Publications

Displaying 101 - 200 of 856
  • Brugman, H., Sloetjes, H., Russel, A., & Klassmann, A. (2004). ELAN 2.3 available. Language Archive Newsletter, 1(4), 13-13.
  • Brugman, H. (2004). ELAN Releases 2.0.2 and 2.1. Language Archive Newsletter, 1(2), 4-4.
  • Brugman, H., Crasborn, O., & Russel, A. (2004). Collaborative annotation of sign language data with Peer-to-Peer technology. In M. Lino, M. Xavier, F. Ferreira, R. Costa, & R. Silva (Eds.), Proceedings of the 4th International Conference on Language Resources and Language Evaluation (LREC 2004) (pp. 213-216). Paris: European Language Resources Association.
  • Brugman, H., & Russel, A. (2004). Annotating Multi-media/Multi-modal resources with ELAN. In M. Lino, M. Xavier, F. Ferreira, R. Costa, & R. Silva (Eds.), Proceedings of the 4th International Conference on Language Resources and Language Evaluation (LREC 2004) (pp. 2065-2068). Paris: European Language Resources Association.
  • Burenhult, N. (2004). Spatial deixis in Jahai. In S. Burusphat (Ed.), Papers from the 11th Annual Meeting of the Southeast Asian Linguistics Society 2001 (pp. 87-100). Arizona State University: Program for Southeast Asian Studies.
  • Burenhult, N. (2004). Landscape terms and toponyms in Jahai: A field report. Lund Working Papers, 51, 17-29.
  • Carlsson, K., Petersson, K. M., Lundqvist, D., Karlsson, A., Ingvar, M., & Öhman, A. (2004). Fear and the amygdala: manipulation of awareness generates differential cerebral responses to phobic and fear-relevant (but nonfeared) stimuli. Emotion, 4(4), 340-353. doi:10.1037/1528-3542.4.4.340.

    Abstract

    Rapid response to danger holds an evolutionary advantage. In this positron emission tomography study, phobics were exposed to masked visual stimuli with timings that either allowed awareness or not of either phobic, fear-relevant (e.g., spiders to snake phobics), or neutral images. When the timing did not permit awareness, the amygdala responded to both phobic and fear-relevant stimuli. With time for more elaborate processing, phobic stimuli resulted in an addition of an affective processing network to the amygdala activity, whereas no activity was found in response to fear-relevant stimuli. Also, right prefrontal areas appeared deactivated, comparing aware phobic and fear-relevant conditions. Thus, a shift from top-down control to an affectively driven system optimized for speed was observed in phobic relative to fear-relevant aware processing.
  • Castro-Caldas, A., Petersson, K. M., Reis, A., Stone-Elander, S., & Ingvar, M. (1998). The illiterate brain: Learning to read and write during childhood influences the functional organization of the adult brain. Brain, 121, 1053-1063. doi:10.1093/brain/121.6.1053.

    Abstract

    Learning a specific skill during childhood may partly determine the functional organization of the adult brain. This hypothesis led us to study oral language processing in illiterate subjects who, for social reasons, had never entered school and had no knowledge of reading or writing. In a brain activation study using PET and statistical parametric mapping, we compared word and pseudoword repetition in literate and illiterate subjects. Our study confirms behavioural evidence of different phonological processing in illiterate subjects. During repetition of real words, the two groups performed similarly and activated similar areas of the brain. In contrast, illiterate subjects had more difficulty repeating pseudowords correctly and did not activate the same neural structures as literates. These results are consistent with the hypothesis that learning the written form of language (orthography) interacts with the function of oral language. Our results indicate that learning to read and write during childhood influences the functional organization of the adult human brain.
  • Chen, A., Gussenhoven, C., & Rietveld, T. (2004). Language specificity in perception of paralinguistic intonational meaning. Language and Speech, 47(4), 311-349.

    Abstract

    This study examines the perception of paralinguistic intonational meanings deriving from Ohala’s Frequency Code (Experiment 1) and Gussenhoven’s Effort Code (Experiment 2) in British English and Dutch. Native speakers of British English and Dutch listened to a number of stimuli in their native language and judged each stimulus on four semantic scales deriving from these two codes: SELF-CONFIDENT versus NOT SELF-CONFIDENT, FRIENDLY versus NOT FRIENDLY (Frequency Code); SURPRISED versus NOT SURPRISED, and EMPHATIC versus NOT EMPHATIC (Effort Code). The stimuli, which were lexically equivalent across the two languages, differed in pitch contour, pitch register and pitch span in Experiment 1, and in pitch register, peak height, peak alignment and end pitch in Experiment 2. Contrary to the traditional view that the paralinguistic usage of intonation is similar across languages, it was found that British English and Dutch listeners differed considerably in the perception of “confident,” “friendly,” “emphatic,” and “surprised.” The present findings support a theory of paralinguistic meaning based on the universality of biological codes, which however acknowledges a languagespecific component in the implementation of these codes.
  • Cho, T., & McQueen, J. M. (2004). Phonotactics vs. phonetic cues in native and non-native listening: Dutch and Korean listeners' perception of Dutch and English. In S. Kin, & M. J. Bae (Eds.), Proceedings of the 8th International Conference on Spoken Language Processing (Interspeech 2004-ICSLP) (pp. 1301-1304). Seoul: Sunjijn Printing Co.

    Abstract

    We investigated how listeners of two unrelated languages, Dutch and Korean, process phonotactically legitimate and illegitimate sounds spoken in Dutch and American English. To Dutch listeners, unreleased word-final stops are phonotactically illegal because word-final stops in Dutch are generally released in isolation, but to Korean listeners, released final stops are illegal because word-final stops are never released in Korean. Two phoneme monitoring experiments showed a phonotactic effect: Dutch listeners detected released stops more rapidly than unreleased stops whereas the reverse was true for Korean listeners. Korean listeners with English stimuli detected released stops more accurately than unreleased stops, however, suggesting that acoustic-phonetic cues associated with released stops improve detection accuracy. We propose that in non-native speech perception, phonotactic legitimacy in the native language speeds up phoneme recognition, the richness of acousticphonetic cues improves listening accuracy, and familiarity with the non-native language modulates the relative influence of these two factors.
  • Cho, T. (2004). Prosodically conditioned strengthening and vowel-to-vowel coarticulation in English. Journal of Phonetics, 32(2), 141-176. doi:10.1016/S0095-4470(03)00043-3.

