Publications

Displaying 101 - 200 of 423
  • Enfield, N. J. (2002). Semantics and combinatorics of 'sit', 'stand', and 'lie' in Lao. In J. Newman (Ed.), The linguistics of sitting, standing, and lying (pp. 25-41). Amsterdam: Benjamins.
  • Enfield, N. J. (2002). Body 2002. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 19-32). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Enfield, N. J., Levinson, S. C., De Ruiter, J. P., & Stivers, T. (2004). Building a corpus of multimodal interaction in your field site. In A. Majid (Ed.), Field Manual Volume 9 (pp. 32-36). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.506951.

    Abstract

    This Field Manual entry has been superceded by the 2007 version:
    https://doi.org/10.17617/2.468728

    Files private

    Request files
  • Enfield, N. J. (2014). Causal dynamics of language. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 325-342). Cambridge: Cambridge University Press.
  • Enfield, N. J. (2002). “Fish trap” task. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 61). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Enfield, N. J. (2003). “Fish traps” task. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 31). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877616.

    Abstract

    This task is designed to elicit virtual 3D ‘models’ created in gesture space using iconic and other representational gestures. This task has been piloted with Lao speakers, where two speakers were asked to explain the meaning of terms referring to different kinds of fish trap mechanisms. The task elicited complex performances involving a range of iconic gestures, and with especially interesting use of (a) the ‘model/diagram’ in gesture space as a virtual object, (b) the non-dominant hand as a prosodic/semiotic anchor, (c) a range of different techniques (indexical and iconic) for evoking meaning with the hand, and (d) the use of nearby objects and parts of the body as semiotic ‘props’.
  • Enfield, N. J. (2002). Cultural logic and syntactic productivity: Associated posture constructions in Lao. In N. Enfield (Ed.), Ethnosyntax: Explorations in culture and grammar (pp. 231-258). Oxford: Oxford University Press.
  • Enfield, N. J. (2002). Ethnosyntax: Introduction. In N. Enfield (Ed.), Ethnosyntax: Explorations in culture and grammar (pp. 1-30). Oxford: Oxford University Press.
  • Enfield, N. J. (2002). Combinatoric properties of natural semantic metalanguage expressions in Lao. In C. Goddard, & A. Wierzbicka (Eds.), Meaning and universal grammar: Theory and empirical findings (pp. 145-256). Amsterdam: John Benjamins.
  • Enfield, N. J. (2004). Adjectives in Lao. In R. M. W. Dixon, & A. Y. Aikhenvald (Eds.), Adjective classes: A cross-linguistic typology (pp. 323-347). Oxford: Oxford University Press.
  • Enfield, N. J. (2002). Functions of 'give' and 'take' in Lao complex predicates. In R. S. Bauer (Ed.), Collected papers on Southeast Asian and Pacific languages (pp. 13-36). Canberra: Pacific Linguistics.
  • Enfield, N. J. (2014). Human agency and the infrastructure for requests. In P. Drew, & E. Couper-Kuhlen (Eds.), Requesting in social interaction (pp. 35-50). Amsterdam: John Benjamins.

    Abstract

    This chapter discusses some of the elements of human sociality that serve as the social and cognitive infrastructure or preconditions for the use of requests and other kinds of recruitments in interaction. The notion of an agent with goals is a canonical starting point, though importantly agency tends not to be wholly located in individuals, but rather is socially distributed. This is well illustrated in the case of requests, in which the person or group that has a certain goal is not necessarily the one who carries out the behavior towards that goal. The chapter focuses on the role of semiotic (mostly linguistic) resources in negotiating the distribution of agency with request-like actions, with examples from video-recorded interaction in Lao, a language spoken in Laos and nearby countries. The examples illustrate five hallmarks of requesting in human interaction, which show some ways in which our ‘manipulation’ of other people is quite unlike our manipulation of tools: (1) that even though B is being manipulated, B wants to help, (2) that while A is manipulating B now, A may be manipulated in return later; (3) that the goal of the behavior may be shared between A and B, (4) that B may not comply, or may comply differently than requested, due to actual or potential contingencies, and (5) that A and B are accountable to one another; reasons may be asked for, and/or given, for the request. These hallmarks of requesting are grounded in a prosocial framework of human agency.
  • Enfield, N. J., De Ruiter, J. P., Levinson, S. C., & Stivers, T. (2003). Multimodal interaction in your field site: A preliminary investigation. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 10-16). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877638.

