Publications

Displaying 101 - 200 of 441
  • Enfield, N. J. (2003). “Fish traps” task. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 31). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877616.

    Abstract

    This task is designed to elicit virtual 3D ‘models’ created in gesture space using iconic and other representational gestures. This task has been piloted with Lao speakers, where two speakers were asked to explain the meaning of terms referring to different kinds of fish trap mechanisms. The task elicited complex performances involving a range of iconic gestures, and with especially interesting use of (a) the ‘model/diagram’ in gesture space as a virtual object, (b) the non-dominant hand as a prosodic/semiotic anchor, (c) a range of different techniques (indexical and iconic) for evoking meaning with the hand, and (d) the use of nearby objects and parts of the body as semiotic ‘props’.
  • Enfield, N. J. (2002). Cultural logic and syntactic productivity: Associated posture constructions in Lao. In N. Enfield (Ed.), Ethnosyntax: Explorations in culture and grammar (pp. 231-258). Oxford: Oxford University Press.
  • Enfield, N. J. (2002). Ethnosyntax: Introduction. In N. Enfield (Ed.), Ethnosyntax: Explorations in culture and grammar (pp. 1-30). Oxford: Oxford University Press.
  • Enfield, N. J. (2002). Combinatoric properties of natural semantic metalanguage expressions in Lao. In C. Goddard, & A. Wierzbicka (Eds.), Meaning and universal grammar: Theory and empirical findings (pp. 145-256). Amsterdam: John Benjamins.
  • Enfield, N. J. (2002). Functions of 'give' and 'take' in Lao complex predicates. In R. S. Bauer (Ed.), Collected papers on Southeast Asian and Pacific languages (pp. 13-36). Canberra: Pacific Linguistics.
  • Enfield, N. J. (2006). Heterosemy and the grammar-lexicon trade-off. In F. Ameka, A. Dench, & N. Evans (Eds.), Catching Language (pp. 297-320). Berlin: Mouton de Gruyter.
  • Enfield, N. J. (2006). Laos - language situation. In K. Brown (Ed.), Encyclopedia of Language and Linguistics (vol. 6) (pp. 698-700). Amsterdam: Elsevier.

    Abstract

    Laos features a high level of linguistic diversity, with more than 70 languages from four different major language families (Tai, Mon-Khmer, Hmong-Mien, Tibeto-Burman). Mon-Khmer languages were spoken in Laos earlier than other languages, with incoming migrations by Tai speakers (c. 2000 years ago) and Hmong-Mien speakers (c. 200 years ago). There is widespread language contact and multilingualism in upland minority communities, while lowland-dwelling Lao speakers are largely monolingual. Lao is the official national language. Most minority languages are endangered, with a few exceptions (notably Hmong and Kmhmu). There has been relatively little linguistic research on languages of Laos, due to problems of both infrastructure and administration.
  • Enfield, N. J., De Ruiter, J. P., Levinson, S. C., & Stivers, T. (2003). Multimodal interaction in your field site: A preliminary investigation. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 10-16). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877638.

    Abstract

    Research on video- and audio-recordings of spontaneous naturally-occurring conversation in English has shown that conversation is a rule-guided, practice-oriented domain that can be investigated for its underlying mechanics or structure. Systematic study could yield something like a grammar for conversation. The goal of this task is to acquire a corpus of video-data, for investigating the underlying structure(s) of interaction cross-linguistically and cross-culturally
  • Enfield, N. J., & Levinson, S. C. (2003). Interview on kinship. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 64-65). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877629.

    Abstract

    We want to know how people think about their field of kin, on the supposition that it is quasi-spatial. To get some insights here, we need to video a discussion about kinship reckoning, the kinship system, marriage rules and so on, with a view to looking at both the linguistic expressions involved, and the gestures people use to indicate kinship groups and relations. Unlike the task in the 2001 manual, this task is a direct interview method.
  • Enfield, N. J. (2003). Introduction. In N. J. Enfield, Linguistic epidemiology: Semantics and grammar of language contact in mainland Southeast Asia (pp. 2-44). London: Routledge Curzon.
  • Enfield, N. J., & De Ruiter, J. P. (2003). The diff-task: A symmetrical dyadic multimodal interaction task. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 17-21). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877635.

    Abstract

    This task is a complement to the questionnaire ‘Multimodal interaction in your field site: a preliminary investigation’. The objective of the task is to obtain high quality video data on structured and symmetrical dyadic multimodal interaction. The features of interaction we are interested in include turn organization in speech and nonverbal behavior, eye-gaze behavior, use of composite signals (i.e. communicative units of speech-combined-with-gesture), and linguistic and other resources for ‘navigating’ interaction (e.g. words like okay, now, well, and um).

    Additional information

    2003_1_The_diff_task_stimuli.zip
  • Enfield, N. J. (2003). Preface and priorities. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 3). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Erard, M. (2019). Language aptitude: Insights from hyperpolyglots. In Z. Wen, P. Skehan, A. Biedroń, S. Li, & R. L. Sparks (Eds.), Language aptitude: Advancing theory, testing, research and practice (pp. 153-167). Abingdon, UK: Taylor & Francis.