    Abstract

    The goal of this study is to examine how the degree of vowel-to-vowel coarticulation varies as a function of prosodic factors such as nuclear-pitch accent (accented vs. unaccented), level of prosodic boundary (Prosodic Word vs. Intermediate Phrase vs. Intonational Phrase), and position-in-prosodic-domain (initial vs. final). It is hypothesized that vowels in prosodically stronger locations (e.g., in accented syllables and at a higher prosodic boundary) are not only coarticulated less with their neighboring vowels, but they also exert a stronger influence on their neighbors. Measurements of tongue position for English /a i/ over time were obtained with Carsten’s electromagnetic articulography. Results showed that vowels in prosodically stronger locations are coarticulated less with neighboring vowels, but do not exert a stronger influence on the articulation of neighboring vowels. An examination of the relationship between coarticulation and duration revealed that (a) accent-induced coarticulatory variation cannot be attributed to a duration factor and (b) some of the data with respect to boundary effects may be accounted for by the duration factor. This suggests that to the extent that prosodically conditioned coarticulatory variation is duration-independent, there is no absolute causal relationship from duration to coarticulation. It is proposed that prosodically conditioned V-to-V coarticulatory reduction is another type of strengthening that occurs in prosodically strong locations. The prosodically driven coarticulatory patterning is taken to be part of the phonetic signatures of the hierarchically nested structure of prosody.
  • Cho, T., & Johnson, E. K. (2004). Acoustic correlates of phrase-internal lexical boundaries in Dutch. In S. Kin, & M. J. Bae (Eds.), Proceedings of the 8th International Conference on Spoken Language Processing (Interspeech 2004-ICSLP) (pp. 1297-1300). Seoul: Sunjin Printing Co.

    Abstract

    The aim of this study was to determine if Dutch speakers reliably signal phrase-internal lexical boundaries, and if so, how. Six speakers recorded 4 pairs of phonemically identical strong-weak-strong (SWS) strings with matching syllable boundaries but mismatching intended word boundaries (e.g. reis # pastei versus reispas # tij, or more broadly C1V2(C)#C2V2(C)C3V3(C) vs. C1V2(C)C2V2(C)#C3V3(C)). An Analysis of Variance revealed 3 acoustic parameters that were significantly greater in S#WS items (C2 DURATION, RIME1 DURATION, C3 BURST AMPLITUDE) and 5 parameters that were significantly greater in the SW#S items (C2 VOT, C3 DURATION, RIME2 DURATION, RIME3 DURATION, and V2 AMPLITUDE). Additionally, center of gravity measurements suggested that the [s] to [t] coarticulation was greater in reis # pa[st]ei versus reispa[s] # [t]ij. Finally, a Logistic Regression Analysis revealed that the 3 parameters (RIME1 DURATION, RIME2 DURATION, and C3 DURATION) contributed most reliably to a S#WS versus SW#S classification.
  • Choi, S., McDonough, L., Bowerman, M., & Mandler, J. M. (1999). Early sensitivity to language-specific spatial categories in English and Korean. Cognitive Development, 14, 241-268. doi:10.1016/S0885-2014(99)00004-0.

    Abstract

    This study investigates young children’s comprehension of spatial terms in two languages that categorize space strikingly differently. English makes a distinction between actions resulting in containment (put in) versus support or surface attachment (put on), while Korean makes a cross-cutting distinction between tight-fit relations (kkita) versus loose-fit or other contact relations (various verbs). In particular, the Korean verb kkita refers to actions resulting in a tight-fit relation regardless of containment or support. In a preferential looking study we assessed the comprehension of in by 20 English learners and kkita by 10 Korean learners, all between 18 and 23 months. The children viewed pairs of scenes while listening to sentences with and without the target word. The target word led children to gaze at different and language-appropriate aspects of the scenes. We conclude that children are sensitive to language-specific spatial categories by 18–23 months.
  • Choi, S., & Bowerman, M. (1991). Learning to express motion events in English and Korean: The influence of language-specific lexicalization patterns. Cognition, 41, 83-121. doi:10.1016/0010-0277(91)90033-Z.

    Abstract

    English and Korean differ in how they lexicalize the components of motionevents. English characteristically conflates Motion with Manner, Cause, or Deixis, and expresses Path separately. Korean, in contrast, conflates Motion with Path and elements of Figure and Ground in transitive clauses for caused Motion, but conflates motion with Deixis and spells out Path and Manner separately in intransitive clauses for spontaneous motion. Children learningEnglish and Korean show sensitivity to language-specific patterns in the way they talk about motion from as early as 17–20 months. For example, learners of English quickly generalize their earliest spatial words — Path particles like up, down, and in — to both spontaneous and caused changes of location and, for up and down, to posture changes, while learners of Korean keep words for spontaneous and caused motion strictly separate and use different words for vertical changes of location and posture changes. These findings challenge the widespread view that children initially map spatial words directly to nonlinguistic spatial concepts, and suggest that they are influenced by the semantic organization of their language virtually from the beginning. We discuss how input and cognition may interact in the early phases of learning to talk about space.
  • Cholin, J. (2004). Syllables in speech production: Effects of syllable preparation and syllable frequency. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.60589.

    Abstract

    The fluent production of speech is a very complex human skill. It requires the coordination of several articulatory subsystems. The instructions that lead articulatory movements to execution are the result of the interplay of speech production levels that operate above the articulatory network. During the process of word-form encoding, the groundwork for the articulatory programs is prepared which then serve the articulators as basic units. This thesis investigated whether or not syllables form the basis for the articulatory programs and in particular whether or not these syllable programs are stored, separate from the store of the lexical word-forms. It is assumed that syllable units are stored in a so-called 'mental syllabary'. The main goal of this thesis was to find evidence of the syllable playing a functionally important role in speech production and for the assumption that syllables are stored units. In a variant of the implicit priming paradigm, it was investigated whether information about the syllabic structure of a target word facilitates the preparation (advanced planning) of a to-be-produced utterance. These experiments yielded evidence for the functionally important role of syllables in speech production. In a subsequent row of experiments, it could be demonstrated that the production of syllables is sensitive to frequency. Syllable frequency effects provide strong evidence for the notion of a mental syllabary because only stored units are likely to exhibit frequency effects. In a last study, effects of syllable preparation and syllable frequency were investigated in a combined study to disentangle the two effects. The results of this last experiment converged with those reported for the other experiments and added further support to the claim that syllables play a core functional role in speech production and are stored in a mental syllabary.

    Additional information

    full text via Radboud Repository
  • Cholin, J., Schiller, N. O., & Levelt, W. J. M. (2004). The preparation of syllables in speech production. Journal of Memory and Language, 50(1), 47-61. doi:10.1016/j.jml.2003.08.003.

    Abstract

    Models of speech production assume that syllables play a functional role in the process of word-form encoding in speech production. In this study, we investigate this claim and specifically provide evidence about the level at which syllables come into play. We report two studies using an odd-man-out variant of the implicit priming paradigm to examine the role of the syllable during the process of word formation. Our results show that this modified version of the implicit priming paradigm can trace the emergence of syllabic structure during spoken word generation. Comparing these results to prior syllable priming studies, we conclude that syllables emerge at the interface between phonological and phonetic encoding. The results are discussed in terms of the WEAVER++ model of lexical access.
  • Chwilla, D., Hagoort, P., & Brown, C. M. (1998). The mechanism underlying backward priming in a lexical decision task: Spreading activation versus semantic matching. Quarterly Journal of Experimental Psychology, 51A(3), 531-560. doi:10.1080/713755773.