    Abstract

    Research on video- and audio-recordings of spontaneous naturally-occurring conversation in English has shown that conversation is a rule-guided, practice-oriented domain that can be investigated for its underlying mechanics or structure. Systematic study could yield something like a grammar for conversation. The goal of this task is to acquire a corpus of video-data, for investigating the underlying structure(s) of interaction cross-linguistically and cross-culturally
  • Enfield, N. J., & Sidnell, J. (2014). Language presupposes an enchronic infrastructure for social interaction. In D. Dor, C. Knight, & J. Lewis (Eds.), The social origins of language (pp. 92-104). Oxford: Oxford University Press.
  • Enfield, N. J., Kockelman, P., & Sidnell, J. (2014). Interdisciplinary perspectives. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 599-602). Cambridge: Cambridge University Press.
  • Enfield, N. J., & Levinson, S. C. (2003). Interview on kinship. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 64-65). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877629.

    Abstract

    We want to know how people think about their field of kin, on the supposition that it is quasi-spatial. To get some insights here, we need to video a discussion about kinship reckoning, the kinship system, marriage rules and so on, with a view to looking at both the linguistic expressions involved, and the gestures people use to indicate kinship groups and relations. Unlike the task in the 2001 manual, this task is a direct interview method.
  • Enfield, N. J. (2003). Introduction. In N. J. Enfield, Linguistic epidemiology: Semantics and grammar of language contact in mainland Southeast Asia (pp. 2-44). London: Routledge Curzon.
  • Enfield, N. J., Kockelman, P., & Sidnell, J. (2014). Introduction: Directions in the anthropology of language. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 1-24). Cambridge: Cambridge University Press.
  • Enfield, N. J. (2004). Repair sequences in interaction. In A. Majid (Ed.), Field Manual Volume 9 (pp. 48-52). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492945.

    Abstract

    This Field Manual entry has been superceded by the 2007 version: https://doi.org/10.17617/2.468724

    Files private

    Request files
  • Enfield, N. J., & De Ruiter, J. P. (2003). The diff-task: A symmetrical dyadic multimodal interaction task. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 17-21). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877635.

    Abstract

    This task is a complement to the questionnaire ‘Multimodal interaction in your field site: a preliminary investigation’. The objective of the task is to obtain high quality video data on structured and symmetrical dyadic multimodal interaction. The features of interaction we are interested in include turn organization in speech and nonverbal behavior, eye-gaze behavior, use of composite signals (i.e. communicative units of speech-combined-with-gesture), and linguistic and other resources for ‘navigating’ interaction (e.g. words like okay, now, well, and um).

    Additional information

    2003_1_The_diff_task_stimuli.zip
  • Enfield, N. J., Sidnell, J., & Kockelman, P. (2014). System and function. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 25-28). Cambridge: Cambridge University Press.
  • Enfield, N. J. (2003). Preface and priorities. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 3). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Enfield, N. J. (2014). The item/system problem. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 48-77). Cambridge: Cambridge University Press.
  • Enfield, N. J. (2014). Transmission biases in the cultural evolution of language: Towards an explanatory framework. In D. Dor, C. Knight, & J. Lewis (Eds.), The social origins of language (pp. 325-335). Oxford: Oxford University Press.
  • Erard, M. (2019). Language aptitude: Insights from hyperpolyglots. In Z. Wen, P. Skehan, A. Biedroń, S. Li, & R. L. Sparks (Eds.), Language aptitude: Advancing theory, testing, research and practice (pp. 153-167). Abingdon, UK: Taylor & Francis.

    Abstract

    Over the decades, high-intensity language learners scattered over the globe referred to as “hyperpolyglots” have undertaken a natural experiment into the limits of learning and acquiring proficiencies in multiple languages. This chapter details several ways in which hyperpolyglots are relevant to research on aptitude. First, historical hyperpolyglots Cardinal Giuseppe Mezzofanti, Emil Krebs, Elihu Burritt, and Lomb Kató are described in terms of how they viewed their own exceptional outcomes. Next, I draw on results from an online survey with 390 individuals to explore how contemporary hyperpolyglots consider the explanatory value of aptitude. Third, the challenges involved in studying the genetic basis of hyperpolyglottism (and by extension of language aptitude) are discussed. This mosaic of data is meant to inform the direction of future aptitude research that takes hyperpolyglots, one type of exceptional language learner and user, into account.
  • Ernestus, M. (2003). The role of phonology and phonetics in Dutch voice assimilation. In J. v. d. Weijer, V. J. v. Heuven, & H. v. d. Hulst (Eds.), The phonological spectrum Volume 1: Segmental structure (pp. 119-144). Amsterdam: John Benjamins.
  • Ernestus, M., & Giezenaar, G. (2014). Een goed verstaander heeft maar een half woord nodig. In B. Bossers (Ed.), Vakwerk 9: Achtergronden van de NT2-lespraktijk: Lezingen conferentie Hoeven 2014 (pp. 81-92). Amsterdam: BV NT2.
  • Evans, N., Levinson, S. C., Enfield, N. J., Gaby, A., & Majid, A. (2004). Reciprocal constructions and situation type. In A. Majid (Ed.), Field Manual Volume 9 (pp. 25-30). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.506955.
  • Faller, M. (2002). Remarks on evidential hierarchies. In D. I. Beaver, L. D. C. Martinez, B. Z. Clark., & S. Kaufmann (Eds.), The construction of meaning (pp. 89-111). Stanford: CSLI Publications.
  • Fisher, S. E., & Tilot, A. K. (Eds.). (2019). Bridging senses: Novel insights from synaesthesia [Special Issue]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 374.
  • Fisher, S. E. (2019). Key issues and future directions: Genes and language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 609-620). Cambridge, MA: MIT Press.
  • Fisher, S. E. (2002). Isolation of the genetic factors underlying speech and language disorders. In R. Plomin, J. C. DeFries, I. W. Craig, & P. McGuffin (Eds.), Behavioral genetics in the postgenomic era (pp. 205-226). Washington, DC: American Psychological Association.