    Abstract

    Over the decades, high-intensity language learners scattered over the globe referred to as “hyperpolyglots” have undertaken a natural experiment into the limits of learning and acquiring proficiencies in multiple languages. This chapter details several ways in which hyperpolyglots are relevant to research on aptitude. First, historical hyperpolyglots Cardinal Giuseppe Mezzofanti, Emil Krebs, Elihu Burritt, and Lomb Kató are described in terms of how they viewed their own exceptional outcomes. Next, I draw on results from an online survey with 390 individuals to explore how contemporary hyperpolyglots consider the explanatory value of aptitude. Third, the challenges involved in studying the genetic basis of hyperpolyglottism (and by extension of language aptitude) are discussed. This mosaic of data is meant to inform the direction of future aptitude research that takes hyperpolyglots, one type of exceptional language learner and user, into account.
  • Ernestus, M. (2003). The role of phonology and phonetics in Dutch voice assimilation. In J. v. d. Weijer, V. J. v. Heuven, & H. v. d. Hulst (Eds.), The phonological spectrum Volume 1: Segmental structure (pp. 119-144). Amsterdam: John Benjamins.
  • Ernestus, M., & Baayen, R. H. (2006). The functionality of incomplete neutralization in Dutch: The case of past-tense formation. In L. Goldstein, D. Whalen, & C. Best (Eds.), Laboratory Phonology 8 (pp. 27-49). Berlin: Mouton de Gruyter.
  • Ernestus, M. (2016). L'utilisation des corpus oraux pour la recherche en (psycho)linguistique. In M. Kilani-Schoch, C. Surcouf, & A. Xanthos (Eds.), Nouvelles technologies et standards méthodologiques en linguistique (pp. 65-93). Lausanne: Université de Lausanne.
  • Ernestus, M., & Smith, R. (2018). Qualitative and quantitative aspects of phonetic variation in Dutch eigenlijk. In F. Cangemi, M. Clayards, O. Niebuhr, B. Schuppler, & M. Zellers (Eds.), Rethinking reduction: Interdisciplinary perspectives on conditions, mechanisms, and domains for phonetic variation (pp. 129-163). Berlin/Boston: De Gruyter Mouton.
  • Faller, M. (2002). Remarks on evidential hierarchies. In D. I. Beaver, L. D. C. Martinez, B. Z. Clark., & S. Kaufmann (Eds.), The construction of meaning (pp. 89-111). Stanford: CSLI Publications.
  • Fisher, S. E., & Tilot, A. K. (Eds.). (2019). Bridging senses: Novel insights from synaesthesia [Special Issue]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 374.
  • Fisher, S. E. (2016). A molecular genetic perspective on speech and language. In G. Hickok, & S. Small (Eds.), Neurobiology of Language (pp. 13-24). Amsterdam: Elsevier. doi:10.1016/B978-0-12-407794-2.00002-X.

    Abstract

    The rise of genomic technologies has yielded exciting new routes for studying the biological foundations of language. Researchers have begun to identify genes implicated in neurodevelopmental disorders that disrupt speech and language skills. This chapter illustrates how such work can provide powerful entry points into the critical neural pathways using FOXP2 as an example. Rare mutations of this gene cause problems with learning to sequence mouth movements during speech, accompanied by wide-ranging impairments in language production and comprehension. FOXP2 encodes a regulatory protein, a hub in a network of other genes, several of which have also been associated with language-related impairments. Versions of FOXP2 are found in similar form in many vertebrate species; indeed, studies of animals and birds suggest conserved roles in the development and plasticity of certain sets of neural circuits. Thus, the contributions of this gene to human speech and language involve modifications of evolutionarily ancient functions.
  • Fisher, S. E. (2019). Key issues and future directions: Genes and language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 609-620). Cambridge, MA: MIT Press.
  • Fisher, S. E. (2006). How can animal studies help to uncover the roles of genes implicated in human speech and language disorders? In G. S. Fisch, & J. Flint (Eds.), Transgenic and knockout models of neuropsychiatric disorders (pp. 127-149). Totowa, NJ: Humana Press.

    Abstract

    The mysterious human propensity for acquiring speech and language has fascinated scientists for decades. A substantial body of evidence suggests that this capacity is rooted in aspects of neurodevelopment that are specified at the genomic level. Researchers have begun to identify genetic factors that increase susceptibility to developmental disorders of speech and language, thereby offering the first molecular entry points into neuronal mechanisms underlying human vocal communication. The identification of genetic variants influencing language acquisition facilitates the analysis of animal models in which the corresponding orthologs are disrupted. At face value, the situation raises aperplexing question: if speech and language are uniquely human, can any relevant insights be gained from investigations of gene function in other species? This chapter addresses the question using the example of FOXP2, a gene implicated in a severe monogenic speech and language disorder. FOXP2 encodes a transcription factor that is highly conserved in vertebrate species, both in terms of protein sequence and expression patterns. Current data suggest that an earlier version of this gene, present in the common ancestor of humans, rodents, and birds, was already involved in establishing neuronal circuits underlying sensory-motor integration and learning of complex motor sequences. This may have represented one of the factors providing a permissive neural environment for subsequent evolution of vocal learning. Thus, dissection of neuromolecular pathways regulated by Foxp2 in nonlinguistic species is a necessary prerequisite for understanding the role of the human version of the gene in speech and language.
  • Fisher, S. E. (2002). Isolation of the genetic factors underlying speech and language disorders. In R. Plomin, J. C. DeFries, I. W. Craig, & P. McGuffin (Eds.), Behavioral genetics in the postgenomic era (pp. 205-226). Washington, DC: American Psychological Association.

