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492945.

    Abstract

    This Field Manual entry has been superceded by the 2007 version: https://doi.org/10.17617/2.468724

    Files private

    Request files
  • Ernestus, M., & Giezenaar, G. (2015). Een goed verstaander heeft maar een half woord nodig. In B. Bossers (Ed.), Klassiek vakwerk II: Achtergronden van het NT2-onderwijs (pp. 143-155). Amsterdam: Boom.
  • Esling, J. H., Benner, A., & Moisik, S. R. (2015). Laryngeal articulatory function and speech origins. In H. Little (Ed.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015) Satellite Event: The Evolution of Phonetic Capabilities: Causes constraints, consequences (pp. 2-7). Glasgow: ICPhS.

    Abstract

    The larynx is the essential articulatory mechanism that primes the vocal tract. Far from being only a glottal source of voicing, the complex laryngeal mechanism entrains the ontogenetic acquisition of speech and, through coarticulatory coupling, guides the production of oral sounds in the infant vocal tract. As such, it is not possible to speculate as to the origins of the speaking modality in humans without considering the fundamental role played by the laryngeal articulatory mechanism. The Laryngeal Articulator Model, which divides the vocal tract into a laryngeal component and an oral component, serves as a basis for describing early infant speech and for positing how speech sounds evolving in various hominids may be related phonetically. To this end, we offer some suggestions for how the evolution and development of vocal tract anatomy fit with our infant speech acquisition data and discuss the implications this has for explaining phonetic learning and for interpreting the biological evolution of the human vocal tract in relation to speech and speech acquisition.
  • Evans, N., Levinson, S. C., Enfield, N. J., Gaby, A., & Majid, A. (2004). Reciprocal constructions and situation type. In A. Majid (Ed.), Field Manual Volume 9 (pp. 25-30). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.506955.
  • Fawcett, C., & Liszkowski, U. (2015). Social referencing during infancy and early childhood across cultures. In J. D. Wright (Ed.), International encyclopedia of the social & behavioral sciences (2nd ed., pp. 556-562). doi:10.1016/B978-0-08-097086-8.23169-3.
  • Ferré, G. (2023). Pragmatic gestures and prosody. In W. Pouw, J. Trujillo, H. R. Bosker, L. Drijvers, M. Hoetjes, J. Holler, S. Kadava, L. Van Maastricht, E. Mamus, & A. Ozyurek (Eds.), Gesture and Speech in Interaction (GeSpIn) Conference. doi:10.17617/2.3527215.

    Abstract

    The study presented here focuses on two pragmatic gestures:
    the hand flip (Ferré, 2011), a gesture of the Palm Up Open
    Hand/PUOH family (Müller, 2004) and the closed hand which
    can be considered as the opposite kind of movement to the open-
    ing of the hands present in the PUOH gesture. Whereas one of
    the functions of the hand flip has been described as presenting
    a new point in speech (Cienki, 2021), the closed hand gesture
    has not yet been described in the literature to the best of our
    knowledge. It can however be conceived of as having the oppo-
    site function of announcing the end of a point in discourse. The
    object of the present study is therefore to determine, with the
    study of prosodic features, if the two gestures are found in the
    same type of speech units and what their respective scope is.
    Drawing from a corpus of three TED Talks in French the
    prosodic characteristics of the speech that accompanies the two
    gestures will be examined. The hypothesis developed in the
    present paper is that their scope should be reflected in the
    prosody of accompanying speech, especially pitch key, tone,
    and relative pitch range. The prediction is that hand flips and
    closing hand gestures are expected to be located at the periph-
    ery of Intonation Phrases (IPs), Inter-Pausal Units (IPUs) or
    more conversational Turn Constructional Units (TCUs), and are
    likely to be co-occurrent with pauses in speech. But because of
    the natural slope of intonation in speech, the speech that accom-
    pany early gestures in Intonation Phrases should reveal different
    features from the speech at the end of intonational units. Tones
    should be different as well, considering the prosodic structure
    of spoken French.
  • Filippi, P. (2015). Before Babel: The Evolutionary Roots of Human Language. In E. Velmezova, K. Kull, & S. J. Cowley (Eds.), Biosemiotic Perspectives on Language and Linguistics (pp. 191-204). Springer International Publishing. doi:10.1007/978-3-319-20663-9_10.

    Abstract

    The aim of the present work is to identify the evolutionary origins of the ability to speak and understand a natural language. I will adopt Botha’s “Windows Approach” (Language and Communication, 2006, 26, pp. 129–143) in order to justify the following two assumptions, which concern the evolutionary continuity between human language and animals’ communication systems: (a) despite the uniqueness of human language in sharing and conveying utterances with an open-ended structure, some isolated components of our linguistic competence are shared with non- human primates, grounding a line of evolutionary continuity; (b) the very first “linguistic” utterances were holistic, that is, whole bunches of sounds able to convey information despite their lack of modern syntax. I will address such suppositions through the comparative analysis of three constitutive features of human language: syntax, the semantic value of utterances, and the ability to attribute mental states to conspecifics, i.e. the theory of mind.
  • Fisher, S. E. (2015). Translating the genome in human neuroscience. In G. Marcus, & J. Freeman (Eds.), The future of the brain: Essays by the world's leading neuroscientists (pp. 149-159). Princeton, NJ: Princeton University Press.
  • Floyd, S. (2004). Purismo lingüístico y realidad local: ¿Quichua puro o puro quichuañol? In Proceedings of the Conference on Indigenous Languages of Latin America (CILLA)-I.
  • Floyd, S. (2005). The poetics of evidentiality in South American storytelling. In L. Harper, & C. Jany (Eds.), Proceedings from the Eighth Workshop on American Indigenous languages (pp. 28-41). Santa Barbara, Cal: University of California, Santa Barbara. (Santa Barbara Papers in Linguistics; 46).
  • Forkstam, C., & Petersson, K. M. (2005). Syntactic classification of acquired structural regularities. In G. B. Bruna, & L. Barsalou (Eds.), Proceedings of the 27th Annual Conference of the Cognitive Science Society (pp. 696-701).

    Abstract

    In this paper we investigate the neural correlates of syntactic classification of an acquired grammatical sequence structure in an event-related FMRI study. During acquisition, participants were engaged in an implicit short-term memory task without performance feedback. We manipulated the statistical frequency-based and rule-based characteristics of the classification stimuli independently in order to investigate their role in artificial grammar acquisition. The participants performed reliably above chance on the classification task. We observed a partly overlapping corticostriatal processing network activated by both manipulations including inferior prefrontal, cingulate, inferior parietal regions, and the caudate nucleus. More specifically, the left inferior frontal BA 45 and the caudate nucleus were sensitive to syntactic violations and endorsement, respectively. In contrast, these structures were insensitive to the frequency-based manipulation.
  • Fradera, A., & Sauter, D. (2004). Make yourself happy. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 325-327). Sebastopol, CA: O'Reilly.