    Abstract

    This chapter highlights the research in isolating genetic factors underlying specific language impairment (SLI), or developmental dysphasia, which exploits newly developed genotyping technology, novel statistical methodology, and DNA sequence data generated by the Human Genome Project. The author begins with an overview of results from family, twin, and adoption studies supporting genetic involvement and then goes on to outline progress in a number of genetic mapping efforts that have been recently completed or are currently under way. It has been possible for genetic researchers to pinpoint the specific mutation responsible for some speech and language disorders, providing an example of how the availability of human genomic sequence data can greatly accelerate the pace of disease gene discovery. Finally, the author discusses future prospects on how molecular genetics may offer new insight into the etiology underlying speech and language disorders, leading to improvements in diagnosis and treatment.
  • Fisher, S. E. (2003). The genetic basis of a severe speech and language disorder. In J. Mallet, & Y. Christen (Eds.), Neurosciences at the postgenomic era (pp. 125-134). Heidelberg: Springer.
  • Fitz, H. (2014). Computermodelle für Spracherwerb und Sprachproduktion. Forschungsbericht 2014 - Max-Planck-Institut für Psycholinguistik. In Max-Planck-Gesellschaft Jahrbuch 2014. München: Max Planck Society for the Advancement of Science. Retrieved from http://www.mpg.de/7850678/Psycholinguistik_JB_2014?c=8236817.

    Abstract

    Relative clauses are a syntactic device to create complex sentences and they make language structurally productive. Despite a considerable number of experimental studies, it is still largely unclear how children learn relative clauses and how these are processed in the language system. Researchers at the MPI for Psycholinguistics used a computational learning model to gain novel insights into these issues. The model explains the differential development of relative clauses in English as well as cross-linguistic differences
  • Floyd, S. (2014). 'We’ as social categorization in Cha’palaa: A language of Ecuador. In T.-S. Pavlidou (Ed.), Constructing collectivity: 'We' across languages and contexts (pp. 135-158). Amsterdam: Benjamins.

    Abstract

    This chapter connects the grammar of the first person collective pronoun in the Cha’palaa language of Ecuador with its use in interaction for collective reference and social category membership attribution, addressing the problem posed by the fact that non-singular pronouns do not have distributional semantics (“speakers”) but are rather associational (“speaker and relevant associates”). It advocates a cross-disciplinary approach that jointly considers elements of linguistic form, situated usages of those forms in instances of interaction, and the broader ethnographic context of those instances. Focusing on large-scale and relatively stable categories such as racial and ethnic groups, it argues that looking at how speakers categorize themselves and others in the speech situation by using pronouns provides empirical data on the status of macro-social categories for members of a society

    Files private

    Request files
  • Floyd, S. (2014). Four types of reduplication in the Cha'palaa language of Ecuador. In H. van der Voort, & G. Goodwin Gómez (Eds.), Reduplication in Indigenous Languages of South America (pp. 77-114). Leiden: Brill.
  • Fradera, A., & Sauter, D. (2004). Make yourself happy. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 325-327). Sebastopol, CA: O'Reilly.

    Abstract

    Turn on your affective system by tweaking your face muscles - or getting an eyeful of someone else doing the same.
  • Fradera, A., & Sauter, D. (2004). Reminisce hot and cold. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 327-331). Sebastopol, CA: O'Reilly.

    Abstract

    Find the fire that's cooking your memory systems.
  • Fradera, A., & Sauter, D. (2004). Signal emotion. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 320-324). Sebastopol, CA: O'Reilly.

    Abstract

    Emotions are powerful on the inside but often displayed in subtle ways on the outside. Are these displays culturally dependent or universal?
  • Francks, C. (2019). The genetic bases of brain lateralization. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 595-608). Cambridge, MA: MIT Press.
  • Frank, S. L., Monaghan, P., & Tsoukala, C. (2019). Neural network models of language acquisition and processing. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 277-293). Cambridge, MA: MIT Press.
  • Frank, S. L., Koppen, M., Noordman, L. G. M., & Vonk, W. (2003). A model for knowledge-based pronoun resolution. In F. Detje, D. Dörner, & H. Schaub (Eds.), The logic of cognitive systems (pp. 245-246). Bamberg: Otto-Friedrich Universität.

