Publications

Displaying 101 - 200 of 389
  • Enfield, N. J. (2009). Everyday ritual in the residential world. In G. Senft, & E. B. Basso (Eds.), Ritual communication (pp. 51-80). Oxford: Berg.
  • Enfield, N. J. (2013). Reference in conversation. In J. Sidnell, & T. Stivers (Eds.), The handbook of conversation analysis (pp. 433-454). Malden, MA: Wiley-Blackwell. doi:10.1002/9781118325001.ch21.

    Abstract

    This chapter contains sections titled: Introduction Lexical Selection in Reference: Introductory Examples of Reference to Times Multiple “Preferences” Future Directions Conclusion
  • Enfield, N. J. (2004). Repair sequences in interaction. In A. Majid (Ed.), Field Manual Volume 9 (pp. 48-52). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492945.

    Abstract

    This Field Manual entry has been superceded by the 2007 version: https://doi.org/10.17617/2.468724

    Files private

    Request files
  • Enfield, N. J., Levinson, S. C., & Stivers, T. (2009). Social action formulation: A "10-minutes" task. In A. Majid (Ed.), Field manual volume 12 (pp. 54-55). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.883564.

    Abstract

    Human actions in the social world – like greeting, requesting, complaining, accusing, asking, confirming, etc. – are recognised through the interpretation of signs. Language is where much of the action is, but gesture, facial expression and other bodily actions matter as well. The goal of this task is to establish a maximally rich description of a representative, good quality piece of conversational interaction, which will serve as a reference point for comparative exploration of the status of social actions and their formulation across language
  • Essegbey, J. (1999). Inherent complement verbs revisited: Towards an understanding of argument structure in Ewe. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.2057668.
  • Evans, N., Levinson, S. C., Enfield, N. J., Gaby, A., & Majid, A. (2004). Reciprocal constructions and situation type. In A. Majid (Ed.), Field Manual Volume 9 (pp. 25-30). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.506955.
  • Fedor, A., Pléh, C., Brauer, J., Caplan, D., Friederici, A. D., Gulyás, B., Hagoort, P., Nazir, T., & Singer, W. (2009). What are the brain mechanisms underlying syntactic operations? In D. Bickerton, & E. Szathmáry (Eds.), Biological foundations and origin of syntax (pp. 299-324). Cambridge, MA: MIT Press.

    Abstract

    This chapter summarizes the extensive discussions that took place during the Forum as well as the subsequent months thereafter. It assesses current understanding of the neuronal mechanisms that underlie syntactic structure and processing.... It is posited that to understand the neurobiology of syntax, it might be worthwhile to shift the balance from comprehension to syntactic encoding in language production
  • Fisher, S. E. (2013). Building bridges between genes, brains and language. In J. J. Bolhuis, & M. Everaert (Eds.), Birdsong, speech and language: Exploring the evolution of mind and brain (pp. 425-454). Cambridge, Mass: MIT Press.
  • Fitz, H. (2009). Neural syntax. PhD Thesis, Universiteit van Amsterdam, Institute for Logic, Language, and Computation.

    Abstract

    Children learn their mother tongue spontaneously and effortlessly through communicative interaction with their environment; they do not have to be taught explicitly or learn how to learn first. The ambient language to which children are exposed, however, is highly variable and arguably deficient with regard to the learning target. Nonetheless, most normally developing children learn their native language rapidly and with ease. To explain this accomplishment, many theories of acquisition posit innate constraints on learning, or even a biological endowment for language which is specific to language. Usage-based theories, on the other hand, place more emphasis on the role of experience and domain-general learning mechanisms than on innate language-specific knowledge. But languages are lexically open and combinatorial in structure, so no amount of experience covers their expressivity. Usage-based theories therefore have to explain how children can generalize the properties of their linguistic input to an adult-like grammar. In this thesis I provide an explicit computational mechanism with which usage-based theories of language can be tested and evaluated. The focus of my work lies on complex syntax and the human ability to form sentences which express more than one proposition by means of relativization. This `capacity for recursion' is a hallmark of an adult grammar and, as some have argued, the human language faculty itself. The manuscript is organized as follows. In the second chapter, I give an overview of results that characterize the properties of neural networks as mathematical objects and review previous attempts at modelling the acquisition of complex syntax with such networks. The chapter introduces the conceptual landscape in which the current work is located. In the third chapter, I argue that the construction and use of meaning is essential in child language acquisition and adult processing. Neural network models need to incorporate this dimension of human linguistic behavior. I introduce the Dual-path model of sentence production and syntactic development which is able to represent semantics and learns from exposure to sentences paired with their meaning (cf. Chang et al. 2006). I explain the architecture of this model, motivate critical assumptions behind its design, and discuss existing research using this model. The fourth chapter describes and compares several extensions of the basic architecture to accommodate the processing of multi-clause utterances. These extensions are evaluated against computational desiderata, such as good learning and generalization performance and the parsimony of input representations. A single-best solution for encoding the meaning of complex sentences with restrictive relative clauses is identified, which forms the basis for all subsequent simulations. Chapter five analyzes the learning dynamics in more detail. I first examine the model's behavior for different relative clause types. Syntactic alternations prove to be particularly difficult to learn because they complicate the meaning-to-form mapping the model has to acquire. In the second part, I probe the internal representations the model has developed during learning. It is argued that the model acquires the argument structure of the construction types in its input language and represents the hierarchical organization of distinct multi-clause utterances. The juice of this thesis is contained in chapters six to eight. In chapter six, I test the Dual-path model's generalization capacities in a variety of tasks. I show that its syntactic representations are sufficiently transparent to allow structural generalization to novel complex utterances. Semantic similarities between novel and familiar sentence types play a critical role in this task. The Dual-path model also has a capacity for generalizing familiar words to novel slots in novel constructions (strong semantic systematicity). Moreover, I identify learning conditions under which the model displays recursive productivity. It is argued that the model's behavior is consistent with human behavior in that production accuracy degrades with depth of embedding, and right-branching is learned faster than center-embedding recursion. In chapter seven, I address the issue of learning complex polar interrogatives in the absence of positive exemplars in the input. I show that the Dual-path model can acquire the syntax of these questions from simpler and similar structures which are warranted in a child's linguistic environment. The model's errors closely match children's errors, and it is suggested that children might not require an innate learning bias to acquire auxiliary fronting. Since the model does not implement a traditional kind of language-specific universal grammar, these results are relevant to the poverty of the stimulus debate. English relative clause constructions give rise to similar performance orderings in adult processing and child language acquisition. This pattern matches the typological universal called the noun phrase accessibility hierarchy. I propose an input-based explanation of this data in chapter eight. The Dual-path model displays this ordering in syntactic development when exposed to plausible input distributions. But it is possible to manipulate and completely remove the ordering by varying properties of the input from which the model learns. This indicates, I argue, that patterns of interference and facilitation among input structures can explain the hierarchy when all structures are simultaneously learned and represented over a single set of connection weights. Finally, I draw conclusions from this work, address some unanswered questions, and give a brief outlook on how this research might be continued.

