Publications

Displaying 101 - 200 of 524
  • Dijkstra, T., & Kempen, G. (1997). Het taalgebruikersmodel. In H. Hulshof, & T. Hendrix (Eds.), De taalcentrale. Amsterdam: Bulkboek.
  • Dimroth, C. (2007). Zweitspracherwerb bei Kindern und Jugendlichen: Gemeinsamkeiten und Unterschiede. In T. Anstatt (Ed.), Mehrsprachigkeit bei Kindern und Erwachsenen: Erwerb, Formen, Förderung (pp. 115-137). Tübingen: Attempto.

    Abstract

    This paper discusses the influence of age-related factors like stage of cognitive development, prior linguistic knowledge, and motivation and addresses the specific effects of these ‘age factors’ on second language acquisition as opposed to other learning tasks. Based on longitudinal corpus data from child and adolescent learners of L2 German (L1 = Russian), the paper studies the acquisition of word order (verb raising over negation, verb second) and inflectional morphology (subject-verb-agreement, tense, noun plural, and adjective-noun agreement). Whereas the child learner shows target-like production in all of these areas within the observation period (1½ years), the adolescent learner masters only some of them. The discussion addresses the question of what it is about clusters of grammatical features that make them particularly affected by age.
  • Dimroth, C., & Watorek, M. (2005). Additive scope particles in advanced learner and native speaker discourse. In Hendriks, & Henriëtte (Eds.), The structure of learner varieties (pp. 461-488). Berlin: Mouton de Gruyter.
  • Dingemanse, M. (2019). 'Ideophone' as a comparative concept. In K. Akita, & P. Pardeshi (Eds.), Ideophones, Mimetics, and Expressives (pp. 13-33). Amsterdam: John Benjamins. doi:10.1075/ill.16.02din.

    Abstract

    This chapter makes the case for ‘ideophone’ as a comparative concept: a notion that captures a recurrent typological pattern and provides a template for understanding language-specific phenomena that prove similar. It revises an earlier definition to account for the observation that ideophones typically form an open lexical class, and uses insights from canonical typology to explore the larger typological space. According to the resulting definition, a canonical ideophone is a member of an open lexical class of marked words that depict sensory imagery. The five elements of this definition can be seen as dimensions that together generate a possibility space to characterise cross-linguistic diversity in depictive means of expression. This approach allows for the systematic comparative treatment of ideophones and ideophone-like phenomena. Some phenomena in the larger typological space are discussed to demonstrate the utility of the approach: phonaesthemes in European languages, specialised semantic classes in West-Chadic, diachronic diversions in Aslian, and depicting constructions in signed languages.
  • Dingemanse, M., Blythe, J., & Dirksmeyer, T. (2018). Formats for other-initiation of repair across languages: An exercise in pragmatic typology. In I. Nikolaeva (Ed.), Linguistic Typology: Critical Concepts in Linguistics. Vol. 4 (pp. 322-357). London: Routledge.

    Abstract

    In conversation, people regularly deal with problems of speaking, hearing, and understanding. We report on a cross-linguistic investigation of the conversational structure of other-initiated repair (also known as collaborative repair, feedback, requests for clarification, or grounding sequences). We take stock of formats for initiating repair across languages (comparable to English huh?, who?, y’mean X?, etc.) and find that different languages make available a wide but remarkably similar range of linguistic resources for this function. We exploit the patterned variation as evidence for several underlying concerns addressed by repair initiation: characterising trouble, managing responsibility, and handling knowledge. The concerns do not always point in the same direction and thus provide participants in interaction with alternative principles for selecting one format over possible others. By comparing conversational structures across languages, this paper contributes to pragmatic typology: the typology of systems of language use and the principles that shape them.
  • Dirksmeyer, T. (2005). Why do languages die? Approaching taxonomies, (re-)ordering causes. In J. Wohlgemuth, & T. Dirksmeyer (Eds.), Bedrohte Vielfalt. Aspekte des Sprach(en)tods – Aspects of language death (pp. 53-68). Berlin: Weißensee.