    Abstract

    Turn on your affective system by tweaking your face muscles - or getting an eyeful of someone else doing the same.
  • Fradera, A., & Sauter, D. (2004). Reminisce hot and cold. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 327-331). Sebastopol, CA: O'Reilly.

    Abstract

    Find the fire that's cooking your memory systems.
  • Fradera, A., & Sauter, D. (2004). Signal emotion. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 320-324). Sebastopol, CA: O'Reilly.

    Abstract

    Emotions are powerful on the inside but often displayed in subtle ways on the outside. Are these displays culturally dependent or universal?
  • Franken, M. K., McQueen, J. M., Hagoort, P., & Acheson, D. J. (2015). Assessing the link between speech perception and production through individual differences. In Proceedings of the 18th International Congress of Phonetic Sciences. Glasgow: the University of Glasgow.

    Abstract

    This study aims to test a prediction of recent
    theoretical frameworks in speech motor control: if speech production targets are specified in auditory
    terms, people with better auditory acuity should have more precise speech targets.
    To investigate this, we had participants perform speech perception and production tasks in a counterbalanced order. To assess speech perception acuity, we used an adaptive speech discrimination
    task. To assess variability in speech production, participants performed a pseudo-word reading task; formant values were measured for each recording.
    We predicted that speech production variability to correlate inversely with discrimination performance.
    The results suggest that people do vary in their production and perceptual abilities, and that better discriminators have more distinctive vowel production targets, confirming our prediction. This
    study highlights the importance of individual
    differences in the study of speech motor control, and sheds light on speech production-perception interaction.
  • Gaby, A. R. (2005). Some participants are more equal than others: Case and the composition of arguments in Kuuk Thaayorre. In M. Amberber, & H. d. Hoop (Eds.), Competition and variation in natural languages: the case for the case (pp. 9-39). Amsterdam: Elsevier.
  • Gamba, M., Raimondi, T., De Gregorio, C., Valente, D., Carugati, F., Cristiano, W., Ferrario, V., Torti, V., Favaro, L., Friard, O., Giacoma, C., & Ravignani, A. (2023). Rhythmic categories across primate vocal displays. In A. Astolfi, F. Asdrubali, & L. Shtrepi (Eds.), Proceedings of the 10th Convention of the European Acoustics Association Forum Acusticum 2023 (pp. 3971-3974). Torino: European Acoustics Association.

    Abstract

    The last few years have revealed that several species may share the building blocks of Musicality with humans. The recognition of these building blocks (e.g., rhythm, frequency variation) was a necessary impetus for a new round of studies investigating rhythmic variation in animal vocal displays. Singing primates are a small group of primate species that produce modulated songs ranging from tens to thousands of vocal units. Previous studies showed that the indri, the only singing lemur, is currently the only known species that perform duet and choruses showing multiple rhythmic categories, as seen in human music. Rhythmic categories occur when temporal intervals between note onsets are not uniformly distributed, and rhythms with a small integer ratio between these intervals are typical of human music. Besides indris, white-handed gibbons and three crested gibbon species showed a prominent rhythmic category corresponding to a single small integer ratio, isochrony. This study reviews previous evidence on the co-occurrence of rhythmic categories in primates and focuses on the prospects for a comparative, multimodal study of rhythmicity in this clade.
  • Goudbeek, M., Smits, R., Cutler, A., & Swingley, D. (2005). Acquiring auditory and phonetic categories. In H. Cohen, & C. Lefebvre (Eds.), Handbook of categorization in cognitive science (pp. 497-513). Amsterdam: Elsevier.
  • Green, K., Osei-Cobbina, C., Perlman, M., & Kita, S. (2023). Infants can create different types of iconic gestures, with and without parental scaffolding. In W. Pouw, J. Trujillo, H. R. Bosker, L. Drijvers, M. Hoetjes, J. Holler, S. Kadava, L. Van Maastricht, E. Mamus, & A. Ozyurek (Eds.), Gesture and Speech in Interaction (GeSpIn) Conference. doi:10.17617/2.3527188.

    Abstract

    Despite the early emergence of pointing, children are generally not documented to produce iconic gestures until later in development. Although research has described this developmental trajectory and the types of iconic gestures that emerge first, there has been limited focus on iconic gestures within interactional contexts. This study identified the first 10 iconic gestures produced by five monolingual English-speaking children in a naturalistic longitudinal video corpus and analysed the interactional contexts. We found children produced their first iconic gesture between 12 and 20 months and that gestural types varied. Although 34% of gestures could have been imitated or derived from adult or child actions in the preceding context, the majority were produced independently of any observed model. In these cases, adults often led the interaction in a direction where iconic gesture was an appropriate response. Overall, we find infants can represent a referent symbolically and possess a greater capacity for innovation than previously assumed. In order to develop our understanding of how children learn to produce iconic gestures, it is important to consider the immediate interactional context. Conducting naturalistic corpus analyses could be a more ecologically valid approach to understanding how children learn to produce iconic gestures in real life contexts.
  • De Haan, E., & Hagoort, P. (2004). Het brein in beeld. In B. Deelman, P. Eling, E. De Haan, & E. Van Zomeren (Eds.), Klinische neuropsychologie (pp. 82-98). Amsterdam: Boom.
  • Hagoort, P. (2004). Er is geen behoefte aan trompetten als gordijnen. In H. Procee, H. Meijer, P. Timmerman, & R. Tuinsma (Eds.), Bij die wereld wil ik horen! Zesendertig columns en drie essays over de vorming tot academicus (pp. 78-80). Amsterdam: Boom.
  • Hagoort, P. (2005). Breintaal. In S. Knols, & D. Redeker (Eds.), NWO-Spinozapremies 2005 (pp. 21-34). Den Haag: NWO.
  • Hagoort, P. (2005). Broca's complex as the unification space for language. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 157-173). Mahwah, NJ: Erlbaum.
  • Hagoort, P. (2004). Het zwarte gat tussen brein en bewustzijn. In N. Korteweg (Ed.), De oorsprong: Over het ontstaan van het leven en alles eromheen (pp. 107-124). Amsterdam: Boom.
  • Hagoort, P. (2015). Het talige brein. In A. Aleman, & H. E. Hulshoff Pol (Eds.), Beeldvorming van het brein: Imaging voor psychiaters en psychologen (pp. 169-176). Utrecht: De Tijdstroom.
  • Hagoort, P. (2015). Spiegelneuronen. In J. Brockmann (Ed.), Wetenschappelijk onkruid: 179 hardnekkige ideeën die vooruitgang blokkeren (pp. 455-457). Amsterdam: Maven Publishing.
  • Hall-Lew, L., Fairs, A., & Lew, A. D. (2015). Tourists' Attitudes towards Linguistic Variation in Scotland. In E. Togersen, S. Hårstad, B. Maehlum, & U. Røyneland (Eds.), Language Variation - European Perspectives V (pp. 99-110). Amsterdam: Benjamins.