    Abstract

    Several sources of information are used in choosing the intended referent of an ambiguous pronoun. The two sources considered in this paper are foregrounding and context. The first refers to the accessibility of discourse entities. An entity that is foregrounded is more likely to become the pronoun’s referent than an entity that is not. Context information affects pronoun resolution when world knowledge is needed to find the referent. The model presented here simulates how world knowledge invoked by context, together with foregrounding, influences pronoun resolution. It was developed as an extension to the Distributed Situation Space (DSS) model of knowledge-based inferencing in story comprehension (Frank, Koppen, Noordman, & Vonk, 2003), which shall be introduced first.
  • Gaby, A., & Faller, M. (2003). Reciprocity questionnaire. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 77-80). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877641.

    Abstract

    This project is part of a collaborative project with the research group “Reciprocals across languages” led by Nick Evans. One goal of this project is to develop a typology of reciprocals. This questionnaire is designed to help field workers get an overview over the type of markers used in the expression of reciprocity in the language studied.
  • Ganushchak, L. Y., & Acheson, D. J. (Eds.). (2014). What's to be learned from speaking aloud? - Advances in the neurophysiological measurement of overt language production. [Research topic] [Special Issue]. Frontiers in Language Sciences. Retrieved from http://www.frontiersin.org/Language_Sciences/researchtopics/What_s_to_be_Learned_from_Spea/1671.

    Abstract

    Researchers have long avoided neurophysiological experiments of overt speech production due to the suspicion that artifacts caused by muscle activity may lead to a bad signal-to-noise ratio in the measurements. However, the need to actually produce speech may influence earlier processing and qualitatively change speech production processes and what we can infer from neurophysiological measures thereof. Recently, however, overt speech has been successfully investigated using EEG, MEG, and fMRI. The aim of this Research Topic is to draw together recent research on the neurophysiological basis of language production, with the aim of developing and extending theoretical accounts of the language production process. In this Research Topic of Frontiers in Language Sciences, we invite both experimental and review papers, as well as those about the latest methods in acquisition and analysis of overt language production data. All aspects of language production are welcome: i.e., from conceptualization to articulation during native as well as multilingual language production. Focus should be placed on using the neurophysiological data to inform questions about the processing stages of language production. In addition, emphasis should be placed on the extent to which the identified components of the electrophysiological signal (e.g., ERP/ERF, neuronal oscillations, etc.), brain areas or networks are related to language comprehension and other cognitive domains. By bringing together electrophysiological and neuroimaging evidence on language production mechanisms, a more complete picture of the locus of language production processes and their temporal and neurophysiological signatures will emerge.
  • Gast, V., & Levshina, N. (2014). Motivating w(h)-Clefts in English and German: A hypothesis-driven parallel corpus study. In A.-M. De Cesare (Ed.), Frequency, Forms and Functions of Cleft Constructions in Romance and Germanic: Contrastive, Corpus-Based Studies (pp. 377-414). Berlin: De Gruyter.
  • Gretsch, P. (2003). Omission impossible?: Topic and Focus in Focal Ellipsis. In K. Schwabe, & S. Winkler (Eds.), The Interfaces: Deriving and interpreting omitted structures (pp. 341-365). Amsterdam: John Benjamins.
  • Gullberg, M., & Holmqvist, K. (2002). Visual attention towards gestures in face-to-face interaction vs. on screen. In I. Wachsmuth, & T. Sowa (Eds.), Gesture and sign languages in human-computer interaction (pp. 206-214). Berlin: Springer.
  • Gullberg, M. (2003). Eye movements and gestures in human face-to-face interaction. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind's eyes: Cognitive and applied aspects of eye movements (pp. 685-703). Oxford: Elsevier.

    Abstract

    Gestures are visuospatial events, meaning carriers, and social interactional phenomena. As such they constitute a particularly favourable area for investigating visual attention in a complex everyday situation under conditions of competitive processing. This chapter discusses visual attention to spontaneous gestures in human face-to-face interaction as explored with eye-tracking. Some basic fixation patterns are described, live and video-based settings are compared, and preliminary results on the relationship between fixations and information processing are outlined.
  • Gullberg, M., & Kita, S. (2003). Das Beachten von Gesten: Eine Studie zu Blickverhalten und Integration gestisch ausgedrückter Informationen. In Max-Planck-Gesellschaft (Ed.), Jahrbuch der Max Planck Gesellschaft 2003 (pp. 949-953). Göttingen: Vandenhoeck & Ruprecht.
  • Gullberg, M. (2002). Gestures, languages, and language acquisition. In S. Strömqvist (Ed.), The diversity of languages and language learning (pp. 45-56). Lund: Lund University.
  • Gullberg, M. (2003). Gestures, referents, and anaphoric linkage in learner varieties. In C. Dimroth, & M. Starren (Eds.), Information structure, linguistic structure and the dynamics of language acquisition. (pp. 311-328). Amsterdam: Benjamins.