    Abstract

    Koriat (1981) demonstrated that an association from the target to a preceding prime, in the absence of an association from the prime to the target, facilitates lexical decision and referred to this effect as "backward priming". Backward priming is of relevance, because it can provide information about the mechanism underlying semantic priming effects. Following Neely (1991), we distinguish three mechanisms of priming: spreading activation, expectancy, and semantic matching/integration. The goal was to determine which of these mechanisms causes backward priming, by assessing effects of backward priming on a language-relevant ERP component, the N400, and reaction time (RT). Based on previous work, we propose that the N400 priming effect reflects expectancy and semantic matching/integration, but in contrast with RT does not reflect spreading activation. Experiment 1 shows a backward priming effect that is qualitatively similar for the N400 and RT in a lexical decision task. This effect was not modulated by an ISI manipulation. Experiment 2 clarifies that the N400 backward priming effect reflects genuine changes in N400 amplitude and cannot be ascribed to other factors. We will argue that these backward priming effects cannot be due to expectancy but are best accounted for in terms of semantic matching/integration.
  • Chwilla, D., Brown, C. M., & Hagoort, P. (1995). The N400 as a function of the level of processing. Psychophysiology, 32, 274-285. doi:10.1111/j.1469-8986.1995.tb02956.x.

    Abstract

    In a semantic priming paradigm, the effects of different levels of processing on the N400 were assessed by changing the task demands. In the lexical decision task, subjects had to discriminate between words and nonwords and in the physical task, subjects had to discriminate between uppercase and lowercase letters. The proportion of related versus unrelated word pairs differed between conditions. A lexicality test on reaction times demonstrated that the physical task was performed nonlexically. Moreover, a semantic priming reaction time effect was obtained only in the lexical decision task. The level of processing clearly affected the event-related potentials. An N400 priming effect was only observed in the lexical decision task. In contrast, in the physical task a P300 effect was observed for either related or unrelated targets, depending on their frequency of occurrence. Taken together, the results indicate that an N400 priming effect is only evoked when the task performance induces the semantic aspects of words to become part of an episodic trace of the stimulus event.
  • Claus, A. (2004). Access management system. Language Archive Newsletter, 1(2), 5.
  • Clifton, Jr., C., Cutler, A., McQueen, J. M., & Van Ooijen, B. (1999). The processing of inflected forms. [Commentary on H. Clahsen: Lexical entries and rules of language.]. Behavioral and Brain Sciences, 22, 1018-1019.

    Abstract

    Clashen proposes two distinct processing routes, for regularly and irregularly inflected forms, respectively, and thus is apparently making a psychological claim. We argue his position, which embodies a strictly linguistic perspective, does not constitute a psychological processing model.
  • Connine, C. M., Clifton, Jr., C., & Cutler, A. (1987). Effects of lexical stress on phonetic categorization. Phonetica, 44, 133-146.
  • Cooper, N., & Cutler, A. (2004). Perception of non-native phonemes in noise. In S. Kin, & M. J. Bae (Eds.), Proceedings of the 8th International Conference on Spoken Language Processing (Interspeech 2004-ICSLP) (pp. 469-472). Seoul: Sunjijn Printing Co.

    Abstract

    We report an investigation of the perception of American English phonemes by Dutch listeners proficient in English. Listeners identified either the consonant or the vowel in most possible English CV and VC syllables. The syllables were embedded in multispeaker babble at three signal-to-noise ratios (16 dB, 8 dB, and 0 dB). Effects of signal-to-noise ratio on vowel and consonant identification are discussed as a function of syllable position and of relationship to the native phoneme inventory. Comparison of the results with previously reported data from native listeners reveals that noise affected the responding of native and non-native listeners similarly.
  • Costa, A., Cutler, A., & Sebastian-Galles, N. (1998). Effects of phoneme repertoire on phoneme decision. Perception and Psychophysics, 60, 1022-1031.

    Abstract

    In three experiments, listeners detected vowel or consonant targets in lists of CV syllables constructed from five vowels and five consonants. Responses were faster in a predictable context (e.g., listening for a vowel target in a list of syllables all beginning with the same consonant) than in an unpredictable context (e.g., listening for a vowel target in a list of syllables beginning with different consonants). In Experiment 1, the listeners’ native language was Dutch, in which vowel and consonant repertoires are similar in size. The difference between predictable and unpredictable contexts was comparable for vowel and consonant targets. In Experiments 2 and 3, the listeners’ native language was Spanish, which has four times as many consonants as vowels; here effects of an unpredictable consonant context on vowel detection were significantly greater than effects of an unpredictable vowel context on consonant detection. This finding suggests that listeners’ processing of phonemes takes into account the constitution of their language’s phonemic repertoire and the implications that this has for contextual variability.
  • Crago, M. B., & Allen, S. E. M. (1998). Acquiring Inuktitut. In O. L. Taylor, & L. Leonard (Eds.), Language Acquisition Across North America: Cross-Cultural And Cross-Linguistic Perspectives (pp. 245-279). San Diego, CA, USA: Singular Publishing Group, Inc.
  • Crago, M. B., Allen, S. E. M., & Pesco, D. (1998). Issues of Complexity in Inuktitut and English Child Directed Speech. In Proceedings of the twenty-ninth Annual Stanford Child Language Research Forum (pp. 37-46).
  • Crago, M. B., Chen, C., Genesee, F., & Allen, S. E. M. (1998). Power and deference. Journal for a Just and Caring Education, 4(1), 78-95.
  • Cutler, A., Norris, D., & Sebastián-Gallés, N. (2004). Phonemic repertoire and similarity within the vocabulary. In S. Kin, & M. J. Bae (Eds.), Proceedings of the 8th International Conference on Spoken Language Processing (Interspeech 2004-ICSLP) (pp. 65-68). Seoul: Sunjijn Printing Co.

    Abstract

    Language-specific differences in the size and distribution of the phonemic repertoire can have implications for the task facing listeners in recognising spoken words. A language with more phonemes will allow shorter words and reduced embedding of short words within longer ones, decreasing the potential for spurious lexical competitors to be activated by speech signals. We demonstrate that this is the case via comparative analyses of the vocabularies of English and Spanish. A language which uses suprasegmental as well as segmental contrasts, however, can substantially reduce the extent of spurious embedding.
  • Cutler, A. (2004). Segmentation of spoken language by normal adult listeners. In R. Kent (Ed.), MIT encyclopedia of communication sciences and disorders (pp. 392-395). Cambridge, MA: MIT Press.
  • Cutler, A., Weber, A., Smits, R., & Cooper, N. (2004). Patterns of English phoneme confusions by native and non-native listeners. Journal of the Acoustical Society of America, 116(6), 3668-3678. doi:10.1121/1.1810292.