    Additional information

    http://dare.uva.nl/record/328271
  • Floyd, S. (2013). Semantic transparency and cultural calquing in the Northwest Amazon. In P. Epps, & K. Stenzel (Eds.), Upper Rio Negro: Cultural and linguistic interaction in northwestern Amazonia (pp. 271-308). Rio de Janiero: Museu do Indio. Retrieved from http://www.museunacional.ufrj.br/ppgas/livros_ele.html.

    Abstract

    The ethnographic literature has sometimes described parts of the northwest Amazon as areas of shared culture across linguistic groups. This paper illustrates how a principle of semantic transparency across languages is a key means of establishing elements of a common regional culture through practices like the calquing of ethnonyms and toponyms so that they are semantically, but not phonologically, equivalent across languages. It places the upper Rio Negro area of the northwest Amazon in a general discussion of cross-linguistic naming practices in South America and considers the extent to which a preference for semantic transparency can be linked to cases of widespread cultural ‘calquing’, in which culturally-important meanings are kept similar across different linguistic systems. It also addresses the principle of semantic transparency beyond specific referential phrases and into larger discourse structures. It concludes that an attention to semiotic practices in multilingual settings can provide new and more complex ways of thinking about the idea of shared culture.
  • Fradera, A., & Sauter, D. (2004). Make yourself happy. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 325-327). Sebastopol, CA: O'Reilly.

    Abstract

    Turn on your affective system by tweaking your face muscles - or getting an eyeful of someone else doing the same.
  • Fradera, A., & Sauter, D. (2004). Reminisce hot and cold. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 327-331). Sebastopol, CA: O'Reilly.

    Abstract

    Find the fire that's cooking your memory systems.
  • Fradera, A., & Sauter, D. (2004). Signal emotion. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 320-324). Sebastopol, CA: O'Reilly.

    Abstract

    Emotions are powerful on the inside but often displayed in subtle ways on the outside. Are these displays culturally dependent or universal?
  • Francks, C. (2009). 13 - LRRTM1: A maternally suppressed genetic effect on handedness and schizophrenia. In I. E. C. Sommer, & R. S. Kahn (Eds.), Cerebral lateralization and psychosis (pp. 181-196). Cambridge: Cambridge University Press.

    Abstract

    The molecular, developmental, and evolutionary bases of human brain asymmetry are almost completely unknown. Genetic linkage and association mapping have pin-pointed a gene called LRRTM1 (leucine-rich repeat transmembrane neuronal 1) that may contribute to variability in human handedness. Here I describe how LRRTM1's involvement in handedness was discovered, and also the latest knowledge of its functions in brain development and disease. The association of LRRTM1 with handedness was derived entirely from the paternally inherited gene, and follow-up analysis of gene expression confirmed that LRRTM1 is one of a small number of genes that are imprinted in the human genome, for which the maternally inherited copy is suppressed. The same variation at LRRTM1 that was associated paternally with mixed-/left-handedness was also over-transmitted paternally to schizophrenic patients in a large family study.
    LRRTM1 is expressed in specific regions of the developing and adult forebrain by post-mitotic neurons, and the protein may be involved in axonal trafficking. Thus LRRTM1 has a probable role in neurodevelopment, and its association with handedness suggests that one of its functions may be in establishing or consolidating human brain asymmetry.
    LRRTM1 is the first gene for which allelic variation has been associated with human handedness. The genetic data also suggest indirectly that the epigenetic regulation of this gene may yet prove more important than DNA sequence variation for influencing brain development and disease.
    Intriguingly, the parent-of-origin activity of LRRTM1 suggests that men and women have had conflicting interests in relation to the outcome of lateralized brain development in their offspring.
  • Frank, S. L. (2004). Computational modeling of discourse comprehension. PhD Thesis, Tilburg University, Tilburg.
  • Gentner, D., & Bowerman, M. (2009). Why some spatial semantic categories are harder to learn than others: The typological prevalence hypothesis. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 465-480). New York: Psychology Press.
  • Goldin-Meadow, S., Ozyurek, A., Sancar, B., & Mylander, C. (2009). Making language around the globe: A cross-linguistic study of homesign in the United States, China, and Turkey. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 27-39). New York: Psychology Press.
  • Grabe, E. (1998). Comparative intonational phonology: English and German. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.2057683.
  • Le Guen, O. (2009). The ethnography of emotions: A field worker's guide. In A. Majid (Ed.), Field manual volume 12 (pp. 31-34). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.446076.