    Abstract

    This paper discusses how the gestural modality can contribute to our understanding of anaphoric linkage in learner varieties, focusing on gestural anaphoric linkage marking the introduction, maintenance, and shift of reference in story retellings by learners of French and Swedish. The comparison of gestural anaphoric linkage in native and non-native varieties reveals what appears to be a particular learner variety of gestural cohesion, which closely reflects the characteristics of anaphoric linkage in learners' speech. Specifically, particular forms co-occur with anaphoric gestures depending on the information organisation in discourse. The typical nominal over-marking of maintained referents or topic elements in speech is mirrored by gestural (over-)marking of the same items. The paper discusses two ways in which this finding may further the understanding of anaphoric over-explicitness of learner varieties. An addressee-based communicative perspective on anaphoric linkage highlights how over-marking in gesture and speech may be related to issues of hyper-clarity and ambiguity. An alternative speaker-based perspective is also explored in which anaphoric over-marking is seen as related to L2 speech planning.
  • De Haan, E., & Hagoort, P. (2004). Het brein in beeld. In B. Deelman, P. Eling, E. De Haan, & E. Van Zomeren (Eds.), Klinische neuropsychologie (pp. 82-98). Amsterdam: Boom.
  • Hagoort, P. (2002). Het unieke menselijke taalvermogen: Van PAUS naar [paus] in een halve seconde. In J. G. van Hell, A. de Klerk, D. E. Strauss, & T. Torremans (Eds.), Taalontwikkeling en taalstoornissen: Theorie, diagnostiek en behandeling (pp. 51-67). Leuven/Apeldoorn: Garant.
  • Hagoort, P. (2003). De verloving tussen neurowetenschap en psychologie. In K. Hilberdink (Ed.), Interdisciplinariteit in de geesteswetenschappen (pp. 73-81). Amsterdam: KNAW.
  • Hagoort, P. (2003). Die einzigartige, grösstenteils aber unbewusste Fähigkeit der Menschen zu sprachlicher Kommunikation. In G. Kaiser (Ed.), Jahrbuch 2002-2003 / Wissenschaftszentrum Nordrhein-Westfalen (pp. 33-46). Düsseldorf: Wissenschaftszentrum Nordrhein-Westfalen.
  • Hagoort, P. (2004). Er is geen behoefte aan trompetten als gordijnen. In H. Procee, H. Meijer, P. Timmerman, & R. Tuinsma (Eds.), Bij die wereld wil ik horen! Zesendertig columns en drie essays over de vorming tot academicus (pp. 78-80). Amsterdam: Boom.
  • Hagoort, P. (2003). Functional brain imaging. In W. J. Frawley (Ed.), International encyclopedia of linguistics (pp. 142-145). New York: Oxford University Press.
  • Hagoort, P. (2004). Het zwarte gat tussen brein en bewustzijn. In N. Korteweg (Ed.), De oorsprong: Over het ontstaan van het leven en alles eromheen (pp. 107-124). Amsterdam: Boom.
  • Hagoort, P., & Beckmann, C. F. (2019). Key issues and future directions: The neural architecture for language. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 527-532). Cambridge, MA: MIT Press.
  • Hagoort, P. (2019). Introduction. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 1-6). Cambridge, MA: MIT Press.
  • Hagoort, P. (2014). Introduction to section on language and abstract thought. In M. S. Gazzaniga, & G. R. Mangun (Eds.), The cognitive neurosciences (5th ed., pp. 615-618). Cambridge, Mass: MIT Press.
  • Hagoort, P., & Levinson, S. C. (2014). Neuropragmatics. In M. S. Gazzaniga, & G. R. Mangun (Eds.), The cognitive neurosciences (5th ed., pp. 667-674). Cambridge, Mass: MIT Press.
  • Hagoort, P. (1998). The shadows of lexical meaning in patients with semantic impairments. In B. Stemmer, & H. Whitaker (Eds.), Handbook of neurolinguistics (pp. 235-248). New York: Academic Press.
  • Hammarström, H. (2014). Basic vocabulary comparison in South American languages. In P. Muysken, & L. O'Connor (Eds.), Language contact in South America (pp. 56-72). Cambridge: Cambridge University Press.
  • Hammarström, H. (2019). An inventory of Bantu languages. In M. Van de Velde, K. Bostoen, D. Nurse, & G. Philippson (Eds.), The Bantu languages (2nd). London: Routledge.