    Abstract

    This chapter highlights the research in isolating genetic factors underlying specific language impairment (SLI), or developmental dysphasia, which exploits newly developed genotyping technology, novel statistical methodology, and DNA sequence data generated by the Human Genome Project. The author begins with an overview of results from family, twin, and adoption studies supporting genetic involvement and then goes on to outline progress in a number of genetic mapping efforts that have been recently completed or are currently under way. It has been possible for genetic researchers to pinpoint the specific mutation responsible for some speech and language disorders, providing an example of how the availability of human genomic sequence data can greatly accelerate the pace of disease gene discovery. Finally, the author discusses future prospects on how molecular genetics may offer new insight into the etiology underlying speech and language disorders, leading to improvements in diagnosis and treatment.
  • Fisher, S. E. (2003). The genetic basis of a severe speech and language disorder. In J. Mallet, & Y. Christen (Eds.), Neurosciences at the postgenomic era (pp. 125-134). Heidelberg: Springer.
  • Fitz, H. (2006). Church's thesis and physical computation. In A. Olszewski, J. Wolenski, & R. Janusz (Eds.), Church's Thesis after 70 years (pp. 175-219). Frankfurt a. M: Ontos Verlag.
  • Flecken, M., & Von Stutterheim, C. (2018). Sprache und Kognition: Sprachvergleichende und lernersprachliche Untersuchungen zur Ereigniskonzeptualisierung. In S. Schimke, & H. Hopp (Eds.), Sprachverarbeitung im Zweitspracherwerb (pp. 325-356). Berlin: De Gruyter. doi:10.1515/9783110456356-014.
  • Floyd, S. (2018). Egophoricity and argument structure in Cha'palaa. In S. Floyd, E. Norcliffe, & L. San Roque (Eds.), Egophoricity (pp. 269-304). Amsterdam: Benjamins.

    Abstract

    The Cha’palaa language of Ecuador (Barbacoan) features verbal morphology for marking knowledge-based categories that, in usage, show a variant of the cross-linguistically recurrent pattern of ‘egophoric distribution': specific forms associate with speakers in contrast to others in statements and with addressees in contrast to others in questions. These are not person markers, but rather are used by speakers to portray their involvement in states of affairs as active, agentive participants (ego) versus other types of involvement (non-ego). They interact with person and argument structure, but through pragmatic ‘person sensitivities’ rather than through grammatical agreement. Not only does this pattern appear in verbal morphology, it also can be observed in alternations of predicate construction types and case alignment, helping to show how egophoric marking is a pervasive element of Cha'palaa's linguistic system. This chapter gives a first account of egophoricity in Cha’palaa, beginning with a discussion of person sensitivity, egophoric distribution, and issues of flexibility of marking with respect to degree of volition or control. It then focuses on a set of intransitive experiencer (or ‘endopathic') predicates that refer to internal states which mark egophoric values for the undergoer role, not the actor role, showing ‘quirky’ accusative marking instead of nominative case. It concludes with a summary of how egophoricity in Cha'palaa interacts with issues of argument structure in comparison to a language with person agreement, here represented by examples from Cha’palaa’s neighbor Ecuadorian Highland Quechua.
  • Floyd, S. (2016). Insubordination in Interaction: The Cha’palaa counter-assertive. In N. Evans, & H. Wananabe (Eds.), Dynamics of Insubordination (pp. 341-366). Amsterdam: John Benjamins.

    Abstract

    In the Cha’palaa language of Ecuador the main-clause use of the otherwise non-finite morpheme -ba can be accounted for by a specific interactive practice: the ‘counter-assertion’ of statement or implicature of a previous conversational turn. Attention to the ways in which different constructions are deployed in such recurrent conversational contexts reveals a plausible account for how this type of dependent clause has come to be one of the options for finite clauses. After giving some background on Cha’palaa and placing ba clauses within a larger ecology of insubordination constructions in the language, this chapter uses examples from a video corpus of informal conversation to illustrate how interactive data provides answers that may otherwise be elusive for understanding how the different grammatical options for Cha’palaa finite verb constructions have been structured by insubordination
  • Floyd, S., & Norcliffe, E. (2016). Switch reference systems in the Barbacoan languages and their neighbors. In R. Van Gijn, & J. Hammond (Eds.), Switch Reference 2.0 (pp. 207-230). Amsterdam: Benjamins.

    Abstract

    This chapter surveys the available data on Barbacoan languages and their neighbors to explore a case study of switch reference within a single language family and in a situation of areal contact. To the extent possible given the available data, we weigh accounts appealing to common inheritance and areal convergence to ask what combination of factors led to the current state of these languages. We discuss the areal distribution of switch reference systems in the northwest Andean region, the different types of systems and degrees of complexity observed, and scenarios of contact and convergence, particularly in the case of Barbacoan and Ecuadorian Quechua. We then covers each of the Barbacoan languages’ systems (with the exception of Totoró, represented by its close relative Guambiano), identifying limited formal cognates, primarily between closely-related Tsafiki and Cha’palaa, as well as broader functional similarities, particularly in terms of interactions with topic/focus markers. n accounts for the current state of affairs with a complex scenario of areal prevalence of switch reference combined with deep structural family inheritance and formal re-structuring of the systems over time
  • Forkel, S. J., & Catani, M. (2018). Structural Neuroimaging. In A. De Groot, & P. Hagoort (Eds.), Research Methods in Psycholinguistics and the Neurobiology of Language: A Practical Guide (pp. 288-308). Hoboken: Wiley. doi:10.1002/9781394259762.ch15.