    Abstract

    This paper joins studies of linguistic variation (e.g. Labov 1972; Dubois & Horvath 2000) and discourse (e.g. Jaworski & Lawson 2005; Jaworski & Pritchard 2005; Thurlow & Jaworski 2010) that consider the intersection between language and tourism. By examining the language attitudes that tourists hold toward linguistic variability in their host community, we find that attitudes differ by context and with respect to tourists’ travel motivations. We suggest that these results are particularly likely in a context like Edinburgh, Scotland, where linguistic variation has an iconic link to place authenticity. We propose that the joint commodification of ‘intelligibility’ and ‘authenticity’ explains this variability. The results raise questions about how the commodity value of travel motivation and the associated context of language use influence language attitudes.
  • Hammarström, H. (2015). Glottolog: A free, online, comprehensive bibliography of the world's languages. In E. Kuzmin (Ed.), Proceedings of the 3rd International Conference on Linguistic and Cultural Diversity in Cyberspace (pp. 183-188). Moscow: UNESCO.
  • Hanique, I., Aalders, E., & Ernestus, M. (2015). How robust are exemplar effects in word comprehension? In G. Jarema, & G. Libben (Eds.), Phonological and phonetic considerations of lexical processing (pp. 15-39). Amsterdam: Benjamins.

    Abstract

    This paper studies the robustness of exemplar effects in word comprehension by means of four long-term priming experiments with lexical decision tasks in Dutch. A prime and target represented the same word type and were presented with the same or different degree of reduction. In Experiment 1, participants heard only a small number of trials, a large proportion of repeated words, and stimuli produced by only one speaker. They recognized targets more quickly if these represented the same degree of reduction as their primes, which forms additional evidence for the exemplar effects reported in the literature. Similar effects were found for two speakers who differ in their pronunciations. In Experiment 2, with a smaller proportion of repeated words and more trials between prime and target, participants recognized targets preceded by primes with the same or a different degree of reduction equally quickly. Also, in Experiments 3 and 4, in which listeners were not exposed to one but two types of pronunciation variation (reduction degree and speaker voice), no exemplar effects arose. We conclude that the role of exemplars in speech comprehension during natural conversations, which typically involve several speakers and few repeated content words, may be smaller than previously assumed.
  • Harmon, Z., & Kapatsinski, V. (2015). Studying the dynamics of lexical access using disfluencies. In R. Lickley, & R. Eklund (Eds.), Proceedings of the 7th International Workshop on Disfluency in Spontaneous Speech (DiSS 2015) (pp. 41-44).

    Abstract

    Faced with planning problems related to lexical access, speakers take advantage of a major function of disfluencies: buying time. It is reasonable, then, to expect that the structure of disfluencies sheds light on the mechanisms underlying lexical access. Using data from the Switchboard Corpus, we investigated the effect of semantic competition during lexical access on repetition disfluencies. We hypothesized that the more time the speaker needs to access the following unit, the longer the repetition. We examined the repetitions preceding verbs and nouns and tested predictors influencing the accessibility of these items. Results suggest that speed of lexical access negatively correlates with the length of repetition and that the main determinants of lexical access speed differ for verbs and nouns. Longer disfluencies before verbs appear to be due to significant paradigmatic competition from semantically similar verbs. For nouns, they occur when the noun is relatively unpredictable given the preceding context.
  • Hintz, F., & Huettig, F. (2015). The complexity of the visual environment modulates language-mediated eye gaze. In R. Mishra, N. Srinivasan, & F. Huettig (Eds.), Attention and Vision in Language Processing (pp. 39-55). Berlin: Springer. doi:10.1007/978-81-322-2443-3_3.

    Abstract

    Three eye-tracking experiments investigated the impact of the complexity of the visual environment on the likelihood of word-object mapping taking place at phonological, semantic and visual levels of representation during language-mediated visual search. Dutch participants heard spoken target words while looking at four objects embedded in displays of different complexity and indicated the presence or absence of the target object. During filler trials the target objects were present, but during experimental trials they were absent and the display contained various competitor objects. For example, given the target word “beaker”, the display contained a phonological (a beaver, bever), a shape (a bobbin, klos), a semantic (a fork, vork) competitor, and an unrelated distractor (an umbrella, paraplu). When objects were presented in simple four-object displays (Experiment 2), there were clear attentional biases to all three types of competitors replicating earlier research (Huettig and McQueen, 2007). When the objects were embedded in complex scenes including four human-like characters or four meaningless visual shapes (Experiments 1, 3), there were biases in looks to visual and semantic but not to phonological competitors. In both experiments, however, we observed evidence for inhibition in looks to phonological competitors, which suggests that the phonological forms of the objects nevertheless had been retrieved. These findings suggest that phonological word-object mapping is contingent upon the nature of the visual environment and add to a growing body of evidence that the nature of our visual surroundings induces particular modes of processing during language-mediated visual search.
  • Holler, J., & Beattie, G. (2004). The interaction of iconic gesture and speech. In A. Cammurri, & G. Volpe (Eds.), Lecture Notes in Computer Science, 5th International Gesture Workshop, Genova, Italy, 2003; Selected Revised Papers (pp. 63-69). Heidelberg: Springer Verlag.
  • De Hoop, H., & Narasimhan, B. (2005). Differential case-marking in Hindi. In M. Amberber, & H. de Hoop (Eds.), Competition and variation in natural languages: The case for case (pp. 321-345). Amsterdam: Elsevier.
  • Huettig, F., & Altmann, G. T. M. (2004). The online processing of ambiguous and unambiguous words in context: Evidence from head-mounted eye-tracking. In M. Carreiras, & C. Clifton (Eds.), The on-line study of sentence comprehension: Eyetracking, ERP and beyond (pp. 187-207). New York: Psychology Press.
  • Huettig, F., Srinivasan, N., & Mishra, R. (2015). Introduction to 'Attention and vision in language processing'. In R. Mishra, N. Srinivasan, & F. Huettig (Eds.), Attention and vision in language processing. (pp. V-IX). Berlin: Springer.
  • Huettig, F. (2015). Literacy influences cognitive abilities far beyond the mastery of written language. In I. van de Craats, J. Kurvers, & R. van Hout (Eds.), Adult literacy, second language, and cognition. LESLLA Proceedings 2014. Nijmegen: Centre for Language Studies.

    Abstract

    Recent experimental evidence from cognitive psychology and cognitive neuroscience shows that reading acquisition has non-trivial consequences for cognitive processes other than reading per se. In the present chapter I present evidence from three areas of cognition: phonological processing, prediction in language processing, and visual search. These findings suggest that literacy on cognition influences are far-reaching. This implies that a good understanding of the dramatic impact of literacy acquisition on the human mind is an important prerequisite for successful education policy development and guidance of educational support.
  • Indefrey, P., & Cutler, A. (2004). Prelexical and lexical processing in listening. In M. Gazzaniga (Ed.), The cognitive neurosciences III. (pp. 759-774). Cambridge, MA: MIT Press.