    Abstract

    This chapter aims to provide an updated list of all Bantu languages known at present and to provide individual pointers to further information on the inventory. The area division has some correlation with what are perceived genealogical relations between Bantu languages, but they are not defined as such and do not change whenever there is an update in our understanding of genealogical relations. Given the popularity of Guthrie codes in Bantu linguistics, our listing also features a complete mapping to Guthrie codes. The language inventory listed excludes sign languages used in the Bantu area, speech registers, pidgins, drummed/whistled languages and urban youth languages. Pointers to such languages in the Bantu area are included in the continent-wide overview in Hammarstrom. The most important alternative names, subvarieties and spelling variants are given for each language, though such lists are necessarily incomplete and reflect some degree of arbitrary selection.
  • Hammarström, H. (2014). Papuan languages. In M. Aronoff (Ed.), Oxford bibliographies in linguistics. New York: Oxford University Press. doi:10.1093/OBO/9780199772810-0165.
  • Hammond, J. (2014). Switch-reference antecedence and subordination in Whitesands (Oceanic). In R. van Gijn, J. Hammond, D. Matić, S. van Putten, & A. V. Galucio (Eds.), Information structure and reference tracking in complex sentences. (pp. 263-290). Amsterdam: Benjamins.

    Abstract

    Whitesands is an Oceanic language of the southern Vanuatu subgroup. Like the related languages of southern Vanuatu, Whitesands has developed a clause-linkage system which monitors referent continuity on new clauses – typically contrasting with the previous clause. In this chapter I address how the construction interacts with topic continuity in discourse. I outline the morphosyntactic form of this anaphoric co-reference device. From a functionalist perspective, I show how the system is used in natural discourse and discuss its restrictions with respect to relative and complement clauses. I conclude with a discussion on its interactions with theoretical notions of information structure – in particular the nature of presupposed versus asserted clauses, information back- and foregrounding and how these affect the use of the switch-reference system
  • Haun, D. B. M., & Waller, D. (2003). Alignment task. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 39-48). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Haun, D. B. M. (2003). Path integration. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 33-38). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877644.
  • Haun, D. B. M. (2003). Spatial updating. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 49-56). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Heeschen, V., Eibl-Eibesfeldt, I., Grammer, K., Schiefenhövel, W., & Senft, G. (1986). Sprachliches Verhalten. In Generalverwaltung der MPG (Ed.), Max-Planck-Gesellschaft Jahrbuch 1986 (pp. 394-396). Göttingen: Vandenhoeck and Ruprecht.
  • Hoiting, N., & Slobin, D. I. (2002). Transcription as a tool for understanding: The Berkeley Transcription System for sign language research (BTS). In G. Morgan, & B. Woll (Eds.), Directions in sign language acquisition (pp. 55-75). Amsterdam: John Benjamins.
  • Hoiting, N., & Slobin, D. I. (2002). What a deaf child needs to see: Advantages of a natural sign language over a sign system. In R. Schulmeister, & H. Reinitzer (Eds.), Progress in sign language research. In honor of Siegmund Prillwitz / Fortschritte in der Gebärdensprach-forschung. Festschrift für Siegmund Prillwitz (pp. 267-277). Hamburg: Signum.
  • Holler, J. (2014). Experimental methods in co-speech gesture research. In C. Mueller, A. Cienki, D. McNeill, & E. Fricke (Eds.), Body -language – communication: An international handbook on multimodality in human interaction. Volume 1 (pp. 837-856). Berlin: De Gruyter.
  • Holler, J., & Beattie, G. (2004). The interaction of iconic gesture and speech. In A. Cammurri, & G. Volpe (Eds.), Lecture Notes in Computer Science, 5th International Gesture Workshop, Genova, Italy, 2003; Selected Revised Papers (pp. 63-69). Heidelberg: Springer Verlag.
  • Huettig, F. (2014). Role of prediction in language learning. In P. J. Brooks, & V. Kempe (Eds.), Encyclopedia of language development (pp. 479-481). London: Sage Publications.
  • Huettig, F., & Altmann, G. T. M. (2004). The online processing of ambiguous and unambiguous words in context: Evidence from head-mounted eye-tracking. In M. Carreiras, & C. Clifton (Eds.), The on-line study of sentence comprehension: Eyetracking, ERP and beyond (pp. 187-207). New York: Psychology Press.
  • Indefrey, P., & Cutler, A. (2004). Prelexical and lexical processing in listening. In M. Gazzaniga (Ed.), The cognitive neurosciences III. (pp. 759-774). Cambridge, MA: MIT Press.