    Abstract

    Structural imaging based on computerized tomography (CT) and magnetic resonance imaging (MRI) has progressively replaced traditional post‐mortem studies in the process of identifying the neuroanatomical basis of language. In the clinical setting, the information provided by structural imaging has been used to confirm the exact diagnosis and formulate an individualized treatment plan. In the research arena, neuroimaging has permitted to understand neuroanatomy at the individual and group level. The possibility to obtain quantitative measures of lesions has improved correlation analyses between severity of symptoms, lesion load, and lesion location. More recently, the development of structural imaging based on diffusion MRI has provided valid solutions to two major limitations of more conventional imaging. In stroke patients, diffusion can visualize early changes due to a stroke that are otherwise not detectable with more conventional structural imaging, with important implications for the clinical management of acute stroke patients. Beyond the sensitivity to early changes, diffusion imaging tractography presents the possibility of visualizing the trajectories of individual white matter pathways connecting distant regions. A pathway analysis based on tractography is offering a new perspective in neurolinguistics. First, it permits to formulate new anatomical models of language function in the healthy brain and allows to directly test these models in the human population without any reliance on animal models. Second, by defining the exact location of the damage to specific white matter connections we can understand the contribution of different mechanisms to the emergence of language deficits (e.g., cortical versus disconnection mechanisms). Finally, a better understanding of the anatomical variability of different language networks is helping to identify new anatomical predictors of language recovery. In this chapter we will focus on the principles of structural MRI and, in particular, diffusion imaging and tractography and present examples of how these methods have informed our understanding of variance in language performances in the healthy brain and language deficits in patient populations.
  • Francks, C. (2019). The genetic bases of brain lateralization. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 595-608). Cambridge, MA: MIT Press.
  • Frank, S. L., Monaghan, P., & Tsoukala, C. (2019). Neural network models of language acquisition and processing. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 277-293). Cambridge, MA: MIT Press.
  • Frank, S. L., Koppen, M., Noordman, L. G. M., & Vonk, W. (2003). A model for knowledge-based pronoun resolution. In F. Detje, D. Dörner, & H. Schaub (Eds.), The logic of cognitive systems (pp. 245-246). Bamberg: Otto-Friedrich Universität.

    Abstract

    Several sources of information are used in choosing the intended referent of an ambiguous pronoun. The two sources considered in this paper are foregrounding and context. The first refers to the accessibility of discourse entities. An entity that is foregrounded is more likely to become the pronoun’s referent than an entity that is not. Context information affects pronoun resolution when world knowledge is needed to find the referent. The model presented here simulates how world knowledge invoked by context, together with foregrounding, influences pronoun resolution. It was developed as an extension to the Distributed Situation Space (DSS) model of knowledge-based inferencing in story comprehension (Frank, Koppen, Noordman, & Vonk, 2003), which shall be introduced first.
  • Furman, R., & Ozyurek, A. (2006). The use of discourse markers in adult and child Turkish oral narratives: Şey, yani and işte. In S. Yagcioglu, & A. Dem Deger (Eds.), Advances in Turkish linguistics (pp. 467-480). Izmir: Dokuz Eylul University Press.
  • Gaby, A., & Faller, M. (2003). Reciprocity questionnaire. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 77-80). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877641.

    Abstract

    This project is part of a collaborative project with the research group “Reciprocals across languages” led by Nick Evans. One goal of this project is to develop a typology of reciprocals. This questionnaire is designed to help field workers get an overview over the type of markers used in the expression of reciprocity in the language studied.
  • Gingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2018). Defining the biological bases of individual differences in musicality. In H. Honing (Ed.), The origins of musicality (pp. 221-250). Cambridge, MA: MIT Press.
  • Gordon, P. C., Lowder, M. W., & Hoedemaker, R. S. (2016). Reading in normally aging adults. In H. Wright (Ed.), Cognitive-Linguistic Processes and Aging (pp. 165-192). Amsterdam: Benjamins. doi:10.1075/z.200.07gor.

    Abstract

    The activity of reading raises fundamental theoretical and practical questions about healthy cognitive aging. Reading relies greatly on knowledge of patterns of language and of meaning at the level of words and topics of text. Further, this knowledge must be rapidly accessed so that it can be coordinated with processes of perception, attention, memory and motor control that sustain skilled reading at rates of four-to-five words a second. As such, reading depends both on crystallized semantic intelligence which grows or is maintained through healthy aging, and on components of fluid intelligence which decline with age. Reading is important to older adults because it facilitates completion of everyday tasks that are essential to independent living. In addition, it entails the kind of active mental engagement that can preserve and deepen the cognitive reserve that may mitigate the negative consequences of age-related changes in the brain. This chapter reviews research on the front end of reading (word recognition) and on the back end of reading (text memory) because both of these abilities are surprisingly robust to declines associated with cognitive aging. For word recognition, that robustness is surprising because rapid processing of the sort found in reading is usually impaired by aging; for text memory, it is surprising because other types of episodic memory performance (e.g., paired associates) substantially decline in aging. These two otherwise quite different levels of reading comprehension remain robust because they draw on the knowledge of language that older adults gain through a life-time of experience with language.
  • Gretsch, P. (2003). Omission impossible?: Topic and Focus in Focal Ellipsis. In K. Schwabe, & S. Winkler (Eds.), The Interfaces: Deriving and interpreting omitted structures (pp. 341-365). Amsterdam: John Benjamins.
  • Gullberg, M., & Indefrey, P. (Eds.). (2006). The cognitive neuroscience of second language acquisition [Special Issue]. Language Learning, 56(suppl. 1).
  • Gullberg, M., & Holmqvist, K. (2002). Visual attention towards gestures in face-to-face interaction vs. on screen. In I. Wachsmuth, & T. Sowa (Eds.), Gesture and sign languages in human-computer interaction (pp. 206-214). Berlin: Springer.
  • Gullberg, M. (2003). Eye movements and gestures in human face-to-face interaction. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind's eyes: Cognitive and applied aspects of eye movements (pp. 685-703). Oxford: Elsevier.