    Abstract

    Under what circumstances do languages die? Why has their “mortality rate” increased dramatically in the recent past? What “causes of death” can be identified for historical cases, to what extent are these generalizable, and how can they be captured in an explanatory theory? In pursuing these questions, it becomes apparent that in typical cases of language death various causes tend to interact in multiple ways. Speakers’ attitudes towards their language play a critical role in all of this. Existing categorial taxonomies do not succeed in modeling the complex relationships between these factors. Therefore, an alternative, dimensional approach is called for to more adequately address (and counter) the causes of language death in a given scenario.
  • Drijvers, L. (2019). On the oscillatory dynamics underlying speech-gesture integration in clear and adverse listening conditions. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Drozdova, P. (2018). The effects of nativeness and background noise on the perceptual learning of voices and ambiguous sounds. PhD Thesis, Radboud University, Nijmegen.
  • Drude, S. (2005). A contribuição alemã à Lingüística e Antropologia dos índios do Brasil, especialmente da Amazônia. In J. J. A. Alves (Ed.), Múltiplas Faces da Históriadas Ciência na Amazônia (pp. 175-196). Belém: EDUFPA.
  • Drude, S. (1997). Wörterbücher, integrativ interpretiert, am Beispiel des Guaraní. Magister Thesis, Freie Universität Berlin.
  • Dunn, M. (2007). Vernacular literacy in the Touo language of the Solomon Islands. In A. J. Liddicoat (Ed.), Language planning and policy: Issues in language planning and literacy (pp. 209-220). Clevedon: Multilingual matters.

    Abstract

    The Touo language is a non-Austronesian language spoken on Rendova Island (Western Province, Solomon Islands). First language speakers of Touo are typically multilingual, and are likely to speak other (Austronesian) vernaculars, as well as Solomon Island Pijin and English. There is no institutional support of literacy in Touo: schools function in English, and church-based support for vernacular literacy focuses on the major Austronesian languages of the local area. Touo vernacular literacy exists in a restricted niche of the linguistic ecology, where it is utilised for symbolic rather than communicative goals. Competing vernacular orthographic traditions complicate the situation further.
  • Dunn, M., & Terrill, A. (2004). Lexical comparison between Papuan languages: Inland bird and tree species. In A. Majid (Ed.), Field Manual Volume 9 (pp. 65-69). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492942.

    Abstract

    The Pioneers project seeks to uncover relationships between the Papuan languages of Island Melanesia. One basic way to uncover linguistic relationships, either contact or genetic, is through lexical comparison. We have seen very few shared words between our Papuan languages and any other languages, either Oceanic or Papuan, but most of the words which are shared are shared because they are commonly borrowed from Oceanic languages. This task is aimed at enabling fieldworkers to collect terms for inland bird and tree species. In the past it is has proved very difficult for non-experts to identify plant and bird species, so the task consists of a booklet of colour pictures of some of the more common species, with information on the range and habits of each species, as well as some information on their cultural uses, which should enable better identification. It is intended that fieldworkers will show this book to consultants and use it as an elicitation aid.
  • Eibl-Eibesfeldt, I., Senft, B., & Senft, G. (1998). Trobriander (Ost-Neuguinea, Trobriand Inseln, Kaile'una) Fadenspiele 'ninikula'. In Ethnologie - Humanethologische Begleitpublikationen von I. Eibl-Eibesfeldt und Mitarbeitern. Sammelband I, 1985-1987. Göttingen: Institut für den Wissenschaftlichen Film.
  • Eisner, F., & McQueen, J. M. (2018). Speech perception. In S. Thompson-Schill (Ed.), Stevens’ handbook of experimental psychology and cognitive neuroscience (4th ed.). Volume 3: Language & thought (pp. 1-46). Hoboken: Wiley. doi:10.1002/9781119170174.epcn301.

    Abstract

    This chapter reviews the computational processes that are responsible for recognizing word forms in the speech stream. We outline the different stages in a processing hierarchy from the extraction of general acoustic features, through speech‐specific prelexical processes, to the retrieval and selection of lexical representations. We argue that two recurring properties of the system as a whole are abstraction and adaptability. We also present evidence for parallel processing of information on different timescales, more specifically that segmental material in the speech stream (its consonants and vowels) is processed in parallel with suprasegmental material (the prosodic structures of spoken words). We consider evidence from both psycholinguistics and neurobiology wherever possible, and discuss how the two fields are beginning to address common computational problems. The challenge for future research in speech perception will be to build an account that links these computational problems, through functional mechanisms that address them, to neurobiological implementation.
  • Enfield, N. J., Levinson, S. C., & Meira, S. (2001). Recognitional deixis. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 78-81). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874641.