    Abstract

    This paper presents a meta-analysis of hemodynamic studies on passive auditory language processing. We assess the overlap of hemodynamic activation areas and activation maxima reported in experiments involving the presentation of sentences, words, pseudowords, or sublexical or non-linguistic auditory stimuli. Areas that have been reliably replicated are identified. The results of the meta-analysis are compared to electrophysiological, magnetencephalic (MEG), and clinical findings. It is concluded that auditory language input is processed in a left posterior frontal and bilateral temporal cortical network. Within this network, no processing leve l is related to a single cortical area. The temporal lobes seem to differ with respect to their involvement in post-lexical processing, in that the left temporal lobe has greater involvement than the right, and also in the degree of anatomical specialization for phonological, lexical, and sentence -level processing, with greater overlap on the right contrasting with a higher degree of differentiation on the left.
  • Indefrey, P. (2004). Hirnaktivierungen bei syntaktischer Sprachverarbeitung: Eine Meta-Analyse. In H. Müller, & G. Rickheit (Eds.), Neurokognition der Sprache (pp. 31-50). Tübingen: Stauffenburg.
  • Jadoul, Y., Düngen, D., & Ravignani, A. (2023). Live-tracking acoustic parameters in animal behavioural experiments: Interactive bioacoustics with parselmouth. In A. Astolfi, F. Asdrubali, & L. Shtrepi (Eds.), Proceedings of the 10th Convention of the European Acoustics Association Forum Acusticum 2023 (pp. 4675-4678). Torino: European Acoustics Association.

    Abstract

    Most bioacoustics software is used to analyse the already collected acoustics data in batch, i.e., after the data-collecting phase of a scientific study. However, experiments based on animal training require immediate and precise reactions from the experimenter, and thus do not easily dovetail with a typical bioacoustics workflow. Bridging this methodological gap, we have developed a custom application to live-monitor the vocal development of harbour seals in a behavioural experiment. In each trial, the application records and automatically detects an animal's call, and immediately measures duration and acoustic measures such as intensity, fundamental frequency, or formant frequencies. It then displays a spectrogram of the recording and the acoustic measurements, allowing the experimenter to instantly evaluate whether or not to reinforce the animal's vocalisation. From a technical perspective, the rapid and easy development of this custom software was made possible by combining multiple open-source software projects. Here, we integrated the acoustic analyses from Parselmouth, a Python library for Praat, together with PyAudio and Matplotlib's recording and plotting functionality, into a custom graphical user interface created with PyQt. This flexible recombination of different open-source Python libraries allows the whole program to be written in a mere couple of hundred lines of code
  • Janse, E. (2005). Lexical inhibition effects in time-compressed speech. In Proceedings of the 9th European Conference on Speech Communication and Technology [Interspeech 2005] (pp. 1757-1760).
  • Janssen, R., Moisik, S. R., & Dediu, D. (2015). Bézier modelling and high accuracy curve fitting to capture hard palate variation. In Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015). Glasgow, UK: University of Glasgow.

    Abstract

    The human hard palate shows between-subject variation
    that is known to influence articulatory strategies.
    In order to link such variation to human speech, we
    are conducting a cross-sectional MRI study on multiple
    populations. A model based on Bezier curves
    using only three parameters was fitted to hard palate
    MRI tracings using evolutionary computation. The
    fits produced consistently yield high accuracies. For
    future research, this new method may be used to classify
    our MRI data on ethnic origins using e.g., cluster
    analyses. Furthermore, we may integrate our model
    into three-dimensional representations of the vocal
    tract in order to investigate its effect on acoustics and
    cultural transmission.
  • Janzen, G. (2005). Wie das mensliche Gehirn Orientierung ermöglicht. In G. Plehn (Ed.), Jahrbuch der Max-Planck-Gesellschaft (pp. 599-601). Göttingen: Vandenhoeck & Ruprecht.
  • Janzen, G., & Weststeijn, C. (2004). Neural representation of object location and route direction: An fMRI study. NeuroImage, 22(Supplement 1), e634-e635.
  • Janzen, G., & Van Turennout, M. (2004). Neuronale Markierung navigationsrelevanter Objekte im räumlichen Gedächtnis: Ein fMRT Experiment. In D. Kerzel (Ed.), Beiträge zur 46. Tagung experimentell arbeitender Psychologen (pp. 125-125). Lengerich: Pabst Science Publishers.
  • Jayez, J., Mongelli, V., Reboul, A., & Van der Henst, J.-B. (2015). Weak and strong triggers. In F. Schwarz (Ed.), Experimental Perspectives on Presuppositions (pp. 173-194). Berlin: Springer.

    Abstract

    The idea that presupposition triggers have different intrinsic properties has gradually made its way into the literature on presuppositions and become a current assumption in most approaches. The distinctions mentioned in the different works have been based on introspective data, which seem, indeed, very suggestive. In this paper, we take a different look at some of these distinctions by using a simple experimental approach based on judgment of naturalness about sentences in various contexts. We show that the alleged difference between weak (or soft) and strong (or hard) triggers is not as clear as one may wish and that the claim that they belong to different lexical classes of triggers is probably much too strong.
  • Jesse, A., & Massaro, D. W. (2005). Towards a lexical fuzzy logical model of perception: The time-course of audiovisual speech processing in word identification. In E. Vatikiotis-Bateson, D. Burnham, & S. Fels (Eds.), Proceedings of the Auditory-Visual Speech Processing International Conference 2005 (pp. 35-36). Adelaide, Australia: Causal Productions.

    Abstract

    This study investigates the time-course of information processing in both visual as well as in the auditory speech as used for word identification in face-to-face communication. It extends the limited previous research on this topic and provides a valuable database for future research in audiovisual speech perception. An evaluation of models of speech perception by ear and eye in their ability to account for the audiovisual gating data shows a superior role of the fuzzy logical model of perception (FLMP) [1] over additive models of perception. A new dynamic version of the FLMP seems to be a promising model to account for the complex interplay of perceptual and cognitive information in audiovisual spoken word recognition.
  • Johns, T. G., Vitali, A. A., Perera, R. M., Vernes, S. C., & Scott, A. M. (2005). Ligand-independent activation of the EGFRvIII: A naturally occurring mutation of the EGFR commonly expressed in glioma [Abstract]. Neuro-Oncology, 7, 299.