    Abstract

    Gestures are visuospatial events, meaning carriers, and social interactional phenomena. As such they constitute a particularly favourable area for investigating visual attention in a complex everyday situation under conditions of competitive processing. This chapter discusses visual attention to spontaneous gestures in human face-to-face interaction as explored with eye-tracking. Some basic fixation patterns are described, live and video-based settings are compared, and preliminary results on the relationship between fixations and information processing are outlined.
  • Gullberg, M., & Kita, S. (2003). Das Beachten von Gesten: Eine Studie zu Blickverhalten und Integration gestisch ausgedrückter Informationen. In Max-Planck-Gesellschaft (Ed.), Jahrbuch der Max Planck Gesellschaft 2003 (pp. 949-953). Göttingen: Vandenhoeck & Ruprecht.
  • Gullberg, M. (Ed.). (2006). Gestures and second language acquisition [Special Issue]. International Review of Applied Linguistics, 44(2).
  • Gullberg, M. (2002). Gestures, languages, and language acquisition. In S. Strömqvist (Ed.), The diversity of languages and language learning (pp. 45-56). Lund: Lund University.
  • Gullberg, M. (2003). Gestures, referents, and anaphoric linkage in learner varieties. In C. Dimroth, & M. Starren (Eds.), Information structure, linguistic structure and the dynamics of language acquisition. (pp. 311-328). Amsterdam: Benjamins.

    Abstract

    This paper discusses how the gestural modality can contribute to our understanding of anaphoric linkage in learner varieties, focusing on gestural anaphoric linkage marking the introduction, maintenance, and shift of reference in story retellings by learners of French and Swedish. The comparison of gestural anaphoric linkage in native and non-native varieties reveals what appears to be a particular learner variety of gestural cohesion, which closely reflects the characteristics of anaphoric linkage in learners' speech. Specifically, particular forms co-occur with anaphoric gestures depending on the information organisation in discourse. The typical nominal over-marking of maintained referents or topic elements in speech is mirrored by gestural (over-)marking of the same items. The paper discusses two ways in which this finding may further the understanding of anaphoric over-explicitness of learner varieties. An addressee-based communicative perspective on anaphoric linkage highlights how over-marking in gesture and speech may be related to issues of hyper-clarity and ambiguity. An alternative speaker-based perspective is also explored in which anaphoric over-marking is seen as related to L2 speech planning.
  • Hagoort, P. (2006). On Broca, brain and binding. In Y. Grodzinsky, & K. Amunts (Eds.), Broca's region (pp. 240-251). Oxford: Oxford University Press.
  • Hagoort, P. (2002). Het unieke menselijke taalvermogen: Van PAUS naar [paus] in een halve seconde. In J. G. van Hell, A. de Klerk, D. E. Strauss, & T. Torremans (Eds.), Taalontwikkeling en taalstoornissen: Theorie, diagnostiek en behandeling (pp. 51-67). Leuven/Apeldoorn: Garant.
  • Hagoort, P. (2006). Het zwarte gat tussen brein en bewustzijn. In J. Janssen, & J. Van Vugt (Eds.), Brein en bewustzijn: Gedachtensprongen tussen hersenen en mensbeeld (pp. 9-24). Damon: Nijmegen.
  • Hagoort, P. (2003). De verloving tussen neurowetenschap en psychologie. In K. Hilberdink (Ed.), Interdisciplinariteit in de geesteswetenschappen (pp. 73-81). Amsterdam: KNAW.
  • Hagoort, P. (2003). Die einzigartige, grösstenteils aber unbewusste Fähigkeit der Menschen zu sprachlicher Kommunikation. In G. Kaiser (Ed.), Jahrbuch 2002-2003 / Wissenschaftszentrum Nordrhein-Westfalen (pp. 33-46). Düsseldorf: Wissenschaftszentrum Nordrhein-Westfalen.
  • Hagoort, P. (2003). Functional brain imaging. In W. J. Frawley (Ed.), International encyclopedia of linguistics (pp. 142-145). New York: Oxford University Press.
  • Hagoort, P. (2016). MUC (Memory, Unification, Control): A Model on the Neurobiology of Language Beyond Single Word Processing. In G. Hickok, & S. Small (Eds.), Neurobiology of language (pp. 339-347). Amsterdam: Elsever. doi:10.1016/B978-0-12-407794-2.00028-6.

    Abstract

    A neurobiological model of language is discussed that overcomes the shortcomings of the classical Wernicke-Lichtheim-Geschwind model. It is based on a subdivision of language processing into three components: Memory, Unification, and Control. The functional components as well as the neurobiological underpinnings of the model are discussed. In addition, the need for extension beyond the classical core regions for language is shown. Attentional networks as well as networks for inferential processing are crucial to realize language comprehension beyond single word processing and beyond decoding propositional content.
  • Hagoort, P., & Beckmann, C. F. (2019). Key issues and future directions: The neural architecture for language. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 527-532). Cambridge, MA: MIT Press.
  • Hagoort, P. (2019). Introduction. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 1-6). Cambridge, MA: MIT Press.
  • Hagoort, P. (1998). The shadows of lexical meaning in patients with semantic impairments. In B. Stemmer, & H. Whitaker (Eds.), Handbook of neurolinguistics (pp. 235-248). New York: Academic Press.
  • Hagoort, P. (2016). Zij zijn ons brein. In J. Brockman (Ed.), Machines die denken: Invloedrijke denkers over de komst van kunstmatige intelligentie (pp. 184-186). Amsterdam: Maven Publishing.
  • Hammarström, H. (2019). An inventory of Bantu languages. In M. Van de Velde, K. Bostoen, D. Nurse, & G. Philippson (Eds.), The Bantu languages (2nd). London: Routledge.