    Abstract

    The goal of this task is to investigate cross-cultural emotion categories in language and thought. This entry is designed to provide researchers with some guidelines to describe the emotional repertoire of a community from an emic perspective. The first objective is to offer ethnographic tools and a questionnaire in order to understand the semantics of emotional terms and the local conception of emotions. The second objective is to identify the local display rules of emotions in communicative interactions.
  • Gullberg, M., Indefrey, P., & Muysken, P. (2009). Research techniques for the study of code-switching. In B. E. Bullock, & J. A. Toribio (Eds.), The Cambridge handbook on linguistic code-switching (pp. 21-39). Cambridge: Cambridge University Press.

    Abstract

    The aim of this chapter is to provide researchers with a tool kit of semi-experimental and experimental techniques for studying code-switching. It presents an overview of the current off-line and on-line research techniques, ranging from analyses of published bilingual texts of spontaneous conversations, to tightly controlled experiments. A multi-task approach used for studying code-switched sentence production in Papiamento-Dutch bilinguals is also exemplified.
  • Gullberg, M. (2009). Why gestures are relevant to the bilingual mental lexicon. In A. Pavlenko (Ed.), The bilingual mental lexicon: Interdisciplinary approaches (pp. 161-184). Clevedon: Multilingual Matters.

    Abstract

    Gestures, the symbolic movements speakers perform while they speak, are systematically related to speech and language in non-trivial ways. This chapter presents an overview of what gestures can and cannot tell us about the monolingual and the bilingual mental lexicon. Gesture analysis opens for a broader view of the mental lexicon, targeting the interface between conceptual, semantic and syntactic aspects of event construal, and offers new possibilities for examining how languages co-exist and interact in bilinguals beyond the level of surface forms. The first section of this chapter gives a brief introduction to gesture studies and outlines the current views on the relationship between gesture, speech, and language. The second section targets the key questions for the study of the monolingual and bilingual lexicon, and illustrates the methods employed for addressing these questions. It further exemplifies systematic cross-linguistic patterns in gestural behaviour in monolingual and bilingual contexts. The final section discusses some implications of an expanded view of the multilingual lexicon that includes gesture, and outlines directions for future inquiry.

    Files private

    Request files
  • De Haan, E., & Hagoort, P. (2004). Het brein in beeld. In B. Deelman, P. Eling, E. De Haan, & E. Van Zomeren (Eds.), Klinische neuropsychologie (pp. 82-98). Amsterdam: Boom.
  • Hagoort, P. (2009). The fractionation of spoken language understanding by measuring electrical and magnetic brain signals. In B. C. J. Moore, L. K. Tyler, & W. Marslen-Wilson (Eds.), The perception of speech: From sound to meaning (pp. 223-248). New York: Oxford University Press.
  • Hagoort, P. (2004). Er is geen behoefte aan trompetten als gordijnen. In H. Procee, H. Meijer, P. Timmerman, & R. Tuinsma (Eds.), Bij die wereld wil ik horen! Zesendertig columns en drie essays over de vorming tot academicus (pp. 78-80). Amsterdam: Boom.
  • Hagoort, P. (2004). Het zwarte gat tussen brein en bewustzijn. In N. Korteweg (Ed.), De oorsprong: Over het ontstaan van het leven en alles eromheen (pp. 107-124). Amsterdam: Boom.
  • Hagoort, P. (2009). Reflections on the neurobiology of syntax. In D. Bickerton, & E. Szathmáry (Eds.), Biological foundations and origin of syntax (pp. 279-296). Cambridge, MA: MIT Press.

    Abstract

    This contribution focuses on the neural infrastructure for parsing and syntactic encoding. From an anatomical point of view, it is argued that Broca's area is an ill-conceived notion. Functionally, Broca's area and adjacent cortex (together Broca's complex) are relevant for language, but not exclusively for this domain of cognition. Its role can be characterized as providing the necessary infrastructure for unification (syntactic and semantic). A general proposal, but with required level of computational detail, is discussed to account for the distribution of labor between different components of the language network in the brain.Arguments are provided for the immediacy principle, which denies a privileged status for syntax in sentence processing. The temporal profile of event-related brain potential (ERP) is suggested to require predictive processing. Finally, since, next to speed, diversity is a hallmark of human languages, the language readiness of the brain might not depend on a universal, dedicated neural machinery for syntax, but rather on a shaping of the neural infrastructure of more general cognitive systems (e.g., memory, unification) in a direction that made it optimally suited for the purpose of communication through language.
  • Hagoort, P., Baggio, G., & Willems, R. M. (2009). Semantic unification. In M. S. Gazzaniga (Ed.), The cognitive neurosciences, 4th ed. (pp. 819-836). Cambridge, MA: MIT Press.