    Abstract

    Native American English and non-native(Dutch)listeners identified either the consonant or the vowel in all possible American English CV and VC syllables. The syllables were embedded in multispeaker babble at three signal-to-noise ratios(0, 8, and 16 dB). The phoneme identification
    performance of the non-native listeners was less accurate than that of the native listeners. All listeners were adversely affected by noise. With these isolated syllables, initial segments were harder to identify than final segments. Crucially, the effects of language background and noise did not interact; the performance asymmetry between the native and non-native groups was not significantly different across signal-to-noise ratios. It is concluded that the frequently reported disproportionate difficulty of non-native listening under disadvantageous conditions is not due to a disproportionate increase in phoneme misidentifications.
  • Cutler, A. (2004). On spoken-word recognition in a second language. Newsletter, American Association of Teachers of Slavic and East European Languages, 47, 15-15.
  • Cutler, A., & Henton, C. G. (2004). There's many a slip 'twixt the cup and the lip. In H. Quené, & V. Van Heuven (Eds.), On speech and Language: Studies for Sieb G. Nooteboom (pp. 37-45). Utrecht: Netherlands Graduate School of Linguistics.

    Abstract

    The retiring academic may look back upon, inter alia, years of conference attendance. Speech error researchers are uniquely fortunate because they can collect data in any situation involving communication; accordingly, the retiring speech error researcher will have collected data at those conferences. We here address the issue of whether error data collected in situations involving conviviality (such as at conferences) is representative of error data in general. Our approach involved a comparison, across three levels of linguistic processing, between a specially constructed Conviviality Sample and the largest existing source of speech error data, the newly available Fromkin Speech Error Database. The results indicate that there are grounds for regarding the data in the Conviviality Sample as a better than average reflection of the true population of all errors committed. These findings encourage us to recommend further data collection in collaboration with like-minded colleagues.
  • Cutler, A. (2004). Twee regels voor academische vorming. In H. Procee (Ed.), Bij die wereld wil ik horen! Zesendertig columns en drie essays over de vorming tot academicus. (pp. 42-45). Amsterdam: Boom.
  • Cutler, A., & Otake, T. (1998). Assimilation of place in Japanese and Dutch. In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: vol. 5 (pp. 1751-1754). Sydney: ICLSP.

    Abstract

    Assimilation of place of articulation across a nasal and a following stop consonant is obligatory in Japanese, but not in Dutch. In four experiments the processing of assimilated forms by speakers of Japanese and Dutch was compared, using a task in which listeners blended pseudo-word pairs such as ranga-serupa. An assimilated blend of this pair would be rampa, an unassimilated blend rangpa. Japanese listeners produced significantly more assimilated than unassimilated forms, both with pseudo-Japanese and pseudo-Dutch materials, while Dutch listeners produced significantly more unassimilated than assimilated forms in each materials set. This suggests that Japanese listeners, whose native-language phonology involves obligatory assimilation constraints, represent the assimilated nasals in nasal-stop sequences as unmarked for place of articulation, while Dutch listeners, who are accustomed to hearing unassimilated forms, represent the same nasal segments as marked for place of articulation.
  • Cutler, A. (1979). Beyond parsing and lexical look-up. In R. J. Wales, & E. C. T. Walker (Eds.), New approaches to language mechanisms: a collection of psycholinguistic studies (pp. 133-149). Amsterdam: North-Holland.
  • Cutler, A., & Fear, B. D. (1991). Categoricality in acceptability judgements for strong versus weak vowels. In J. Llisterri (Ed.), Proceedings of the ESCA Workshop on Phonetics and Phonology of Speaking Styles (pp. 18.1-18.5). Barcelona, Catalonia: Universitat Autonoma de Barcelona.

    Abstract

    A distinction between strong and weak vowels can be drawn on the basis of vowel quality, of stress, or of both factors. An experiment was conducted in which sets of contextually matched word-intial vowels ranging from clearly strong to clearly weak were cross-spliced, and the naturalness of the resulting words was rated by listeners. The ratings showed that in general cross-spliced words were only significantly less acceptable than unspliced words when schwa was not involved; this supports a categorical distinction based on vowel quality.
  • Cutler, A., Norris, D., & Williams, J. (1987). A note on the role of phonological expectations in speech segmentation. Journal of Memory and Language, 26, 480-487. doi:10.1016/0749-596X(87)90103-3.

    Abstract

    Word-initial CVC syllables are detected faster in words beginning consonant-vowel-consonant-vowel (CVCV-) than in words beginning consonant-vowel-consonant-consonant (CVCC-). This effect was reported independently by M. Taft and G. Hambly (1985, Journal of Memory and Language, 24, 320–335) and by A. Cutler, J. Mehler, D. Norris, and J. Segui (1986, Journal of Memory and Language, 25, 385–400). Taft and Hambly explained the effect in terms of lexical factors. This explanation cannot account for Cutler et al.'s results, in which the effect also appeared with nonwords and foreign words. Cutler et al. suggested that CVCV-sequences might simply be easier to perceive than CVCC-sequences. The present study confirms this suggestion, and explains it as a reflection of listener expectations constructed on the basis of distributional characteristics of the language.
  • Cutler, A. (1987). Components of prosodic effects in speech recognition. In Proceedings of the Eleventh International Congress of Phonetic Sciences: Vol. 1 (pp. 84-87). Tallinn: Academy of Sciences of the Estonian SSR, Institute of Language and Literature.

    Abstract

    Previous research has shown that listeners use the prosodic structure of utterances in a predictive fashion in sentence comprehension, to direct attention to accented words. Acoustically identical words spliced into sentence contexts arc responded to differently if the prosodic structure of the context is \ aricd: when the preceding prosody indicates that the word will he accented, responses are faster than when the preceding prosodv is inconsistent with accent occurring on that word. In the present series of experiments speech hybridisation techniques were first used to interchange the timing patterns within pairs of prosodic variants of utterances, independently of the pitch and intensity contours. The time-adjusted utterances could then serve as a basis lor the orthogonal manipulation of the three prosodic dimensions of pilch, intensity and rhythm. The overall pattern of results showed that when listeners use prosody to predict accent location, they do not simply rely on a single prosodic dimension, hut exploit the interaction between pitch, intensity and rhythm.
  • Cutler, A., & Clifton, Jr., C. (1999). Comprehending spoken language: A blueprint of the listener. In C. M. Brown, & P. Hagoort (Eds.), The neurocognition of language (pp. 123-166). Oxford University Press.
  • Cutler, A. (1979). Contemporary reaction to Rudolf Meringer’s speech error research. Historiograpia Linguistica, 6, 57-76.
  • Cutler, A., Mister, E., Norris, D., & Sebastián-Gallés, N. (2004). La perception de la parole en espagnol: Un cas particulier? In L. Ferrand, & J. Grainger (Eds.), Psycholinguistique cognitive: Essais en l'honneur de Juan Segui (pp. 57-74). Brussels: De Boeck.
  • Cutler, A. (1999). Foreword. In Slips of the Ear: Errors in the perception of Casual Conversation (pp. xiii-xv). New York City, NY, USA: Academic Press.
  • Cutler, A. (1998). How listeners find the right words. In Proceedings of the Sixteenth International Congress on Acoustics: Vol. 2 (pp. 1377-1380). Melville, NY: Acoustical Society of America.