    Abstract

    Mutations of the epidermal growth factor receptor (EGFR) gene are found at a relatively high frequency in glioma, with the most common being the de2-7 EGFR (or EGFRvIII). This mutation arises from an in-frame deletion of exons 2–7, which removes 267 amino acids from the extracellular domain of the receptor. Despite being unable to bind ligand, the de2-7 EGFR is constitutively active at a low level. Transfection of human glioma cells with the de2-7 EGFR has little effect in vitro, but when grown as tumor xenografts this mutated receptor imparts a dramatic growth advantage. We have now mapped the phosphorylation pattern of de2-7 EGFR, both in vivo and in vitro, using a panel of antibodies unique to the different phosphorylated tyrosine residues. Phosphorylation of de2-7 EGFR was detected constitutively at all tyrosine sites surveyed both in vitro and in vivo, including tyrosine 845, a known target in the wild-type EGFR for src kinase. There was a substantial upregulation of phosphorylation at every tyrosine residue of the de2-7 EGFR when cells were grown in vivo compared to the receptor isolated from cells cultured in vitro. Upregulation of phosphorylation could be mimicked in vitro by the addition of specifi c components of the ECM such as collagen via an integrin-dependent mechanism. Since this increase in in vivo phosphorylation enhances de2-7 EGFR signaling, this observation explains why the growth enhancement mediated by de2-7 EGFR is largely restricted to the in vivo environment. In a second set of experiments we analyzed the interaction between EGFRvIII and ErbB2. Co-expression of these proteins in NR6 cells, a mouse fi broblast line devoid of ErbB family members, dramatically enhanced in vivo tumorigenicity of these cells compared to cells expressing either protein alone. Detailed analysis of these xenografts demonstrated that EGFRvIII could heterodimerize and transphosphorylate the ErbB2. Since both EGFRvIII and ErbB2 are commonly expressed at gliomas, this data suggests that the co-expression of these two proteins may enhance glioma tumorigenicity.
  • Johns, T. G., Perera, R. M., Vitali, A. A., Vernes, S. C., & Scott, A. (2004). Phosphorylation of a glioma-specific mutation of the EGFR [Abstract]. Neuro-Oncology, 6, 317.

    Abstract

    Mutations of the epidermal growth factor receptor (EGFR) gene are found at a relatively high frequency in glioma, with the most common being the de2-7 EGFR (or EGFRvIII). This mutation arises from an in-frame deletion of exons 2-7, which removes 267 amino acids from the extracellular domain of the receptor. Despite being unable to bind ligand, the de2-7 EGFR is constitutively active at a low level. Transfection of human glioma cells with the de2-7 EGFR has little effect in vitro, but when grown as tumor xenografts this mutated receptor imparts a dramatic growth advantage. We mapped the phosphorylation pattern of de2-7 EGFR, both in vivo and in vitro, using a panel of antibodies specific for different phosphorylated tyrosine residues. Phosphorylation of de2-7 EGFR was detected constitutively at all tyrosine sites surveyed in vitro and in vivo, including tyrosine 845, a known target in the wild-type EGFR for src kinase. There was a substantial upregulation of phosphorylation at every yrosine residue of the de2-7 EGFR when cells were grown in vivo compared to the receptor isolated from cells cultured in vitro. Upregulation of phosphorylation at tyrosine 845 could be stimulated in vitro by the addition of specific components of the ECM via an integrindependent mechanism. These observations may partially explain why the growth enhancement mediated by de2-7 EGFR is largely restricted to the in vivo environment
  • Johnson, E. K. (2005). Grammatical gender and early word recognition in Dutch. In A. Brugos, M. R. Clark-Cotton, & S. Ha (Eds.), Proceedings of the 29th Boston University Conference on Language Developement (pp. 320-330). Sommervile, MA: Cascadilla Press.
  • Johnson, E. K., Westrek, E., & Nazzi, T. (2005). Language familiarity affects voice discrimination by seven-month-olds. In Proceedings of the ISCA Workshop on Plasticity in Speech Perception (PSP2005) (pp. 227-230).
  • Johnsrude, I., Davis, M., & Hervais-Adelman, A. (2005). From sound to meaning: Hierarchical processing in speech comprehension. In D. Pressnitzer, S. McAdams, A. DeCheveigne, & L. Collet (Eds.), Auditory Signal Processing: Physiology, Psychoacoustics, and Models (pp. 299-306). New York: Springer.
  • Jordan, F., & Mace, R. (2005). The evolution of human sex-ratio at birth: A bio-cultural analysis. In R. Mace, C. J. Holden, & S. Shennan (Eds.), The evolution of cultural diversity: A phylogenetic approach (pp. 207-216). London: UCL Press.
  • Jordanoska, I. (2023). Focus marking and size in some Mande and Atlantic languages. In N. Sumbatova, I. Kapitonov, M. Khachaturyan, S. Oskolskaya, & V. Verhees (Eds.), Songs and Trees: Papers in Memory of Sasha Vydrina (pp. 311-343). St. Petersburg: Institute for Linguistic Studies and Russian Academy of Sciences.

    Abstract

    This paper compares the focus marking systems and the focus size that can be expressed by the different focus markings in four Mande and three Atlantic languages and varieties, namely: Bambara, Dyula, Kakabe, Soninke (Mande), Wolof, Jóola Foñy and Jóola Karon (Atlantic). All of these languages are known to mark focus morphosyntactically, rather than prosodically, as the more well-studied Germanic languages do. However, the Mande languages under discussion use only morphology, in the form of a particle that follows the focus, while the Atlantic ones use a more complex morphosyntactic system in which focus is marked by morphology in the verbal complex and movement of the focused term. It is shown that while there are some syntactic restrictions to how many different focus sizes can be marked in a distinct way, there is also a certain degree of arbitrariness as to which focus sizes are marked in the same way as each other.
  • Jordens, P. (2004). Morphology in Second Language Acquisition. In G. Booij (Ed.), Morphologie: Ein internationales Handbuch zur Flexion und Wortbildung (pp. 1806-1816). Berlin: Walter de Gruyter.
  • Kanakanti, M., Singh, S., & Shrivastava, M. (2023). MultiFacet: A multi-tasking framework for speech-to-sign language generation. In E. André, M. Chetouani, D. Vaufreydaz, G. Lucas, T. Schultz, L.-P. Morency, & A. Vinciarelli (Eds.), ICMI '23 Companion: Companion Publication of the 25th International Conference on Multimodal Interaction (pp. 205-213). New York: ACM. doi:10.1145/3610661.3616550.