    Abstract

    Language and communication are about the exchange of meaning. A key feature of understanding and producing language is the construction of complex meaning from more elementary semantic building blocks. The functional characteristics of this semantic unification process are revealed by studies using event related brain potentials. These studies have found that word meaning is assembled into compound meaning in not more than 500 ms. World knowledge, information about the speaker, co-occurring visual input and discourse all have an immediate impact on semantic unification, and trigger similar electrophysiological responses as sentence-internal semantic information. Neuroimaging studies show that a network of brain areas, including the left inferior frontal gyrus, the left superior/middle temporal cortex, the left inferior parietal cortex and, to a lesser extent their right hemisphere homologues are recruited to perform semantic unification.
  • Hagoort, P. (2009). Taalontwikkeling: Meer dan woorden alleen. In M. Evenblij (Ed.), Brein in beeld: Beeldvorming bij heersenonderzoek (pp. 53-57). Den Haag: Stichting Bio-Wetenschappen en Maatschappij.
  • Hagoort, P., Brown, C. M., & Osterhout, L. (1999). The neurocognition of syntactic processing. In C. M. Brown, & P. Hagoort (Eds.), The neurocognition of language (pp. 273-317). Oxford: Oxford University Press.
  • Hagoort, P. (1998). The shadows of lexical meaning in patients with semantic impairments. In B. Stemmer, & H. Whitaker (Eds.), Handbook of neurolinguistics (pp. 235-248). New York: Academic Press.
  • Hagoort, P., & Poeppel, D. (2013). The infrastructure of the language-ready brain. In M. A. Arbib (Ed.), Language, music, and the brain: A mysterious relationship (pp. 233-255). Cambridge, MA: MIT Press.

    Abstract

    This chapter sketches in very general terms the cognitive architecture of both language comprehension and production, as well as the neurobiological infrastructure that makes the human brain ready for language. Focus is on spoken language, since that compares most directly to processing music. It is worth bearing in mind that humans can also interface with language as a cognitive system using sign and text (visual) as well as Braille (tactile); that is to say, the system can connect with input/output processes in any sensory modality. Language processing consists of a complex and nested set of subroutines to get from sound to meaning (in comprehension) or meaning to sound (in production), with remarkable speed and accuracy. The fi rst section outlines a selection of the major constituent operations, from fractionating the input into manageable units to combining and unifying information in the construction of meaning. The next section addresses the neurobiological infrastructure hypothesized to form the basis for language processing. Principal insights are summarized by building on the notion of “brain networks” for speech–sound processing, syntactic processing, and the construction of meaning, bearing in mind that such a neat three-way subdivision overlooks important overlap and shared mechanisms in the neural architecture subserving language processing. Finally, in keeping with the spirit of the volume, some possible relations are highlighted between language and music that arise from the infrastructure developed here. Our characterization of language and its neurobiological foundations is necessarily selective and brief. Our aim is to identify for the reader critical questions that require an answer to have a plausible cognitive neuroscience of language processing.
  • Hagoort, P. (1999). The uniquely human capacity for language communication: from 'pope' to [po:p] in half a second. In J. Russell, M. Murphy, T. Meyering, & M. Arbib (Eds.), Neuroscience and the person: Scientific perspectives on divine action (pp. 45-56). California: Berkeley.
  • Hammarström, H., & O'Connor, L. (2013). Dependency sensitive typological distance. In L. Borin, & A. Saxena (Eds.), Approaches to measuring linguistic differences (pp. 337-360). Berlin: Mouton de Gruyter.
  • Hammarström, H. (2013). Noun class parallels in Kordofanian and Niger-Congo: Evidence of genealogical inheritance? In T. C. Schadeberg, & R. M. Blench (Eds.), Nuba Mountain Language Studies (pp. 549-570). Köln: Köppe.
  • Hammond, J. (2009). The grammar of nouns and verbs in Whitesands, an oceanic language of Southern Vanuatu. Master Thesis, University of Sydney, Sydney.

    Abstract

    Whitesands is an under-described language of southern Vanuatu, and this thesis presents Whitesands-specific data based on primary in-situ field research. The thesis addresses the distinction of noun and verb word classes in the language. It claims that current linguistic syntax theory cannot account for the argument structure of canonical object-denoting roots. It is shown that there are distinct lexical noun and verb classes in Whitesands but this is only a weak dichotomy. Stronger is the NP and VP distinction, and this is achieved by employing a new theoretical approach that proposes functional categories and their selection of complements as crucial tests of distinction. This approach contrasts with previous analyses of parts of speech in Oceanic languages and cross-linguistically. It ultimately explains many of the syntactic phenomena seen in the language family, including the above argument assignment dilemma, the alienable possession of nouns with classifiers and also the nominalisation processes.
  • Hanique, I. (2013). Mental representation and processing of reduced words in casual speech. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Hanulikova, A. (2009). The role of syllabification in the lexical segmentation of German and Slovak. In S. Fuchs, H. Loevenbruck, D. Pape, & P. Perrier (Eds.), Some aspects of speech and the brain (pp. 331-361). Frankfurt am Main: Peter Lang.