    Abstract

    Languages contain tens of thousands of words, but these are constructed from a tiny handful of phonetic elements. Consequently, words resemble one another, or can be embedded within one another, a coup stick snot with standing. me process of spoken-word recognition by human listeners involves activation of multiple word candidates consistent with the input, and direct competition between activated candidate words. Further, human listeners are sensitive, at an early, prelexical, stage of speeeh processing, to constraints on what could potentially be a word of the language.
  • Cutler, A. (1982). Idioms: the older the colder. Linguistic Inquiry, 13(2), 317-320. Retrieved from http://www.jstor.org/stable/4178278?origin=JSTOR-pdf.
  • Cutler, A., & Norris, D. (1979). Monitoring sentence comprehension. In W. E. Cooper, & E. C. T. Walker (Eds.), Sentence processing: Psycholinguistic studies presented to Merrill Garrett (pp. 113-134). Hillsdale: Erlbaum.
  • Cutler, A., Norris, D., & McQueen, J. M. (1996). Lexical access in continuous speech: Language-specific realisations of a universal model. In T. Otake, & A. Cutler (Eds.), Phonological structure and language processing: Cross-linguistic studies (pp. 227-242). Berlin: Mouton de Gruyter.
  • Cutler, A. (1991). Linguistic rhythm and speech segmentation. In J. Sundberg, L. Nord, & R. Carlson (Eds.), Music, language, speech and brain (pp. 157-166). London: Macmillan.
  • Cutler, A., & Fay, D. A. (1982). One mental lexicon, phonologically arranged: Comments on Hurford’s comments. Linguistic Inquiry, 13, 107-113. Retrieved from http://www.jstor.org/stable/4178262.
  • Cutler, A., Treiman, R., & Van Ooijen, B. (1998). Orthografik inkoncistensy ephekts in foneme detektion? In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: Vol. 6 (pp. 2783-2786). Sydney: ICSLP.

    Abstract

    The phoneme detection task is widely used in spoken word recognition research. Alphabetically literate participants, however, are more used to explicit representations of letters than of phonemes. The present study explored whether phoneme detection is sensitive to how target phonemes are, or may be, orthographically realised. Listeners detected the target sounds [b,m,t,f,s,k] in word-initial position in sequences of isolated English words. Response times were faster to the targets [b,m,t], which have consistent word-initial spelling, than to the targets [f,s,k], which are inconsistently spelled, but only when listeners’ attention was drawn to spelling by the presence in the experiment of many irregularly spelled fillers. Within the inconsistent targets [f,s,k], there was no significant difference between responses to targets in words with majority and minority spellings. We conclude that performance in the phoneme detection task is not necessarily sensitive to orthographic effects, but that salient orthographic manipulation can induce such sensitivity.
  • Cutler, A., Mehler, J., Norris, D., & Segui, J. (1987). Phoneme identification and the lexicon. Cognitive Psychology, 19, 141-177. doi:10.1016/0010-0285(87)90010-7.
  • Cutler, A., & Chen, H.-C. (1995). Phonological similarity effects in Cantonese word recognition. In K. Elenius, & P. Branderud (Eds.), Proceedings of the Thirteenth International Congress of Phonetic Sciences: Vol. 1 (pp. 106-109). Stockholm: Stockholm University.

    Abstract

    Two lexical decision experiments in Cantonese are described in which the recognition of spoken target words as a function of phonological similarity to a preceding prime is investigated. Phonological similaritv in first syllables produced inhibition, while similarity in second syllables led to facilitation. Differences between syllables in tonal and segmental structure had generally similar effects.
  • Cutler, A., & Otake, T. (1996). Phonological structure and its role in language processing. In T. Otake, & A. Cutler (Eds.), Phonological structure and language processing: Cross-linguistic studies (pp. 1-12). Berlin: Mouton de Gruyter.
  • Cutler, A. (1991). Proceed with caution. New Scientist, (1799), 53-54.
  • Cutler, A. (1998). Prosodic structure and word recognition. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 41-70). Heidelberg: Springer.
  • Cutler, A. (1999). Prosodische Struktur und Worterkennung bei gesprochener Sprache. In A. D. Friedrici (Ed.), Enzyklopädie der Psychologie: Sprachrezeption (pp. 49-83). Göttingen: Hogrefe.
  • Cutler, A. (1999). Prosody and intonation, processing issues. In R. A. Wilson, & F. C. Keil (Eds.), MIT encyclopedia of the cognitive sciences (pp. 682-683). Cambridge, MA: MIT Press.
  • Cutler, A. (1982). Prosody and sentence perception in English. In J. Mehler, E. C. Walker, & M. Garrett (Eds.), Perspectives on mental representation: Experimental and theoretical studies of cognitive processes and capacities (pp. 201-216). Hillsdale, N.J: Erlbaum.
  • Cutler, A. (1996). Prosody and the word boundary problem. In J. L. Morgan, & K. Demuth (Eds.), Signal to syntax: Bootstrapping from speech to grammar in early acquisition (pp. 87-99). Mahwah, NJ: Erlbaum.
  • Cutler, A. (1991). Prosody in situations of communication: Salience and segmentation. In Proceedings of the Twelfth International Congress of Phonetic Sciences: Vol. 1 (pp. 264-270). Aix-en-Provence: Université de Provence, Service des publications.

    Abstract

    Speakers and listeners have a shared goal: to communicate. The processes of speech perception and of speech production interact in many ways under the constraints of this communicative goal; such interaction is as characteristic of prosodic processing as of the processing of other aspects of linguistic structure. Two of the major uses of prosodic information in situations of communication are to encode salience and segmentation, and these themes unite the contributions to the symposium introduced by the present review.
  • Cutler, A. (1996). The comparative study of spoken-language processing. In H. T. Bunnell (Ed.), Proceedings of the Fourth International Conference on Spoken Language Processing: Vol. 1 (pp. 1). New York: Institute of Electrical and Electronics Engineers.

    Abstract

    Psycholinguists are saddled with a paradox. Their aim is to construct a model of human language processing, which will hold equally well for the processing of any language, but this aim cannot be achieved just by doing experiments in any language. They have to compare processing of many languages, and actively search for effects which are specific to a single language, even though a model which is itself specific to a single language is really the last thing they want.
  • Cutler, A. (1975). Sentence stress and sentence comprehension. PhD Thesis, University of Texas, Austin.
  • Cutler, A., & Norris, D. (1999). Sharpening Ockham’s razor (Commentary on W.J.M. Levelt, A. Roelofs & A.S. Meyer: A theory of lexical access in speech production). Behavioral and Brain Sciences, 22, 40-41.