    Abstract

    Sign language is a rich form of communication, uniquely conveying meaning through a combination of gestures, facial expressions, and body movements. Existing research in sign language generation has predominantly focused on text-to-sign pose generation, while speech-to-sign pose generation remains relatively underexplored. Speech-to-sign language generation models can facilitate effective communication between the deaf and hearing communities. In this paper, we propose an architecture that utilises prosodic information from speech audio and semantic context from text to generate sign pose sequences. In our approach, we adopt a multi-tasking strategy that involves an additional task of predicting Facial Action Units (FAUs). FAUs capture the intricate facial muscle movements that play a crucial role in conveying specific facial expressions during sign language generation. We train our models on an existing Indian Sign language dataset that contains sign language videos with audio and text translations. To evaluate our models, we report Dynamic Time Warping (DTW) and Probability of Correct Keypoints (PCK) scores. We find that combining prosody and text as input, along with incorporating facial action unit prediction as an additional task, outperforms previous models in both DTW and PCK scores. We also discuss the challenges and limitations of speech-to-sign pose generation models to encourage future research in this domain. We release our models, results and code to foster reproducibility and encourage future research1.
  • Kempen, G. (2004). Terug naar Wundt: Pleidooi voor integraal onderzoek van taal, taalkennis en taalgedrag. In Koninklijke Nederlandse Akademie van Wetenschappen (Ed.), Gij letterdames en gij letterheren': Nieuwe mogelijkheden voor taalkundig en letterkundig onderzoek in Nederland. (pp. 174-188). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.
  • Kempen, G., & Harbusch, K. (2005). The relationship between grammaticality ratings and corpus frequencies: A case study into word order variability in the midfield of German clauses. In S. Kepser, & M. Reis (Eds.), Linguistic evidence - emperical, theoretical, and computational perspectives (pp. 329-349). Berlin: Mouton de Gruyter.
  • Kempen, G., & Vosse, T. (1992). A language-sensitive text editor for Dutch. In P. O’Brian Holt, & N. Williams (Eds.), Computers and writing: State of the art (pp. 68-77). Dordrecht: Kluwer Academic Publishers.

    Abstract

    Modern word processors begin to offer a range of facilities for spelling, grammar and style checking in English. For the Dutch language hardly anything is available as yet. Many commercial word processing packages do include a hyphenation routine and a lexicon-based spelling checker but the practical usefulness of these tools is limited due to certain properties of Dutch orthography, as we will explain below. In this chapter we describe a text editor which incorporates a great deal of lexical, morphological and syntactic knowledge of Dutch and monitors the orthographical quality of Dutch texts. Section 1 deals with those aspects of Dutch orthography which pose problems to human authors as well as to computational language sensitive text editing tools. In section 2 we describe the design and the implementation of the text editor we have built. Section 3 is mainly devoted to a provisional evaluation of the system.
  • Kempen, G., & Harbusch, K. (2004). A corpus study into word order variation in German subordinate clauses: Animacy affects linearization independently of grammatical function assignment. In T. Pechmann, & C. Habel (Eds.), Multidisciplinary approaches to language production (pp. 173-181). Berlin: Mouton de Gruyter.
  • Kempen, G., & Harbusch, K. (2004). Generating natural word orders in a semi-free word order language: Treebank-based linearization preferences for German. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing (pp. 350-354). Berlin: Springer.

    Abstract

    We outline an algorithm capable of generating varied but natural sounding sequences of argument NPs in subordinate clauses of German, a semi-free word order language. In order to attain the right level of output flexibility, the algorithm considers (1) the relevant lexical properties of the head verb (not only transitivity type but also reflexivity, thematic relations expressed by the NPs, etc.), and (2) the animacy and definiteness values of the arguments, and their length. The relevant statistical data were extracted from the NEGRA–II treebank and from hand-coded features for animacy and definiteness. The algorithm maps the relevant properties onto “primary” versus “secondary” placement options in the generator. The algorithm is restricted in that it does not take into account linear order determinants related to the sentence’s information structure and its discourse context (e.g. contrastiveness). These factors may modulate the above preferences or license “tertiary” linear orders beyond the primary and secondary options considered here.
  • Kempen, G., & Harbusch, K. (2004). How flexible is constituent order in the midfield of German subordinate clauses? A corpus study revealing unexpected rigidity. In S. Kepser, & M. Reis (Eds.), Pre-Proceedings of the International Conference on Linguistic Evidence (pp. 81-85). Tübingen: Niemeyer.
  • Kempen, G. (2004). Interactive visualization of syntactic structure assembly for grammar-intensive first- and second-language instruction. In R. Delmonte, P. Delcloque, & S. Tonelli (Eds.), Proceedings of InSTIL/ICALL2004 Symposium on NLP and speech technologies in advanced language learning systems (pp. 183-186). Venice: University of Venice.
  • Kempen, G. (1992). Generation. In W. Bright (Ed.), International encyclopedia of linguistics (pp. 59-61). New York: Oxford University Press.
  • Kempen, G., & Harbusch, K. (2004). How flexible is constituent order in the midfield of German subordinate clauses?: A corpus study revealing unexpected rigidity. In Proceedings of the International Conference on Linguistic Evidence (pp. 81-85). Tübingen: University of Tübingen.
  • Kempen, G. (2004). Human grammatical coding: Shared structure formation resources for grammatical encoding and decoding. In Cuny 2004 - The 17th Annual CUNY Conference on Human Sentence Processing. March 25-27, 2004. University of Maryland (pp. 66).
  • Kempen, G. (1992). Language technology and language instruction: Computational diagnosis of word level errors. In M. Swartz, & M. Yazdani (Eds.), Intelligent tutoring systems for foreign language learning: The bridge to international communication (pp. 191-198). Berlin: Springer.
  • Kempen, G., & Olsthoorn, N. (2005). Non-parallelism of grammatical encoding and decoding due to shared working memory [Abstract]. In AMLaP-2005 11th Annual Conference on Architectures and Mechanisms for Language Processing September 5-7, 2005 Ghent, Belgium (pp. 24).
  • Kempen, G. (1992). Second language acquisition as a hybrid learning process. In F. Engel, D. Bouwhuis, T. Bösser, & G. d'Ydewalle (Eds.), Cognitive modelling and interactive environments in language learning (pp. 139-144). Berlin: Springer.
  • Klein, W. (2005). Söldner des Wissens. In R. Kiesow, R. Ogorek, & S. Simitis (Eds.), Summa: Dieter Simon zum 70. Geburtstag (pp. 319-332). Frankfurt am Main: Klostermann.
  • Klein, W. (2005). The grammar of varieties. In U. Ammon, N. Dittmar, K. J. Mattheier, & P. Trudgill (Eds.), Sociolinguistics: An international handbook of the Science of Language and Society (pp. 1163-1171). Berlin: Walter de Gruyter.
  • Klein, W. (2015). Das Wörterbuch der Zukunft ist kein Wörterbuch. In L. Eichinger (Ed.), Sprachwissenschaft im Fokus (pp. 277-295). Berlin: De Gruyter.