    Abstract

    Two experiments were carried out to examine the syllable affiliation of intervocalic consonant clusters and their effects on speech segmentation in two different languages. In a syllable reversal task, Slovak and German speakers divided bisyllabic non-words that were presented aurally into two parts, starting with the second syllable. Following the maximal onset principle, intervocalic consonants should be maximally assigned to the onset of the following syllable in conformity with language-specific restrictions, e.g., /du.gru/, /zu.kro:/ (dot indicates a syllable boundary). According to German phonology, syllables require branching rhymes (hence, /zuk.ro:/). In Slovak, both /du.gru/ and /dug.ru/ are possible syllabifications. Experiment 1 showed that German speakers more often closed the first syllable (/zuk.ro:/), following the requirement for a branching rhyme. In Experiment 2, Slovak speakers showed no clear preference; the first syllable was either closed (/dug.ru/) or open (/du.gru/). Correlation analyses on previously conducted word-spotting studies (Hanulíková, in press, 2008) suggest that speech segmentation is unaffected by these syllabification preferences.
  • Haun, D. B. M., & Over, H. (2013). Like me: A homophily-based account of human culture. In P. J. Richerson, & M. H. Christiansen (Eds.), Cultural Evolution: Society, technology, language, and religion (pp. 75-85). Cambridge, MA: MIT Press.
  • Hayano, K. (2013). Territories of knowledge in Japanese conversation. PhD Thesis, Radboud University Nijmegen, Nijmegen.

    Abstract

    This thesis focuses on one aspect of interactional competence: competence to manage knowledge distribution in conversation. In order to be considered competent in everyday interaction, participants need not only to index one another's knowledge states but also to engage in dynamic negotiation of knowledge distribution. Adopting the methodology of conversation analysis, the thesis investigates how participants' orientations to knowledge distribution, 'epistemicity', are manifested. The thesis examines three interactional environments: assessment sequences, informing sequences and polar question-answer sequences. A systematic analysis reveals that interactants orient to different aspects of knowledge in different environments, employing different grammatical resources. When they assess an object, they are concerned about who possesses 'epistemic primacy'. Japanese final particles and the practices of intensification serve together to claim epistemic primacy and provide support for the claim. It is also reported that interactants are oriented to achieve 'epistemic congruence' − consensus regarding how knowledge is distributed among them. When one provides the other with new information, the exchange commonly develops into a four-turn sequence, instead of a minimal adjacency pair. It is shown that this sequence organization allows interactants to achieve a balance between territories of experience, affiliation and empathy. In polar question-answer sequences, how (un)expected or novel a given piece of information is becomes an issue. Answers are found to be formulated such that they adopt epistemic stances that are assertive enough to match the level of (un)certainty expressed by questioners. The thesis contributes to our understanding of how social interaction is organized. It becomes clear from the findings that a wide range of aspects of language use and interactional organization are dominated by interactants' orientations to epistemicity. Participants manage knowledge distribution in everyday interaction, which may be the most fundamental means of managing their social statuses and relations.

    Additional information

    full text via Radboud Repository
  • Hayano, K. (2013). Question design in conversation. In J. Sidnell, & T. Stivers (Eds.), The handbook of conversation analysis (pp. 395-414). Malden, MA: Wiley-Blackwell. doi:10.1002/9781118325001.ch19.

    Abstract

    This chapter contains sections titled: Introduction Questions Questioning and the Epistemic Gradient Presuppositions, Agenda Setting and Preferences Social Actions Implemented by Questions Questions as Building Blocks of Institutional Activities Future Directions
  • Hofmeister, P., & Norcliffe, E. (2013). Does resumption facilitate sentence comprehension? In P. Hofmeister, & E. Norcliffe (Eds.), The core and the periphery: Data-driven perspectives on syntax inspired by Ivan A. Sag (pp. 225-246). Stanford, CA: CSLI Publications.
  • Holler, J. (2004). Semantic and pragmatic aspects of representational gestures: Towards a unified model of communication in talk. PhD Thesis, University of Manchester, Manchester.
  • Holler, J., & Beattie, G. (2004). The interaction of iconic gesture and speech. In A. Cammurri, & G. Volpe (Eds.), Lecture Notes in Computer Science, 5th International Gesture Workshop, Genova, Italy, 2003; Selected Revised Papers (pp. 63-69). Heidelberg: Springer Verlag.
  • Huettig, F., & Altmann, G. T. M. (2004). The online processing of ambiguous and unambiguous words in context: Evidence from head-mounted eye-tracking. In M. Carreiras, & C. Clifton (Eds.), The on-line study of sentence comprehension: Eyetracking, ERP and beyond (pp. 187-207). New York: Psychology Press.
  • Huettig, F. (2013). Young children’s use of color information during language-vision mapping. In B. R. Kar (Ed.), Cognition and brain development: Converging evidence from various methodologies (pp. 368-391). Washington, DC: American Psychological Association Press.
  • Hurford, J. R., & Dediu, D. (2009). Diversity in language, genes and the language faculty. In R. Botha, & C. Knight (Eds.), The cradle of language (pp. 167-188). Oxford: Oxford University Press.
  • Indefrey, P., & Cutler, A. (2004). Prelexical and lexical processing in listening. In M. Gazzaniga (Ed.), The cognitive neurosciences III. (pp. 759-774). Cambridge, MA: MIT Press.