    Abstract

    “Recognitional” words and constructions enshrine our systematic reliance on shared knowledge in dedicated morphological forms and usage patterns. For example, English has a large range of terms for use when a speaker cannot locate the word or name for something or someone (e.g., whatsit, what’s-his-name), but thinks that the interlocutor knows, or can easily work out, what the speaker is talking about. This task aims to identify and investigate these kinds of expressions in the research language, including their grammaticalised status, meaning, distribution, and productivity. The task consists of a questionnaire with examples of relevant hypothetical scenarios that can be used in eliciting the relevant terms. The researcher is then encouraged to pursue further questions in regard to these items.
  • Enfield, N. J. (2001). Body. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 62-77). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874633.

    Abstract

    This task investigates the extensional meaning of body part terms, in particular the terms for the upper and lower limbs. Two questions are addressed, namely (i) are the boundaries of these body parts universal, guided by proposed universals of object recognition? (ii) How can we compare the extensional meanings of body part terms within and across different systems of nomenclature? Consultants receive booklets with line drawings of a body and are asked to colour in specific parts of the body.
  • Enfield, N. J., Levinson, S. C., De Ruiter, J. P., & Stivers, T. (2007). Building a corpus of multimodal interaction in your field site. In A. Majid (Ed.), Field Manual Volume 10 (pp. 96-99). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.468728.

    Abstract

    Research on video- and audio-recordings of spontaneous naturally-occurring conversation in English has shown that conversation is a rule-guided, practice-oriented domain that can be investigated for its underlying mechanics or structure. Systematic study could yield something like a grammar for conversation. The goal of this task is to acquire a corpus of video-data, for investigating the underlying structure(s) of interaction cross-linguistically and cross-culturally.
  • Enfield, N. J., Levinson, S. C., De Ruiter, J. P., & Stivers, T. (2004). Building a corpus of multimodal interaction in your field site. In A. Majid (Ed.), Field Manual Volume 9 (pp. 32-36). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.506951.

    Abstract

    This Field Manual entry has been superceded by the 2007 version:
    https://doi.org/10.17617/2.468728

    Files private

    Request files
  • Enfield, N. J. (2005). Depictive and other secondary predication in Lao. In N. P. Himmelmann, & E. Schultze-Berndt (Eds.), Secondary predication and adverbial modification (pp. 379-392). Oxford: Oxford University Press.
  • Enfield, N. J. (2004). Adjectives in Lao. In R. M. W. Dixon, & A. Y. Aikhenvald (Eds.), Adjective classes: A cross-linguistic typology (pp. 323-347). Oxford: Oxford University Press.
  • Enfield, N. J. (2007). Meanings of the unmarked: How 'default' person reference does more than just refer. In N. Enfield, & T. Stivers (Eds.), Person reference in interaction: Linguistic, cultural, and social perspectives (pp. 97-120). Cambridge: Cambridge University Press.
  • Enfield, N. J. (2005). Micro and macro dimensions in linguistic systems. In S. Marmaridou, K. Nikiforidou, & E. Antonopoulou (Eds.), Reviewing linguistic thought: Converging trends for the 21st Century (pp. 313-326). Berlin: Mouton de Gruyter.
  • Enfield, N. J., & Bohnemeyer, J. (2001). Hidden colour-chips task: Demonstratives, attention, and interaction. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 21-28). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874636.