    Abstract

    Unter allen Disziplinen, die sich mit der Erforschung der Sprache befassen, ist die Lexikografie die älteste und die für die Allgemeinheit wichtigste. Die ältesten, noch sehr einfachen Wörterbücher finden sich auf 4000 Jahre alten Tontafeln, und wenn sich heute in einem Haushalt überhaupt ein Buch findet, dann ist es wahrscheinlich ein Wörterbuch. In den letzten zwanzig Jahren ist die kommerzielle wie die von öffentlich finanzierten Forschungsstätten betriebene Lexikografie jedoch in einer ernsthafte Krise geraten. Die großen Wörterbuchverlage haben die Arbeit an umfassenden Wörterbüchern weitestgehend eingestellt, weil sie kaum noch gekauft werden; die Akademien geraten mit ihren Langzeitvorhaben in massive Zeit- und Finanzprobleme. Wenn wir nicht auf die umfassende Beschreibung des deutschen Wortschatzes in all einer Vielfalt und seiner geschichtlichen Entwicklung verzichten wollen, müssen ganz neue Wege gegangen werden: Wörterbücher im traditionellen Sinne müssen durch digitale lexikalische Systeme ersetzt werden, die das vorhandene lexikalische Wissen integrieren, es schrittweise systematisch ausbauen, eigene Recherchen in verlässlichen Corpora ermöglichen und von jedermann frei über das Internet nutzbar sind.
  • Klein, W. (1992). Der Fall Horten gegen Delius, oder: Der Laie, der Fachmann und das Recht. In G. Grewendorf (Ed.), Rechtskultur als Sprachkultur: Zur forensischen Funktion der Sprachanalyse (pp. 284-313). Frankfurt am Main: Suhrkamp.
  • Klein, W. (2004). Das Digitale Wörterbuch der deutschen Sprache des 20. Jahrhunderts (DWDS). In J. Scharnhorst (Ed.), Sprachkultur und Lexikographie (pp. 281-311). Berlin: Peter Lang.
  • Klein, W. (2005). Der alte und der neue Grimm. In Grimm-Sozietät (Ed.), Die Brüder Grimm in Berlin (pp. 167-176). Stuttgart: Hirzel.
  • Klein, W., & Perdue, C. (1992). Framework. In W. Klein, & C. Perdue (Eds.), Utterance structure: Developing grammars again (pp. 11-59). Amsterdam: Benjamins.
  • Klein, W. (2015). Lexicology and lexicography. In J. D. Wright (Ed.), International Encyclopedia of the Social & Behavioral Sciences (2nd ed.) Vol. 13 (pp. 938-942). Amsterdam: Elsevier. doi:10.1016/B978-0-08-097086-8.53059-1.
  • Klein, W., & Carroll, M. (1992). The acquisition of German. In W. Klein, & C. Perdue (Eds.), Utterance structure: Developing grammars again (pp. 123-188). Amsterdam: Benjamins.
  • Koch, X., & Janse, E. (2015). Effects of age and hearing loss on articulatory precision for sibilants. In M. Wolters, J. Livingstone, B. Beattie, R. Smith, M. MacMahon, J. Stuart-Smith, & J. Scobbie (Eds.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015). London: International Phonetic Association.

    Abstract

    This study investigates the effects of adult age and speaker abilities on articulatory precision for sibilant productions. Normal-hearing young adults with
    better sibilant discrimination have been shown to produce greater spectral sibilant contrasts. As reduced auditory feedback may gradually impact on feedforward
    commands, we investigate whether articulatory precision as indexed by spectral mean for [s] and [S] decreases with age, and more particularly with agerelated
    hearing loss. Younger, middle-aged and older adults read aloud words starting with the sibilants [s] or [S]. Possible effects of cognitive, perceptual, linguistic and sociolinguistic background variables
    on the sibilants’ acoustics were also investigated. Sibilant contrasts were less pronounced for male than female speakers. Most importantly, for the fricative
    [s], the spectral mean was modulated by individual high-frequency hearing loss, but not age. These results underscore that even mild hearing loss already affects articulatory precision.
  • Kruspe, N., Burenhult, N., & Wnuk, E. (2015). Northern Aslian. In P. Sidwell, & M. Jenny (Eds.), Handbook of Austroasiatic Languages (pp. 419-474). Leiden: Brill.
  • Lai, V. T. (2005). Language experience influences the conceptualization of TIME metaphor. In Proceedings of the II Conference on Metaphor in Language and Thought, Rio de Janeiro, Brazil, August 17-20, 2005.

    Abstract

    This paper examines the language-specific aspect of the TIME PASSING IS MOTION metaphor and suggests that the temporal construal of time can be influenced by a person's second language. Ahrens and Huang (2002) have analyzed the source domain of MOTION for the TIME metaphor into two special cases. In the special case one, TIME PASSING is an object that moves towards an ego. For example, qimuokao kuai dao le "the final exam is approaching." In the special case two, TIME PASSING is a point (that a plural ego is attached to) that moves across a landscape. For example, women kuai dao qimuokao le "we are approaching the final exam." In addition, in English, the ego in the special case one faces the future while in Chinese, the ego faces the past. The current experiment hypothesizes that English influences the choice of the orientation of the ego in native Chinese speakers who speak English as the second language. 54 subjects are asked to switch the clock time one hour forward. Results show that native Chinese speakers living in the Chinese speaking country tend to move the clock one hour forward to the past (92%) while native Chinese speakers living in an English speaking country are less likely to do so (60%). This implies that the experience of English influences the conceptualization of time in Mandarin Chinese.
  • Lai, V. T., & Narasimhan, B. (2015). Verb representation and thinking-for-speaking effects in Spanish-English bilinguals. In R. G. De Almeida, & C. Manouilidou (Eds.), Cognitive science perspectives on verb representation and processing (pp. 235-256). Cham: Springer.

    Abstract

    Speakers of English habitually encode motion events using manner-of-motion verbs (e.g., spin, roll, slide) whereas Spanish speakers rely on path-of-motion verbs (e.g., enter, exit, approach). Here, we ask whether the language-specific verb representations used in encoding motion events induce different modes of “thinking-for-speaking” in Spanish–English bilinguals. That is, assuming that the verb encodes the most salient information in the clause, do bilinguals find the path of motion to be more salient than manner of motion if they had previously described the motion event using Spanish versus English? In our study, Spanish–English bilinguals described a set of target motion events in either English or Spanish and then participated in a nonlinguistic similarity judgment task in which they viewed the target motion events individually (e.g., a ball rolling into a cave) followed by two variants a “same-path” variant such as a ball sliding into a cave or a “same-manner” variant such as a ball rolling away from a cave). Participants had to select one of the two variants that they judged to be more similar to the target event: The event that shared the same path of motion as the target versus the one that shared the same manner of motion. Our findings show that bilingual speakers were more likely to classify two motion events as being similar if they shared the same path of motion and if they had previously described the target motion events in Spanish versus in English. Our study provides further evidence for the “thinking-for-speaking” hypothesis by demonstrating that bilingual speakers can flexibly shift between language-specific construals of the same event “on-the-fly.”
  • Laparle, S. (2023). Moving past the lexical affiliate with a frame-based analysis of gesture meaning. In W. Pouw, J. Trujillo, H. R. Bosker, L. Drijvers, M. Hoetjes, J. Holler, S. Kadava, L. Van Maastricht, E. Mamus, & A. Ozyurek (Eds.), Gesture and Speech in Interaction (GeSpIn) Conference. doi:10.17617/2.3527218.