    Abstract

    Language production and comprehension are intimately interrelated; and models of production and comprehension should, we argue, be constrained by common architectural guidelines. Levelt et al.'s target article adopts as guiding principle Ockham's razor: the best model of production is the simplest one. We recommend adoption of the same principle in comprehension, with consequent simplification of some well-known types of models.
  • Cutler, A. (Ed.). (1982). Slips of the tongue and language production. The Hague: Mouton.
  • Cutler, A. (1987). Speaking for listening. In A. Allport, D. MacKay, W. Prinz, & E. Scheerer (Eds.), Language perception and production: Relationships between listening, speaking, reading and writing (pp. 23-40). London: Academic Press.

    Abstract

    Speech production is constrained at all levels by the demands of speech perception. The speaker's primary aim is successful communication, and to this end semantic, syntactic and lexical choices are directed by the needs of the listener. Even at the articulatory level, some aspects of production appear to be perceptually constrained, for example the blocking of phonological distortions under certain conditions. An apparent exception to this pattern is word boundary information, which ought to be extremely useful to listeners, but which is not reliably coded in speech. It is argued that the solution to this apparent problem lies in rethinking the concept of the boundary of the lexical access unit. Speech rhythm provides clear information about the location of stressed syllables, and listeners do make use of this information. If stressed syllables can serve as the determinants of word lexical access codes, then once again speakers are providing precisely the necessary form of speech information to facilitate perception.
  • Cutler, A. (1982). Speech errors: A classified bibliography. Bloomington: Indiana University Linguistics Club.
  • Cutler, A., Van Ooijen, B., Norris, D., & Sanchez-Casas, R. (1996). Speeded detection of vowels: A cross-linguistic study. Perception and Psychophysics, 58, 807-822. Retrieved from http://www.psychonomic.org/search/view.cgi?id=430.

    Abstract

    In four experiments, listeners’ response times to detect vowel targets in spoken input were measured. The first three experiments were conducted in English. In two, one using real words and the other, nonwords, detection accuracy was low, targets in initial syllables were detected more slowly than targets in final syllables, and both response time and missed-response rate were inversely correlated with vowel duration. In a third experiment, the speech context for some subjects included all English vowels, while for others, only five relatively distinct vowels occurred. This manipulation had essentially no effect, and the same response pattern was again observed. A fourth experiment, conducted in Spanish, replicated the results in the first three experiments, except that miss rate was here unrelated to vowel duration. We propose that listeners’ responses to vowel targets in naturally spoken input are effectively cautious, reflecting realistic appreciation of vowel variability in natural context.
  • Cutler, A. (1995). Spoken word recognition and production. In J. L. Miller, & P. D. Eimas (Eds.), Speech, language and communication (pp. 97-136). New York: Academic Press.

    Abstract

    This chapter highlights that most language behavior consists of speaking and listening. The chapter also reveals differences and similarities between speaking and listening. The laboratory study of word production raises formidable problems; ensuring that a particular word is produced may subvert the spontaneous production process. Word production is investigated via slips and tip-of-the-tongue (TOT), primarily via instances of processing failure and via the technique of via the picture-naming task. The methodology of word production is explained in the chapter. The chapter also explains the phenomenon of interaction between various stages of word production and the process of speech recognition. In this context, it explores the difference between sound and meaning and examines whether or not the comparisons are appropriate between the processes of recognition and production of spoken words. It also describes the similarities and differences in the structure of the recognition and production systems. Finally, the chapter highlights the common issues in recognition and production research, which include the nuances of frequency of occurrence, morphological structure, and phonological structure.
  • Cutler, A. (1999). Spoken-word recognition. In R. A. Wilson, & F. C. Keil (Eds.), MIT encyclopedia of the cognitive sciences (pp. 796-798). Cambridge, MA: MIT Press.
  • Cutler, A. (1995). Spoken-word recognition. In G. Bloothooft, V. Hazan, D. Hubert, & J. Llisterri (Eds.), European studies in phonetics and speech communication (pp. 66-71). Utrecht: OTS.
  • Cutler, A. (1984). Stress and accent in language production and understanding. In D. Gibbon, & H. Richter (Eds.), Intonation, accent and rhythm: Studies in discourse phonology (pp. 77-90). Berlin: de Gruyter.
  • Cutler, A., & Otake, T. (1999). Pitch accent in spoken-word recognition in Japanese. Journal of the Acoustical Society of America, 105, 1877-1888.

    Abstract

    Three experiments addressed the question of whether pitch-accent information may be exploited in the process of recognizing spoken words in Tokyo Japanese. In a two-choice classification task, listeners judged from which of two words, differing in accentual structure, isolated syllables had been extracted ~e.g., ka from baka HL or gaka LH!; most judgments were correct, and listeners’ decisions were correlated with the fundamental frequency characteristics of the syllables. In a gating experiment, listeners heard initial fragments of words and guessed what the words were; their guesses overwhelmingly had the same initial accent structure as the gated word even when only the beginning CV of the stimulus ~e.g., na- from nagasa HLL or nagashi LHH! was presented. In addition, listeners were more confident in guesses with the same initial accent structure as the stimulus than in guesses with different accent. In a lexical decision experiment, responses to spoken words ~e.g., ame HL! were speeded by previous presentation of the same word ~e.g., ame HL! but not by previous presentation of a word differing only in accent ~e.g., ame LH!. Together these findings provide strong evidence that accentual information constrains the activation and selection of candidates for spoken-word recognition.
  • Cutler, A. (1995). The perception of rhythm in spoken and written language. In J. Mehler, & S. Franck (Eds.), Cognition on cognition (pp. 283-288). Cambridge, MA: MIT Press.
  • Cutler, A., Butterfield, S., & Williams, J. (1987). The perceptual integrity of syllabic onsets. Journal of Memory and Language, 26, 406-418. doi:10.1016/0749-596X(87)90099-4.
  • Cutler, A., & Carter, D. (1987). The predominance of strong initial syllables in the English vocabulary. Computer Speech and Language, 2, 133-142. doi:10.1016/0885-2308(87)90004-0.