    Abstract

    This paper presents a meta-analysis of hemodynamic studies on passive auditory language processing. We assess the overlap of hemodynamic activation areas and activation maxima reported in experiments involving the presentation of sentences, words, pseudowords, or sublexical or non-linguistic auditory stimuli. Areas that have been reliably replicated are identified. The results of the meta-analysis are compared to electrophysiological, magnetencephalic (MEG), and clinical findings. It is concluded that auditory language input is processed in a left posterior frontal and bilateral temporal cortical network. Within this network, no processing leve l is related to a single cortical area. The temporal lobes seem to differ with respect to their involvement in post-lexical processing, in that the left temporal lobe has greater involvement than the right, and also in the degree of anatomical specialization for phonological, lexical, and sentence -level processing, with greater overlap on the right contrasting with a higher degree of differentiation on the left.
  • Indefrey, P. (2004). Hirnaktivierungen bei syntaktischer Sprachverarbeitung: Eine Meta-Analyse. In H. Müller, & G. Rickheit (Eds.), Neurokognition der Sprache (pp. 31-50). Tübingen: Stauffenburg.
  • Indefrey, P., & Davidson, D. J. (2009). Second language acquisition. In L. R. Squire (Ed.), Encyclopedia of neuroscience (pp. 517-523). London: Academic Press.

    Abstract

    This article reviews neurocognitive evidence on second language (L2) processing at speech sound, word, and sentence levels. Hemodynamic (functional magnetic resonance imaging and positron emission tomography) data suggest that L2s are implemented in the same brain structures as the native language but with quantitative differences in the strength of activation that are modulated by age of L2 acquisition and L2 proficiency. Electrophysiological data show a more complex pattern of first and L2 similarities and differences, providing some, although not conclusive, evidence for qualitative differences between L1 and L2 syntactic processing.
  • Janssen, D. (1999). Producing past and plural inflections. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.2057667.
  • Jolink, A. (2009). Finiteness in children with SLI: A functional approach. In C. Dimroth, & P. Jordens (Eds.), Functional categories in learner language (pp. 235-260). Berlin: Mouton de Gruyter.
  • Jordan, F. M., van Schaik, C. P., Francois, P., Gintis, H., Haun, D. B. M., Hruschka, D. H., Janssen, M. A., Kitts, J. A., Lehmann, L., Mathew, S., Richerson, P. J., Turchin, P., & Wiessner, P. (2013). Cultural evolution of the structure of human groups. In P. J. Richerson, & M. H. Christiansen (Eds.), Cultural Evolution: Society, technology, language, and religion (pp. 87-116). Cambridge, MA: MIT Press.
  • Jordan, F. (2013). Comparative phylogenetic methods and the study of pattern and process in kinship. In P. McConvell, I. Keen, & R. Hendery (Eds.), Kinship systems: Change and reconstruction (pp. 43-58). Salt Lake City, UT: University of Utah Press.

    Abstract

    Anthropology began by comparing aspects of kinship across cultures, while linguists interested in semantic domains such as kinship necessarily compare across languages. In this chapter I show how phylogenetic comparative methods from evolutionary biology can be used to study evolutionary processes relating to kinship and kinship terminologies across language and culture.
  • Jordens, P. (1998). Defaultformen des Präteritums. Zum Erwerb der Vergangenheitsmorphologie im Niederlänidischen. In H. Wegener (Ed.), Eine zweite Sprache lernen (pp. 61-88). Tübingen, Germany: Verlag Gunter Narr.
  • Jordens, P. (2013). Dummies and auxiliaries in the acquisition of L1 and L2 Dutch. In E. Blom, I. Van de Craats, & J. Verhagen (Eds.), Dummy Auxiliaries in First and Second Language Acquisition (pp. 341-368). Berlin: Mouton de Gruyter.
  • Jordens, P. (2004). Morphology in Second Language Acquisition. In G. Booij (Ed.), Morphologie: Ein internationales Handbuch zur Flexion und Wortbildung (pp. 1806-1816). Berlin: Walter de Gruyter.
  • Jordens, P. (2009). The acquisition of functional categories in child L1 and adult L2 acquisition. In C. Dimroth, & P. Jordens (Eds.), Functional categories in learner language (pp. 45-96). Berlin: Mouton de Gruyter.
  • Kallmeyer, L., Osswald, R., & Van Valin Jr., R. D. (2013). Tree wrapping for Role and Reference Grammar. In G. Morrill, & M.-J. Nederhof (Eds.), Formal grammar: 17th and 18th International Conferences, FG 2012/2013, Opole, Poland, August 2012: revised Selected Papers, Düsseldorf, Germany, August 2013: proceedings (pp. 175-190). Heidelberg: Springer.
  • Kempen, G. (2004). Terug naar Wundt: Pleidooi voor integraal onderzoek van taal, taalkennis en taalgedrag. In Koninklijke Nederlandse Akademie van Wetenschappen (Ed.), Gij letterdames en gij letterheren': Nieuwe mogelijkheden voor taalkundig en letterkundig onderzoek in Nederland. (pp. 174-188). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.
  • Kempen, G. (1979). A study of syntactic bookkeeping during sentence production. In H. Ueckert, & D. Rhenius (Eds.), Komplexe menschliche Informationsverarbeitung (pp. 361-368). Bern: Hans Huber.