    Abstract

    This chapter aims to provide an updated list of all Bantu languages known at present and to provide individual pointers to further information on the inventory. The area division has some correlation with what are perceived genealogical relations between Bantu languages, but they are not defined as such and do not change whenever there is an update in our understanding of genealogical relations. Given the popularity of Guthrie codes in Bantu linguistics, our listing also features a complete mapping to Guthrie codes. The language inventory listed excludes sign languages used in the Bantu area, speech registers, pidgins, drummed/whistled languages and urban youth languages. Pointers to such languages in the Bantu area are included in the continent-wide overview in Hammarstrom. The most important alternative names, subvarieties and spelling variants are given for each language, though such lists are necessarily incomplete and reflect some degree of arbitrary selection.
  • Hammarström, H. (2018). Language isolates in the New Guinea region. In L. Campbell (Ed.), Language Isolates (pp. 287-322). London: Routledge.
  • Haun, D. B. M., & Waller, D. (2003). Alignment task. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 39-48). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Haun, D. B. M. (2003). Path integration. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 33-38). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877644.
  • Haun, D. B. M. (2003). Spatial updating. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 49-56). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Hoey, E., & Kendrick, K. H. (2018). Conversation analysis. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 151-173). Hoboken: Wiley.

    Abstract

    Conversation Analysis (CA) is an inductive, micro-analytic, and predominantly qualitative
    method for studying human social interactions. This chapter describes and illustrates the basic
    methods of CA. We first situate the method by describing its sociological foundations, key areas
    of analysis, and particular approach in using naturally occurring data. The bulk of the chapter is
    devoted to practical explanations of the typical conversation analytic process for collecting data
    and producing an analysis. We analyze a candidate interactional practice – the assessmentimplicative
    interrogative – using real data extracts as a demonstration of the method, explicitly
    laying out the relevant questions and considerations for every stage of an analysis. The chapter
    concludes with some discussion of quantitative approaches to conversational interaction, and
    links between CA and psycholinguistic concerns
  • Hoiting, N., & Slobin, D. I. (2002). Transcription as a tool for understanding: The Berkeley Transcription System for sign language research (BTS). In G. Morgan, & B. Woll (Eds.), Directions in sign language acquisition (pp. 55-75). Amsterdam: John Benjamins.
  • Hoiting, N., & Slobin, D. I. (2002). What a deaf child needs to see: Advantages of a natural sign language over a sign system. In R. Schulmeister, & H. Reinitzer (Eds.), Progress in sign language research. In honor of Siegmund Prillwitz / Fortschritte in der Gebärdensprach-forschung. Festschrift für Siegmund Prillwitz (pp. 267-277). Hamburg: Signum.
  • Huettig, F., Kolinsky, R., & Lachmann, T. (Eds.). (2018). The effects of literacy on cognition and brain functioning [Special Issue]. Language, Cognition and Neuroscience, 33(3).
  • Indefrey, P. (2018). The relationship between syntactic production and comprehension. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 486-505). Oxford: Oxford University Press.

    Abstract

    This chapter deals with the question of whether there is one syntactic system that is shared by language production and comprehension or whether there are two separate systems. It first discusses arguments in favor of one or the other option and then presents the current evidence on the brain structures involved in sentence processing. The results of meta-analyses of numerous neuroimaging studies suggest that there is one system consisting of functionally distinct cortical regions: the dorsal part of Broca’s area subserving compositional syntactic processing; the ventral part of Broca’s area subserving compositional semantic processing; and the left posterior temporal cortex (Wernicke’s area) subserving the retrieval of lexical syntactic and semantic information. Sentence production, the comprehension of simple and complex sentences, and the parsing of sentences containing grammatical violations differ with respect to the recruitment of these functional components.
  • Janssen, R., & Dediu, D. (2018). Genetic biases affecting language: What do computer models and experimental approaches suggest? In T. Poibeau, & A. Villavicencio (Eds.), Language, Cognition and Computational Models (pp. 256-288). Cambridge: Cambridge University Press.