    Abstract

    This paper presents a meta-analysis of hemodynamic studies on passive auditory language processing. We assess the overlap of hemodynamic activation areas and activation maxima reported in experiments involving the presentation of sentences, words, pseudowords, or sublexical or non-linguistic auditory stimuli. Areas that have been reliably replicated are identified. The results of the meta-analysis are compared to electrophysiological, magnetencephalic (MEG), and clinical findings. It is concluded that auditory language input is processed in a left posterior frontal and bilateral temporal cortical network. Within this network, no processing leve l is related to a single cortical area. The temporal lobes seem to differ with respect to their involvement in post-lexical processing, in that the left temporal lobe has greater involvement than the right, and also in the degree of anatomical specialization for phonological, lexical, and sentence -level processing, with greater overlap on the right contrasting with a higher degree of differentiation on the left.
  • Indefrey, P. (2004). Hirnaktivierungen bei syntaktischer Sprachverarbeitung: Eine Meta-Analyse. In H. Müller, & G. Rickheit (Eds.), Neurokognition der Sprache (pp. 31-50). Tübingen: Stauffenburg.
  • De Jong, N. H., Schreuder, R., & Baayen, R. H. (2003). Morphological resonance in the mental lexicon. In R. Baayen, & R. Schreuder (Eds.), Morphological structure in language processing (pp. 65-88). Berlin: Mouton de Gruyter.
  • Jordens, P. (1998). Defaultformen des Präteritums. Zum Erwerb der Vergangenheitsmorphologie im Niederlänidischen. In H. Wegener (Ed.), Eine zweite Sprache lernen (pp. 61-88). Tübingen, Germany: Verlag Gunter Narr.
  • Jordens, P. (2003). Constraints on the shape of second language learner varieties. In G. Rickheit, T. Herrmann, & W. Deutsch (Eds.), Psycholinguistik/Psycholinguistics: Ein internationales Handbuch. [An International Handbook] (pp. 819-833). Berlin: Mouton de Gruyter.
  • Jordens, P. (2004). Morphology in Second Language Acquisition. In G. Booij (Ed.), Morphologie: Ein internationales Handbuch zur Flexion und Wortbildung (pp. 1806-1816). Berlin: Walter de Gruyter.
  • Kashima, Y., Kashima, E. S., & Kidd, E. (2014). Language and culture. In T. M. Holtgraves (Ed.), The Oxford Handbook of Language and Social Psychology (pp. 46-61). Oxford: Oxford University Press.
  • Keating, P., Cho, T., Fougeron, C., & Hsu, C.-S. (2003). Domain-initial strengthening in four languages. In J. Local, R. Ogden, & R. Temple (Eds.), Laboratory phonology VI: Phonetic interpretation (pp. 145-163). Cambridge: Cambridge University Press.
  • Kempen, G. (2004). Terug naar Wundt: Pleidooi voor integraal onderzoek van taal, taalkennis en taalgedrag. In Koninklijke Nederlandse Akademie van Wetenschappen (Ed.), Gij letterdames en gij letterheren': Nieuwe mogelijkheden voor taalkundig en letterkundig onderzoek in Nederland. (pp. 174-188). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.
  • Kempen, G., & Harbusch, K. (2002). Performance Grammar: A declarative definition. In A. Nijholt, M. Theune, & H. Hondorp (Eds.), Computational linguistics in the Netherlands 2001: Selected papers from the Twelfth CLIN Meeting (pp. 148-162). Amsterdam: Rodopi.

    Abstract

    In this paper we present a definition of Performance Grammar (PG), a psycholinguistically motivated syntax formalism, in declarative terms. PG aims not only at describing and explaining intuitive judgments and other data concerning the well–formedness of sentences of a language, but also at contributing to accounts of syntactic processing phenomena observable in language comprehension and language production. We highlight two general properties of human sentence generation, incrementality and late linearization,which make special demands on the design of grammar formalisms claiming psychological plausibility. In order to meet these demands, PG generates syntactic structures in a two-stage process. In the first and most important ‘hierarchical’ stage, unordered hierarchical structures (‘mobiles’) are assembled out of lexical building blocks. The key operation at work here is typed feature unification, which also delimits the positional options of the syntactic constituents in terms of so-called topological features. The second, much simpler stage takes care of arranging the branches of the mobile from left to right by ‘reading–out’ one positional option of every constituent. In this paper we concentrate on the structure assembly formalism in PG’s hierarchical component. We provide a declarative definition couched in an HPSG–style notation based on typed feature unification. Our emphasis throughout is on linear order constraints.
  • Kempen, G. (1986). Beyond word processing. In E. Cluff, & G. Bunting (Eds.), Information management yearbook 1986 (pp. 178-181). London: IDPM Publications.
  • Kempen, G. (1979). A study of syntactic bookkeeping during sentence production. In H. Ueckert, & D. Rhenius (Eds.), Komplexe menschliche Informationsverarbeitung (pp. 361-368). Bern: Hans Huber.