    Abstract

    Studies of human speech processing have provided evidence for a segmentation strategy in the perception of continuous speech, whereby a word boundary is postulated, and a lexical access procedure initiated, at each metrically strong syllable. The likely success of this strategy was here estimated against the characteristics of the English vocabulary. Two computerized dictionaries were found to list approximately three times as many words beginning with strong syllables (i.e. syllables containing a full vowel) as beginning with weak syllables (i.e. syllables containing a reduced vowel). Consideration of frequency of lexical word occurrence reveals that words beginning with strong syllables occur on average more often than words beginning with weak syllables. Together, these findings motivate an estimate for everyday speech recognition that approximately 85% of lexical words (i.e. excluding function words) will begin with strong syllables. This estimate was tested against a corpus of 190 000 words of spontaneous British English conversion. In this corpus, 90% of lexical words were found to begin with strong syllables. This suggests that a strategy of postulating word boundaries at the onset of strong syllables would have a high success rate in that few actual lexical word onsets would be missed.
  • Cutler, A., & Otake, T. (1996). The processing of word prosody in Japanese. In P. McCormack, & A. Russell (Eds.), Proceedings of the 6th Australian International Conference on Speech Science and Technology (pp. 599-604). Canberra: Australian Speech Science and Technology Association.
  • Cutler, A., & Carter, D. (1987). The prosodic structure of initial syllables in English. In J. Laver, & M. Jack (Eds.), Proceedings of the European Conference on Speech Technology: Vol. 1 (pp. 207-210). Edinburgh: IEE.
  • Cutler, A., & McQueen, J. M. (1995). The recognition of lexical units in speech. In B. De Gelder, & J. Morais (Eds.), Speech and reading: A comparative approach (pp. 33-47). Hove, UK: Erlbaum.
  • Cutler, A. (1998). The recognition of spoken words with variable representations. In D. Duez (Ed.), Proceedings of the ESCA Workshop on Sound Patterns of Spontaneous Speech (pp. 83-92). Aix-en-Provence: Université de Aix-en-Provence.
  • Cutler, A., Van Ooijen, B., & Norris, D. (1999). Vowels, consonants, and lexical activation. In J. Ohala, Y. Hasegawa, M. Ohala, D. Granville, & A. Bailey (Eds.), Proceedings of the Fourteenth International Congress of Phonetic Sciences: Vol. 3 (pp. 2053-2056). Berkeley: University of California.

    Abstract

    Two lexical decision studies examined the effects of single-phoneme mismatches on lexical activation in spoken-word recognition. One study was carried out in English, and involved spoken primes and visually presented lexical decision targets. The other study was carried out in Dutch, and primes and targets were both presented auditorily. Facilitation was found only for spoken targets preceded immediately by spoken primes; no facilitation occurred when targets were presented visually, or when intervening input occurred between prime and target. The effects of vowel mismatches and consonant mismatches were equivalent.
  • Cutler, A. (1987). The task of the speaker and the task of the hearer [Commentary/Sperber & Wilson: Relevance]. Behavioral and Brain Sciences, 10, 715-716.
  • Cutler, A., & Clifton Jr., C. (1984). The use of prosodic information in word recognition. In H. Bouma, & D. Bouwhuis (Eds.), Attention and Performance X: Control of Language Processes (pp. 183-196). Hillsdale, NJ: Erlbaum.
  • Cutler, A., & Clifton, Jr., C. (1984). The use of prosodic information in word recognition. In H. Bouma, & D. G. Bouwhuis (Eds.), Attention and performance X: Control of language processes (pp. 183-196). London: Erlbaum.

    Abstract

    In languages with variable stress placement, lexical stress patterns can convey information about word identity. The experiments reported here address the question of whether lexical stress information can be used in word recognition. The results allow the following conclusions: 1. Prior information as to the number of syllables and lexical stress patterns of words and nonwords does not facilitate lexical decision responses (Experiment 1). 2. The strong correspondences between grammatical category membership and stress pattern in bisyllabic English words (strong-weak stress being associated primarily with nouns, weak-strong with verbs) are not exploited in the recognition of isolated words (Experiment 2). 3. When a change in lexical stress also involves a change in vowel quality, i.e., a segmental as well as a suprasegmental alteration, effects on word recognition are greater when no segmental correlates of suprasegmental changes are involved (Experiments 2 and 3). 4. Despite the above finding, when all other factors are controlled, lexical stress information per se can indeed be shown to play a part in word-recognition process (Experiment 3).
  • Cutler, A., & Butterfield, S. (1991). Word boundary cues in clear speech: A supplementary report. Speech Communication, 10, 335-353. doi:10.1016/0167-6393(91)90002-B.

    Abstract

    One of a listener's major tasks in understanding continuous speech is segmenting the speech signal into separate words. When listening conditions are difficult, speakers can help listeners by deliberately speaking more clearly. In four experiments, we examined how word boundaries are produced in deliberately clear speech. In an earlier report we showed that speakers do indeed mark word boundaries in clear speech, by pausing at the boundary and lengthening pre-boundary syllables; moreover, these effects are applied particularly to boundaries preceding weak syllables. In English, listeners use segmentation procedures which make word boundaries before strong syllables easier to perceive; thus marking word boundaries before weak syllables in clear speech will make clear precisely those boundaries which are otherwise hard to perceive. The present report presents supplementary data, namely prosodic analyses of the syllable following a critical word boundary. More lengthening and greater increases in intensity were applied in clear speech to weak syllables than to strong. Mean F0 was also increased to a greater extent on weak syllables than on strong. Pitch movement, however, increased to a greater extent on strong syllables than on weak. The effects were, however, very small in comparison to the durational effects we observed earlier for syllables preceding the boundary and for pauses at the boundary.
  • Cutler, A., & Fay, D. (1975). You have a Dictionary in your Head, not a Thesaurus. Texas Linguistic Forum, 1, 27-40.
  • Cutler, A. (1995). Universal and Language-Specific in the Development of Speech. Biology International, (Special Issue 33).
  • Dahan, D., & Tanenhaus, M. K. (2004). Continuous mapping from sound to meaning in spoken-language comprehension: Immediate effects of verb-based thematic constraints. Journal of Experimental Psychology: Learning, Memory, and Cognition, 30(2), 498-513. doi:10.1037/0278-7393.30.2.498.

    Abstract

    The authors used 2 “visual-world” eye-tracking experiments to examine lexical access using Dutch constructions in which the verb did or did not place semantic constraints on its subsequent subject noun phrase. In Experiment 1, fixations to the picture of a cohort competitor (overlapping with the onset of the referent’s name, the subject) did not differ from fixations to a distractor in the constraining-verb condition. In Experiment 2, cross-splicing introduced phonetic information that temporarily biased the input toward the cohort competitor. Fixations to the cohort competitor temporarily increased in both the neutral and constraining conditions. These results favor models in which mapping from the input onto meaning is continuous over models in which contextual effects follow access of an initial form-based competitor set.
  • Dalli, A., Tablan, V., Bontcheva, K., Wilks, Y., Broeder, D., Brugman, H., & Wittenburg, P. (2004). Web services architecture for language resources. In M. Lino, M. Xavier, F. Ferreira, R. Costa, & R. Silva (Eds.), Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC2004) (pp. 365-368). Paris: ELRA - European Language Resources Association.
  • Danziger, E. (1995). Intransitive predicate form class survey. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 46-53). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3004298.