    Abstract

    Computer models of cultural evolution have shown language properties emerging on interacting agents with a brain that lacks dedicated, nativist language modules. Notably, models using Bayesian agents provide a precise specification of (extra-)liguististic factors (e.g., genetic) that shape language through iterated learning (biases on language), and demonstrate that weak biases get expressed more strongly over time (bias amplification). Other models attempt to lessen assumption on agents’ innate predispositions even more, and emphasize self-organization within agents, highlighting glossogenesis (the development of language from a nonlinguistic state). Ultimately however, one also has to recognize that biology and culture are strongly interacting, forming a coevolving system. As such, computer models show that agents might (biologically) evolve to a state predisposed to language adaptability, where (culturally) stable language features might get assimilated into the genome via Baldwinian niche construction. In summary, while many questions about language evolution remain unanswered, it is clear that it is not to be completely understood from a purely biological, cognitivist perspective. Language should be regarded as (partially) emerging on the social interactions between large populations of speakers. In this context, agent models provide a sound approach to investigate the complex dynamics of genetic biasing on language and speech
  • De Jong, N. H., Schreuder, R., & Baayen, R. H. (2003). Morphological resonance in the mental lexicon. In R. Baayen, & R. Schreuder (Eds.), Morphological structure in language processing (pp. 65-88). Berlin: Mouton de Gruyter.
  • Jordens, P. (1998). Defaultformen des Präteritums. Zum Erwerb der Vergangenheitsmorphologie im Niederlänidischen. In H. Wegener (Ed.), Eine zweite Sprache lernen (pp. 61-88). Tübingen, Germany: Verlag Gunter Narr.
  • Jordens, P. (2003). Constraints on the shape of second language learner varieties. In G. Rickheit, T. Herrmann, & W. Deutsch (Eds.), Psycholinguistik/Psycholinguistics: Ein internationales Handbuch. [An International Handbook] (pp. 819-833). Berlin: Mouton de Gruyter.
  • Jordens, P., & Dimroth, C. (2006). Finiteness in children and adults learning Dutch. In N. Gagarina, & I. Gülzow (Eds.), The acquisition of verbs and their grammar: The effect of particular languages (pp. 173-200). Dordrecht: Springer.
  • Jordens, P. (2006). Inversion as an artifact: The acquisition of topicalization in child L1- and adult L2-Dutch. In S. H. Foster-Cohen, M. Medved Krajnovic, & J. Mihaljevic Djigunovic (Eds.), EUROSLA Yearbook 6 (pp. 101-120).
  • Keating, P., Cho, T., Fougeron, C., & Hsu, C.-S. (2003). Domain-initial strengthening in four languages. In J. Local, R. Ogden, & R. Temple (Eds.), Laboratory phonology VI: Phonetic interpretation (pp. 145-163). Cambridge: Cambridge University Press.
  • Kempen, G., & Harbusch, K. (2002). Performance Grammar: A declarative definition. In A. Nijholt, M. Theune, & H. Hondorp (Eds.), Computational linguistics in the Netherlands 2001: Selected papers from the Twelfth CLIN Meeting (pp. 148-162). Amsterdam: Rodopi.

    Abstract

    In this paper we present a definition of Performance Grammar (PG), a psycholinguistically motivated syntax formalism, in declarative terms. PG aims not only at describing and explaining intuitive judgments and other data concerning the well–formedness of sentences of a language, but also at contributing to accounts of syntactic processing phenomena observable in language comprehension and language production. We highlight two general properties of human sentence generation, incrementality and late linearization,which make special demands on the design of grammar formalisms claiming psychological plausibility. In order to meet these demands, PG generates syntactic structures in a two-stage process. In the first and most important ‘hierarchical’ stage, unordered hierarchical structures (‘mobiles’) are assembled out of lexical building blocks. The key operation at work here is typed feature unification, which also delimits the positional options of the syntactic constituents in terms of so-called topological features. The second, much simpler stage takes care of arranging the branches of the mobile from left to right by ‘reading–out’ one positional option of every constituent. In this paper we concentrate on the structure assembly formalism in PG’s hierarchical component. We provide a declarative definition couched in an HPSG–style notation based on typed feature unification. Our emphasis throughout is on linear order constraints.
  • Kempen, G., & Vosse, T. (1992). A language-sensitive text editor for Dutch. In P. O’Brian Holt, & N. Williams (Eds.), Computers and writing: State of the art (pp. 68-77). Dordrecht: Kluwer Academic Publishers.