    Abstract

    It is an important feature of the human sentence production system that semantic and syntactic processes may overlap in time and do not proceed strictly serially. That is, the process of building the syntactic form of an utterance does not always wait until the complete semantic content for that utterance has been decided upon. On the contrary, speakers will often start pronouncing the first words of a sentence while still working on further details of its semantic content. An important advantage is memory economy. Semantic and syntactic fragments do not have to occupy working memory until complete semantic and syntactic structures for an utterance have been computed. Instead, each semantic and syntactic fragment is processed as soon as possible and is kept in working memory for a minimum period of time. This raises the question of how the sentence production system can maintain syntactic coherence across syntactic fragments. Presumably there are processes of "syntactic bookkeeping" which (1) store in working memory those syntactic properties of a fragmentary sentence which are needed to eliminate ungrammatical continuations, and (2) check whether a prospective continuation is indeed compatible with the sentence constructed so far. In reaction time experiments where subjects described, under time pressure, simple static pictures of an action performed by an actor, the second aspect of syntactic bookkeeping could be demonstrated. This evidence is used for modelling bookkeeping processes as part of a computational sentence generator which aims at simulating the syntactic operations people carry out during spontaneous speech.
  • Kempen, G. (1985). Artificiële intelligentie: Bouw, benutting, beheersing. In W. Veldkamp (Ed.), Innovatie in perspectief (pp. 42-47). Vianen: Nixdorf Computer B.V.
  • Kempen, G., & Harbusch, K. (2004). A corpus study into word order variation in German subordinate clauses: Animacy affects linearization independently of grammatical function assignment. In T. Pechmann, & C. Habel (Eds.), Multidisciplinary approaches to language production (pp. 173-181). Berlin: Mouton de Gruyter.
  • Kempen, G., & Harbusch, K. (2004). Generating natural word orders in a semi-free word order language: Treebank-based linearization preferences for German. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing (pp. 350-354). Berlin: Springer.

    Abstract

    We outline an algorithm capable of generating varied but natural sounding sequences of argument NPs in subordinate clauses of German, a semi-free word order language. In order to attain the right level of output flexibility, the algorithm considers (1) the relevant lexical properties of the head verb (not only transitivity type but also reflexivity, thematic relations expressed by the NPs, etc.), and (2) the animacy and definiteness values of the arguments, and their length. The relevant statistical data were extracted from the NEGRA–II treebank and from hand-coded features for animacy and definiteness. The algorithm maps the relevant properties onto “primary” versus “secondary” placement options in the generator. The algorithm is restricted in that it does not take into account linear order determinants related to the sentence’s information structure and its discourse context (e.g. contrastiveness). These factors may modulate the above preferences or license “tertiary” linear orders beyond the primary and secondary options considered here.
  • Kempen, G. (1998). Sentence parsing. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 213-228). Berlin: Springer.
  • Kempen, G., Schotel, H., & Pijls, J. (1985). Taaltechnologie en taalonderwijs. In J. Heene (Ed.), Onderwijs en informatietechnologie. Den Haag: Stichting voor Onderzoek van het Onderwijs (SVO).
  • Kempen, G. (1999). Visual Grammar: Multimedia for grammar and spelling instruction in primary education. In K. Cameron (Ed.), CALL: Media, design, and applications (pp. 223-238). Lisse: Swets & Zeitlinger.
  • Kemps, R. J. J. K. (2004). Morphology in auditory lexical processing: Sensitivity to fine phonetic detail and insensitivity to suffix reduction. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.59193.

    Abstract

    This dissertation investigates two seemingly contradictory properties of the speech perception system. On the one hand, listeners are extremely sensitive to the fine phonetic details in the speech signal. These subtle acoustic cues can reduce the temporal ambiguity between words that show initial segmental overlap, and can guide lexical activation. On the other hand, comprehension does not seem to be hampered at all by the drastic reductions that typically occur in casual speech. Complete segments, and sometimes even complete syllables, may be missing, but comprehension is seemingly unaffected. This thesis aims at elucidating how words are represented and accessed in the mental lexicon, by investigating these contradictory phenomena for the domain of morphology