    Abstract

    It is an important feature of the human sentence production system that semantic and syntactic processes may overlap in time and do not proceed strictly serially. That is, the process of building the syntactic form of an utterance does not always wait until the complete semantic content for that utterance has been decided upon. On the contrary, speakers will often start pronouncing the first words of a sentence while still working on further details of its semantic content. An important advantage is memory economy. Semantic and syntactic fragments do not have to occupy working memory until complete semantic and syntactic structures for an utterance have been computed. Instead, each semantic and syntactic fragment is processed as soon as possible and is kept in working memory for a minimum period of time. This raises the question of how the sentence production system can maintain syntactic coherence across syntactic fragments. Presumably there are processes of "syntactic bookkeeping" which (1) store in working memory those syntactic properties of a fragmentary sentence which are needed to eliminate ungrammatical continuations, and (2) check whether a prospective continuation is indeed compatible with the sentence constructed so far. In reaction time experiments where subjects described, under time pressure, simple static pictures of an action performed by an actor, the second aspect of syntactic bookkeeping could be demonstrated. This evidence is used for modelling bookkeeping processes as part of a computational sentence generator which aims at simulating the syntactic operations people carry out during spontaneous speech.
  • Kempen, G., & Harbusch, K. (2003). Dutch and German verb clusters in performance grammar. In P. A. Seuren, & G. Kempen (Eds.), Verb constructions in German and Dutch (pp. 185-221). Amsterdam: Benjamins.
  • Kempen, G., & Harbusch, K. (2004). A corpus study into word order variation in German subordinate clauses: Animacy affects linearization independently of grammatical function assignment. In T. Pechmann, & C. Habel (Eds.), Multidisciplinary approaches to language production (pp. 173-181). Berlin: Mouton de Gruyter.
  • Kempen, G., & Harbusch, K. (2004). Generating natural word orders in a semi-free word order language: Treebank-based linearization preferences for German. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing (pp. 350-354). Berlin: Springer.

    Abstract

    We outline an algorithm capable of generating varied but natural sounding sequences of argument NPs in subordinate clauses of German, a semi-free word order language. In order to attain the right level of output flexibility, the algorithm considers (1) the relevant lexical properties of the head verb (not only transitivity type but also reflexivity, thematic relations expressed by the NPs, etc.), and (2) the animacy and definiteness values of the arguments, and their length. The relevant statistical data were extracted from the NEGRA–II treebank and from hand-coded features for animacy and definiteness. The algorithm maps the relevant properties onto “primary” versus “secondary” placement options in the generator. The algorithm is restricted in that it does not take into account linear order determinants related to the sentence’s information structure and its discourse context (e.g. contrastiveness). These factors may modulate the above preferences or license “tertiary” linear orders beyond the primary and secondary options considered here.
  • Kempen, G. (2003). Language generation. In W. Frawley (Ed.), International encyclopedia of linguistics (pp. 362-364). New York: Oxford University Press.
  • Kempen, G. (1989). Informatiegedragskunde: Pijler van de moderne informatieverzorging. In A. F. Marks (Ed.), Sociaal-wetenschappelijke informatie en kennisvorming in onderzoek, onderzoeksbeleid en beroep (pp. 31-35). Amsterdam: SWIDOC.
  • Kempen, G. (1986). Kunstmatige intelligentie en gezond verstand. In P. Hagoort, & R. Maessen (Eds.), Geest, computer, kunst (pp. 118-123). Utrecht: Stichting Grafiet.
  • Kempen, G. (1989). Language generation systems. In I. S. Bátori, W. Lenders, & W. Putschke (Eds.), Computational linguistics: An international handbook on computer oriented language research and applications (pp. 471-480). Berlin/New York: Walter de Gruyter.
  • Kempen, G. (1998). Sentence parsing. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 213-228). Berlin: Springer.
  • Kempen, G., & Harbusch, K. (2003). Word order scrambling as a consequence of incremental sentence production. In H. Härtl, & H. Tappe (Eds.), Mediating between concepts and grammar (pp. 141-164). Berlin: Mouton de Gruyter.
  • Kendrick, K. H., & Drew, P. (2014). The putative preference for offers over requests. In P. Drew, & E. Couper-Kuhlen (Eds.), Requesting in Social Interaction (pp. 87-113). Amsterdam: John Benjamins Publishing Company.

    Abstract

    Requesting and offering are closely related, insofar as they are activities associated with someone’s need for assistance. It has been supposed (e.g., Schegloff 2007) that requests and offers are not equivalent actions – specifically that offers are preferred actions and requests are dispreferred. We review the evidence for this claim across a corpus of requests and offers and demonstrate that the empirical evidence does not support the claim for a putative preference for offers over requests. Further consideration of the often symbiotic relationships between requesting and offering, particularly in face-to-face interactions, reveals a more complex picture of the ways in which people recruit others to help, or in which others are mobilized to help.
  • Kita, S. (2003). Pointing: A foundational building block in human communication. In S. Kita (Ed.), Pointing: Where language, culture, and cognition meet (pp. 1-8). Mahwah, NJ: Erlbaum.

Share this page