    Abstract

    Modern word processors begin to offer a range of facilities for spelling, grammar and style checking in English. For the Dutch language hardly anything is available as yet. Many commercial word processing packages do include a hyphenation routine and a lexicon-based spelling checker but the practical usefulness of these tools is limited due to certain properties of Dutch orthography, as we will explain below. In this chapter we describe a text editor which incorporates a great deal of lexical, morphological and syntactic knowledge of Dutch and monitors the orthographical quality of Dutch texts. Section 1 deals with those aspects of Dutch orthography which pose problems to human authors as well as to computational language sensitive text editing tools. In section 2 we describe the design and the implementation of the text editor we have built. Section 3 is mainly devoted to a provisional evaluation of the system.
  • Kempen, G. (1985). Artificiële intelligentie: Bouw, benutting, beheersing. In W. Veldkamp (Ed.), Innovatie in perspectief (pp. 42-47). Vianen: Nixdorf Computer B.V.
  • Kempen, G., & Harbusch, K. (2003). Dutch and German verb clusters in performance grammar. In P. A. Seuren, & G. Kempen (Eds.), Verb constructions in German and Dutch (pp. 185-221). Amsterdam: Benjamins.
  • Kempen, G. (2003). Language generation. In W. Frawley (Ed.), International encyclopedia of linguistics (pp. 362-364). New York: Oxford University Press.
  • Kempen, G. (1992). Generation. In W. Bright (Ed.), International encyclopedia of linguistics (pp. 59-61). New York: Oxford University Press.
  • Kempen, G. (1989). Informatiegedragskunde: Pijler van de moderne informatieverzorging. In A. F. Marks (Ed.), Sociaal-wetenschappelijke informatie en kennisvorming in onderzoek, onderzoeksbeleid en beroep (pp. 31-35). Amsterdam: SWIDOC.
  • Kempen, G. (1989). Language generation systems. In I. S. Bátori, W. Lenders, & W. Putschke (Eds.), Computational linguistics: An international handbook on computer oriented language research and applications (pp. 471-480). Berlin/New York: Walter de Gruyter.
  • Kempen, G. (1992). Language technology and language instruction: Computational diagnosis of word level errors. In M. Swartz, & M. Yazdani (Eds.), Intelligent tutoring systems for foreign language learning: The bridge to international communication (pp. 191-198). Berlin: Springer.
  • Kempen, G. (1983). Het artificiële-intelligentieparadigma. Ervaringen met een nieuwe methodologie voor cognitief-psychologisch onderzoek. In J. Raaijmakers, P. Hudson, & A. Wertheim (Eds.), Metatheoretische aspekten van de psychonomie (pp. 85-98). Deventer: Van Loghum Slaterus.
  • Kempen, G. (1983). Natural language facilities in information systems: Asset or liability? In J. Van Apeldoorn (Ed.), Man and information technology: Towards friendlier systems (pp. 81-86). Delft University Press.
  • Kempen, G. (1998). Sentence parsing. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 213-228). Berlin: Springer.
  • Kempen, G., Schotel, H., & Pijls, J. (1985). Taaltechnologie en taalonderwijs. In J. Heene (Ed.), Onderwijs en informatietechnologie. Den Haag: Stichting voor Onderzoek van het Onderwijs (SVO).
  • Kempen, G. (1992). Second language acquisition as a hybrid learning process. In F. Engel, D. Bouwhuis, T. Bösser, & G. d'Ydewalle (Eds.), Cognitive modelling and interactive environments in language learning (pp. 139-144). Berlin: Springer.
  • Kempen, G., & Harbusch, K. (2003). Word order scrambling as a consequence of incremental sentence production. In H. Härtl, & H. Tappe (Eds.), Mediating between concepts and grammar (pp. 141-164). Berlin: Mouton de Gruyter.
  • Kidd, E. (2006). The acquisition of complement clause constructions. In E. V. Clark, & B. F. Kelly (Eds.), Constructions in acquisition (pp. 311-332). Stanford: Center for the Study of Language and Information.
  • Kita, S. (2003). Pointing: A foundational building block in human communication. In S. Kita (Ed.), Pointing: Where language, culture, and cognition meet (pp. 1-8). Mahwah, NJ: Erlbaum.
  • Kita, S. (2003). Interplay of gaze, hand, torso orientation and language in pointing. In S. Kita (Ed.), Pointing: Where language, culture, and cognition meet (pp. 307-328). Mahwah, NJ: Erlbaum.
  • Kita, S., & Essegbey, J. (2003). Left-hand taboo on direction-indicating gestures in Ghana: When and why people still use left-hand gestures. In M. Rector, I. Poggi, & N. Trigo (Eds.), Gesture: Meaning and use (pp. 301-306). Oporto: Edições Universidade Fernando Pessoa, Fundação Fernado Pessoa.
  • Kita, S., & Enfield, N. J. (2003). Recording recommendations for video research. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 8-9). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Kita, S. (2002). Preface and priorities. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 3-4). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Klein, W., & Von Stutterheim, C. (2002). Quaestio and L-perspectivation. In C. F. Graumann, & W. Kallmeyer (Eds.), Perspective and perspectivation in discourse (pp. 59-88). Amsterdam: Benjamins.
  • Klein, W. (Ed.). (2002). Sprache des Rechts II [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, 128.
  • Klein, W. (2006). On finiteness. In V. Van Geenhoven (Ed.), Semantics in acquisition (pp. 245-272). Dordrecht: Springer.

    Abstract

    The distinction between finite and non-finite verb forms is well-established but not particularly well-defined. It cannot just be a matter of verb morphology, because it is also made when there is hardly any morphological difference: by far most English verb forms can be finite as well as non-finite. More importantly, many structural phenomena are clearly associated with the presence or absence of finiteness, a fact which is clearly reflected in the early stages of first and second language acquisition. In syntax, these include basic word order rules, gapping, the licensing of a grammatical subject and the licensing of expletives. In semantics, the specific interpretation of indefinite noun phrases is crucially linked to the presence of a finite element. These phenomena are surveyed, and it is argued that finiteness (a) links the descriptive content of the sentence (the 'sentence basis') to its topic component (in particular, to its topic time), and (b) it confines the illocutionary force to that topic component. In a declarative main clause, for example, the assertion is confined to a particular time, the topic time. It is shown that most of the syntactic and semantic effects connected to finiteness naturally follow from this assumption.
  • Klein, W. (2002). The argument-time structure of recipient constructions in German. In W. Abraham, & J.-W. Zwart (Eds.), Issues in formal german(ic) typology (pp. 141-178). Amsterdam: Benjamins.

    Abstract

    It is generally assumed that verbs have an ‘argument structure’, which imposes various constraints on the noun phrases that can or must go with the verb, and an ‘event structure’, which characterises the particular temporal characteristics of the ‘event’ which the verb relates to: this event may be a state, a process, an activity, an ‘event in the narrow sense’, and others. In this paper, it is argued that that argument structure and event structure should be brought together. The lexical content of a verb assigns descriptive properties to one or more arguments at one or more times, hence verbs have an ‘argument time-structure’ (AT-structure). Numerous morphological and syntactical operations, such as participle formation or complex verb constructions, modify this AT-structure. This is illustrated with German recipient constructions such as ein Buch geschenkt bekommen or das Fenster geöffnet kriegen.
  • Klein, W. (2002). Why case marking? In I. Kaufmann, & B. Stiebels (Eds.), More than words: Festschrift for Dieter Wunderlich (pp. 251-273). Berlin: Akademie Verlag.
  • Klein, W. (1983). Deixis and spatial orientation in route directions. In H. Pick, & L. Acredolo (Eds.), Spatial orientation theory: Research, and application (pp. 283-311). New York: Plenum.

Share this page