    Additional information

    full text via Radboud Repository
  • Kidd, E., Bavin, S. L., & Brandt, S. (2013). The role of the lexicon in the development of the language processor. In D. Bittner, & N. Ruhlig (Eds.), Lexical bootstrapping: The role of lexis and semantics in child language development (pp. 217-244). Berlin: De Gruyter Mouton.
  • Kita, S., & Ozyurek, A. (1999). Semantische Koordination zwischen Sprache und spontanen ikonischen Gesten: Eine sprachvergleichende Untersuchung. In Max-Planck-Gesellschaft (Ed.), Jahrbuch 1998 (pp. 388-391). Göttingen: Vandenhoeck & Ruprecht.
  • Klaas, G. (2009). Hints and recommendations concerning field equipment. In A. Majid (Ed.), Field manual volume 12 (pp. VI-VII). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Klein, W. (Ed.). (2004). Philologie auf neuen Wegen [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, 136.
  • Klein, W. (Ed.). (2004). Universitas [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik (LiLi), 134.
  • Klein, W. (2013). Basic variety. In P. Robinson (Ed.), The Routledge encyclopedia of second language acquisition (pp. 64-65). New York: Routledge.
  • Klein, W. (2009). Concepts of time. In W. Klein, & P. Li (Eds.), The expression of time (pp. 5-38). Berlin: Mouton de Gruyter.
  • Klein, W., & Musan, R. (Eds.). (1999). Das deutsche Perfekt [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (113).
  • Klein, W. (1976). Der Prozeß des Zweitspracherwerbs und seine Beschreibung. In R. Dietrich (Ed.), Aspekte des Fremdsprachenerwerbs (pp. 100-118). Kronberg/Ts.: Athenäum.
  • Klein, W. (1998). Ein Blick zurück auf die Varietätengrammatik. In U. Ammon, K. Mattheier, & P. Nelde (Eds.), Sociolinguistica: Internationales Jahrbuch für europäische Soziolinguistik (pp. 22-38). Tübingen: Niemeyer.
  • Klein, W. (1973). Eine Analyse der Kerne in Schillers "Räuber". In S. Marcus (Ed.), Mathematische Poetik (pp. 326-333). Frankfurt am Main: Athenäum.
  • Klein, W. (1985). Ellipse, Fokusgliederung und thematischer Stand. In R. Meyer-Hermann, & H. Rieser (Eds.), Ellipsen und fragmentarische Ausdrücke (pp. 1-24). Tübingen: Niemeyer.
  • Klein, W. (1999). Die Lehren des Zweitspracherwerbs. In N. Dittmar, & A. Ramat (Eds.), Grammatik und Diskurs: Studien zum Erwerb des Deutschen und des Italienischen (pp. 279-290). Tübingen: Stauffenberg.
  • Klein, W. (1985). Argumentationsanalyse: Ein Begriffsrahmen und ein Beispiel. In W. Kopperschmidt, & H. Schanze (Eds.), Argumente - Argumentationen (pp. 208-260). München: Fink.
  • Klein, W. (1998). Assertion and finiteness. In N. Dittmar, & Z. Penner (Eds.), Issues in the theory of language acquisition: Essays in honor of Jürgen Weissenborn (pp. 225-245). Bern: Peter Lang.
  • Klein, W. (2004). Das Digitale Wörterbuch der deutschen Sprache des 20. Jahrhunderts (DWDS). In J. Scharnhorst (Ed.), Sprachkultur und Lexikographie (pp. 281-311). Berlin: Peter Lang.
  • Klein, W. (1979). Die Geschichte eines Tores. In R. Baum, F. J. Hausmann, & I. Monreal-Wickert (Eds.), Sprache in Unterricht und Forschung: Schwerpunkt Romanistik (pp. 175-194). Tübingen: Narr.
  • Klein, W. (1973). Dialekt und Einheitssprache im Fremdsprachenunterricht. In Beiträge zu den Sommerkursen des Goethe-Instituts München (pp. 53-60).
  • Klein, W. (2009). Finiteness, universal grammar, and the language faculty. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 333-344). New York: Psychology Press.
  • Klein, W. (2009). How time is encoded. In W. Klein, & P. Li (Eds.), The expression of time (pp. 39-82). Berlin: Mouton de Gruyter.
  • Klein, W. (1976). Maschinelle Analyse des Sprachwandels. In P. Eisenberg (Ed.), Maschinelle Sprachanalyse (pp. 137-166). Berlin: de Gruyter.
  • Klein, W. (1982). Local deixis in route directions. In R. Jarvella, & W. Klein (Eds.), Speech, place, and action: Studies in deixis and related topics (pp. 161-182). New York: Wiley.
  • Klein, W., & Li, P. (2009). Introduction. In W. Klein, & P. Li (Eds.), The expression of time (pp. 1-4). Berlin: Mouton de Gruyter.
  • Klein, W. (Ed.). (1998). Kaleidoskop [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (112).
  • Klein, W. (2013). European Science Foundation (ESF) Project. In P. Robinson (Ed.), The Routledge encyclopedia of second language acquisition (pp. 220-221). New York: Routledge.
  • Klein, W. (Ed.). (1976). Psycholinguistik [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (23/24).
  • Klein, W. (1991). Seven trivia of language acquisition. In L. Eubank (Ed.), Point counterpoint: Universal grammar in the second language (pp. 49-70). Amsterdam: Benjamins.
  • Klein, W. (1991). SLA theory: Prolegomena to a theory of language acquisition and implications for Theoretical Linguistics. In T. Huebner, & C. Ferguson (Eds.), Crosscurrents in second language acquisition and linguistic theories (pp. 169-194). Amsterdam: Benjamins.
  • Klein, W. (Ed.). (1979). Sprache und Kontext [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (33).
  • Klein, W. (Ed.). (1985). Schriftlichkeit [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (59).
  • Klein, W. (1985). Sechs Grundgrößen des Spracherwerbs. In R. Eppeneder (Ed.), Lernersprache: Thesen zum Erwerb einer Fremdsprache (pp. 67-106). München: Goethe Institut.
  • Klein, W., & Extra, G. (1982). Second language acquisition by adult immigrants: A European Science Foundation project. In R. E. V. Stuip, & W. Zwanenburg (Eds.), Handelingen van het zevenendertigste Nederlandse Filologencongres (pp. 127-136). Amsterdam: APA-Holland Universiteitspers.
  • Klein, W., & Vater, H. (1998). The perfect in English and German. In L. Kulikov, & H. Vater (Eds.), Typology of verbal categories: Papers presented to Vladimir Nedjalkov on the occasion of his 70th birthday (pp. 215-235). Tübingen: Niemeyer.

Share this page