    Abstract

    Different linguistic structures allow us to highlight distinct aspects of a situation. The aim of this survey is to investigate similarities and differences in the expression of situations or events as “stative” (maintaining a state), “inchoative” (adopting a state) and “agentive” (causing something to be in a state). The questionnaire focuses on the encoding of stative, inchoative and agentive possibilities for the translation equivalents of a set of English verbs.
  • Danziger, E. (1995). Posture verb survey. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 33-34). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3004235.

    Abstract

    Expressions of human activities and states are a rich area for cross-linguistic comparison. Some languages of the world treat human posture verbs (e.g., sit, lie, kneel) as a special class of predicates, with distinct formal properties. This survey examines lexical, semantic and grammatical patterns for posture verbs, with special reference to contrasts between “stative” (maintaining a posture), “inchoative” (adopting a posture), and “agentive” (causing something to adopt a posture) constructions. The enquiry is thematically linked to the more general questionnaire 'Intransitive Predicate Form Class Survey'.
  • Den Os, E., & Boves, L. (2004). Natural multimodal interaction for design applications. In P. Cunningham (Ed.), Adoption and the knowledge economy (pp. 1403-1410). Amsterdam: IOS Press.
  • Dietrich, R., Klein, W., & Noyau, C. (1995). The acquisition of temporality in a second language. Amsterdam: Benjamins.
  • Dijkstra, T., & Kempen, G. (1984). Taal in uitvoering: Inleiding tot de psycholinguistiek. Groningen: Wolters-Noordhoff.
  • Dimroth, C. (2004). Fokuspartikeln und Informationsgliederung im Deutschen. Tübingen: Stauffenburg.
  • Dimroth, C., & Klein, W. (1996). Fokuspartikeln in Lernervarietäten: Ein Analyserahmen und einige Beispiele. Zeitschrift für Literaturwissenschaft und Linguistik, 104, 73-114.
  • Dimroth, C. (1998). Indiquer la portée en allemand L2: Une étude longitudinale de l'acquisition des particules de portée. AILE (Acquisition et Interaction en Langue étrangère), 11, 11-34.
  • Dittmar, N., & Klein, W. (1975). Untersuchungen zum Pidgin-Deutsch spanischer und italienischer Arbeiter in der Bundesrepublik: Ein Arbeitsbericht. In A. Wierlacher (Ed.), Jahrbuch Deutsch als Fremdsprache (pp. 170-194). Heidelberg: Groos.
  • Doherty, M., & Klein, W. (Eds.). (1991). Übersetzung [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (84).
  • Drexler, H., Verbunt, A., & Wittenburg, P. (1996). Max Planck Electronic Information Desk. In B. den Brinker, J. Beek, A. Hollander, & R. Nieuwboer (Eds.), Zesde workshop computers in de psychologie: Programma en uitgebreide samenvattingen (pp. 64-66). Amsterdam: Vrije Universiteit Amsterdam, IFKB.
  • Dronkers, N. F., Wilkins, D. P., Van Valin Jr., R. D., Redfern, B. B., & Jaeger, J. J. (2004). Lesion analysis of the brain areas involved in language comprehension. Cognition, 92, 145-177. doi:10.1016/j.cognition.2003.11.002.

    Abstract

    The cortical regions of the brain traditionally associated with the comprehension of language are Wernicke's area and Broca's area. However, recent evidence suggests that other brain regions might also be involved in this complex process. This paper describes the opportunity to evaluate a large number of brain-injured patients to determine which lesioned brain areas might affect language comprehension. Sixty-four chronic left hemisphere stroke patients were evaluated on 11 subtests of the Curtiss–Yamada Comprehensive Language Evaluation – Receptive (CYCLE-R; Curtiss, S., & Yamada, J. (1988). Curtiss–Yamada Comprehensive Language Evaluation. Unpublished test, UCLA). Eight right hemisphere stroke patients and 15 neurologically normal older controls also participated. Patients were required to select a single line drawing from an array of three or four choices that best depicted the content of an auditorily-presented sentence. Patients' lesions obtained from structural neuroimaging were reconstructed onto templates and entered into a voxel-based lesion-symptom mapping (VLSM; Bates, E., Wilson, S., Saygin, A. P., Dick, F., Sereno, M., Knight, R. T., & Dronkers, N. F. (2003). Voxel-based lesion-symptom mapping. Nature Neuroscience, 6(5), 448–450.) analysis along with the behavioral data. VLSM is a brain–behavior mapping technique that evaluates the relationships between areas of injury and behavioral performance in all patients on a voxel-by-voxel basis, similar to the analysis of functional neuroimaging data. Results indicated that lesions to five left hemisphere brain regions affected performance on the CYCLE-R, including the posterior middle temporal gyrus and underlying white matter, the anterior superior temporal gyrus, the superior temporal sulcus and angular gyrus, mid-frontal cortex in Brodmann's area 46, and Brodmann's area 47 of the inferior frontal gyrus. Lesions to Broca's and Wernicke's areas were not found to significantly alter language comprehension on this particular measure. Further analysis suggested that the middle temporal gyrus may be more important for comprehension at the word level, while the other regions may play a greater role at the level of the sentence. These results are consistent with those seen in recent functional neuroimaging studies and offer complementary data in the effort to understand the brain areas underlying language comprehension.
  • Drozd, K. F. (1995). Child English pre-sentential negation as metalinguistic exclamatory sentence negation. Journal of Child Language, 22(3), 583-610. doi:10.1017/S030500090000996X.

    Abstract

    This paper presents a study of the spontaneous pre-sentential negations
    of ten English-speaking children between the ages of 1; 6 and 3; 4 which
    supports the hypothesis that child English nonanaphoric pre-sentential
    negation is a form of metalinguistic exclamatory sentence negation. A
    detailed discourse analysis reveals that children's pre-sentential negatives
    like No Nathaniel a king (i) are characteristically echoic, and (it)
    typically express objection and rectification, two characteristic functions
    of exclamatory negation in adult discourse, e.g. Don't say 'Nathaniel's a
    king'! A comparison of children's pre-sentential negations with their
    internal predicate negations using not and don't reveals that the two
    negative constructions are formally and functionally distinct. I argue
    that children's nonanaphoric pre-sentential negatives constitute an
    independent, well-formed class of discourse negation. They are not
    'primitive' constructions derived from the miscategorization of emphatic
    no in adult speech or children's 'inventions'. Nor are they an
    early derivational variant of internal sentence negation. Rather, these
    negatives reflect young children's competence in using grammatical
    negative constructions appropriately in discourse.
  • Drozd, K. F. (1998). No as a determiner in child English: A summary of categorical evidence. In A. Sorace, C. Heycock, & R. Shillcock (Eds.), Proceedings of the Gala '97 Conference on Language Acquisition (pp. 34-39). Edinburgh, UK: Edinburgh University Press,.

    Abstract

    This paper summarizes the results of a descriptive syntactic category analysis of child English no which reveals that young children use and represent no as a determiner and negatives like no pen as NPs, contra standard analyses.

Share this page