    Abstract

    Interpreting the meaning of co-speech gesture often involves
    identifying a gesture’s ‘lexical affiliate’, the word or phrase to
    which it most closely relates (Schegloff 1984). Though there is
    work within gesture studies that resists this simplex mapping of
    meaning from speech to gesture (e.g. de Ruiter 2000; Kendon
    2014; Parrill 2008), including an evolving body of literature on
    recurrent gesture and gesture families (e.g. Fricke et al. 2014; Müller 2017), it is still the lexical affiliate model that is most ap-
    parent in formal linguistic models of multimodal meaning(e.g.
    Alahverdzhieva et al. 2017; Lascarides and Stone 2009; Puste-
    jovsky and Krishnaswamy 2021; Schlenker 2020). In this work,
    I argue that the lexical affiliate should be carefully reconsidered
    in the further development of such models.
    In place of the lexical affiliate, I suggest a further shift
    toward a frame-based, action schematic approach to gestural
    meaning in line with that proposed in, for example, Parrill and
    Sweetser (2004) and Müller (2017). To demonstrate the utility
    of this approach I present three types of compositional gesture
    sequences which I call spatial contrast, spatial embedding, and
    cooperative abstract deixis. All three rely on gestural context,
    rather than gesture-speech alignment, to convey interactive (i.e.
    pragmatic) meaning. The centrality of gestural context to ges-
    ture meaning in these examples demonstrates the necessity of
    developing a model of gestural meaning independent of its in-
    tegration with speech.
  • Lehecka, T. (2015). Collocation and colligation. In J.-O. Östman, & J. Verschueren (Eds.), Handbook of Pragmatics Online. Amsterdam: Benjamins. doi:10.1075/hop.19.col2.
  • Lev-Ari, S. (2015). Adjusting the manner of language processing to the social context: Attention allocation during interactions with non-native speakers. In R. K. Mishra, N. Srinivasan, & F. Huettig (Eds.), Attention and Vision in Language Processing (pp. 185-195). New York: Springer. doi:10.1007/978-81-322-2443-3_11.
  • Levelt, W. J. M. (2005). Habitual perspective. In Proceedings of the 27th Annual Meeting of the Cognitive Science Society (CogSci 2005).
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M., & Plomp, R. (1962). Musical consonance and critical bandwidth. In Proceedings of the 4th International Congress Acoustics (pp. 55-55).
  • Levelt, W. J. M. (2004). Language. In G. Adelman, & B. H. Smith (Eds.), Elsevier's encyclopedia of neuroscience [CD-ROM] (3rd). Amsterdam: Elsevier.
  • Levelt, W. J. M. (2015). Levensbericht George Armitage Miller 1920 - 2012. In KNAW levensberichten en herdenkingen 2014 (pp. 38-42). Amsterdam: KNAW.
  • Levelt, W. J. M. (1992). Psycholinguistics: An overview. In W. Bright (Ed.), International encyclopedia of linguistics (Vol. 3) (pp. 290-294). Oxford: Oxford University Press.
  • Levelt, W. J. M. (2015). Sleeping Beauties. In I. Toivonen, P. Csúrii, & E. Van der Zee (Eds.), Structures in the Mind: Essays on Language, Music, and Cognition in Honor of Ray Jackendoff (pp. 235-255). Cambridge, MA: MIT Press.
  • Levinson, S. C. (1992). Space in Australian Languages Questionnaire. In S. C. Levinson (Ed.), Space stimuli kit 1.2 (pp. 29-40). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    This questionnaire is designed to explore how spatial relations are encoded in Australian language, but may be of interest to researchers further afield.
  • Levinson, S. C. (1992). Space in Australian Languages Questionnaire. In S. C. Levinson (Ed.), Space stimuli kit 1.2 (pp. 29-40). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3512641.

    Abstract

    This questionnaire is designed to explore how spatial relations are encoded in Australian language, but may be of interest to researchers further afield.
  • Levinson, S. C. (1992). Activity types and language. In P. Drew, & J. Heritage (Eds.), Talk at work: Interaction in institutional settings (pp. 66-100). Cambridge University Press.
  • Levinson, S. C. (2004). Deixis. In L. Horn (Ed.), The handbook of pragmatics (pp. 97-121). Oxford: Blackwell.
  • Levinson, S. C., Brown, P., Danzinger, E., De León, L., Haviland, J. B., Pederson, E., & Senft, G. (1992). Man and Tree & Space Games. In S. C. Levinson (Ed.), Space stimuli kit 1.2 (pp. 7-14). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.2458804.

    Abstract

    These classic tasks can be used to explore spatial reference in field settings. They provide a language-independent metric for eliciting spatial language, using a “director-matcher” paradigm. The Man and Tree task deals with location on the horizontal plane with both featured (man) and non-featured (e.g., tree) objects. The Space Games depict various objects (e.g. bananas, lemons) and elicit spatial contrasts not obviously lexicalisable in English.
  • Levinson, S. C., & Annamalai, E. (1992). Why presuppositions aren't conventional. In R. N. Srivastava (Ed.), Language and text: Studies in honour of Ashok R. Kelkar (pp. 227-242). Dehli: Kalinga Publications.
  • Levinson, S. C. (2023). On cognitive artifacts. In R. Feldhay (Ed.), The evolution of knowledge: A scientific meeting in honor of Jürgen Renn (pp. 59-78). Berlin: Max Planck Institute for the History of Science.

    Abstract

    Wearing the hat of a cognitive anthropologist rather than an historian, I will try to amplify the ideas of Renn’s cited above. I argue that a particular subclass of material objects, namely “cognitive artifacts,” involves a close coupling of mind and artifact that acts like a brain prosthesis. Simple cognitive artifacts are external objects that act as aids to internal
    computation, and not all cultures have extended inventories of these. Cognitive artifacts in this sense (e.g., calculating or measuring devices) have clearly played a central role in the history of science. But the notion can be widened to take in less material externalizations of cognition, like writing and language itself. A critical question here is how and why this close coupling of internal computation and external device actually works, a rather neglected question to which I’ll suggest some answers.

    Additional information

    link to book
  • Levshina, N. (2023). Testing communicative and learning biases in a causal model of language evolution:A study of cues to Subject and Object. In M. Degano, T. Roberts, G. Sbardolini, & M. Schouwstra (Eds.), The Proceedings of the 23rd Amsterdam Colloquium (pp. 383-387). Amsterdam: University of Amsterdam.

Share this page