    Abstract

    Demonstratives are typically described as encoding degrees of physical distance between the object referred to, and the speaker or addressee. For example, this in English is used to talk about things that are physically near the speaker, and that for things that are not. But is this how speakers really choose between these words in actual talk? This task aims to generate spontaneous language data concerning deixis, gesture, and demonstratives, and to investigate the significance of different factors (e.g., physical distance, attention) in demonstrative selection. In the presence of one consultant (the “memoriser”), sixteen colour chips are hidden under objects in a specified array. Another consultant enters the area and asks the memoriser to recount the locations of the chips. The task is designed to create a situation where the speaker genuinely attempts to manipulate the addressee’s attention on objects in the immediate physical space.
  • Enfield, N. J. (2001). Linguistic evidence for a Lao perspective on facial expression of emotion. In J. Harkins, & A. Wierzbicka (Eds.), Emotions in crosslinguistic perspective (pp. 149-166). Berlin: Mouton de Gruyter.
  • Enfield, N. J. (2001). On genetic and areal linguistics in Mainland South-East Asia: Parallel polyfunctionality of ‘acquire’. In A. Y. Aikhenvald, & R. M. Dixon (Eds.), Areal diffusion and genetic inheritance: Problems in comparative linguistics (pp. 255-290). Oxford University Press.
  • Enfield, N. J. (2007). Repair sequences in interaction. In A. Majid (Ed.), Field Manual Volume 10 (pp. 100-103). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.468724.

    Abstract

    This sub-project is concerned with analysis and cross-linguistic comparison of the mechanisms of signaling and redressing ‘trouble’ during conversation. Speakers and listeners constantly face difficulties with many different aspects of speech production and comprehension during conversation. A speaker may mispronounce a word, or may be unable to find a word, or be unable to formulate in words an idea he or she has in mind. A listener may have troubling hearing (part of) what was said, may not know who a speaker is referring to, may not be sure of the current relevance of what is being said. There may be problems in the organisation of turns at talk, for instance, two speakers’ speech may be in overlap. The goal of this task is to investigate the range of practices that a language uses to address problems of speaking, hearing and understanding in conversation.
  • Enfield, N. J. (2004). Repair sequences in interaction. In A. Majid (Ed.), Field Manual Volume 9 (pp. 48-52). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492945.

    Abstract

    This Field Manual entry has been superceded by the 2007 version: https://doi.org/10.17617/2.468724

    Files private

    Request files
  • Enfield, N. J., & Dunn, M. (2001). Supplements to the Wilkins 1999 demonstrative questionnaire. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 82-84). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874638.
  • Erard, M. (2019). Language aptitude: Insights from hyperpolyglots. In Z. Wen, P. Skehan, A. Biedroń, S. Li, & R. L. Sparks (Eds.), Language aptitude: Advancing theory, testing, research and practice (pp. 153-167). Abingdon, UK: Taylor & Francis.

    Abstract

    Over the decades, high-intensity language learners scattered over the globe referred to as “hyperpolyglots” have undertaken a natural experiment into the limits of learning and acquiring proficiencies in multiple languages. This chapter details several ways in which hyperpolyglots are relevant to research on aptitude. First, historical hyperpolyglots Cardinal Giuseppe Mezzofanti, Emil Krebs, Elihu Burritt, and Lomb Kató are described in terms of how they viewed their own exceptional outcomes. Next, I draw on results from an online survey with 390 individuals to explore how contemporary hyperpolyglots consider the explanatory value of aptitude. Third, the challenges involved in studying the genetic basis of hyperpolyglottism (and by extension of language aptitude) are discussed. This mosaic of data is meant to inform the direction of future aptitude research that takes hyperpolyglots, one type of exceptional language learner and user, into account.
  • Ernestus, M., & Baayen, R. H. (2007). Intraparadigmatic effects on the perception of voice. In J. van de Weijer, & E. J. van der Torre (Eds.), Voicing in Dutch: (De)voicing-phonology, phonetics, and psycholinguistics (pp. 153-173). Amsterdam: Benjamins.

    Abstract

    In Dutch, all morpheme-final obstruents are voiceless in word-final position. As a consequence, the distinction between obstruents that are voiced before vowel-initial suffixes and those that are always voiceless is neutralized. This study adds to the existing evidence that the neutralization is incomplete: neutralized, alternating plosives tend to have shorter bursts than non-alternating plosives. Furthermore, in a rating study, listeners scored the alternating plosives as more voiced than the nonalternating plosives, showing sensitivity to the subtle subphonemic cues in the acoustic signal. Importantly, the participants who were presented with the complete words, instead of just the final rhymes, scored the alternating plosives as even more voiced. This shows that listeners’ perception of voice is affected by their knowledge of the obstruent’s realization in the word’s morphological paradigm. Apparently, subphonemic paradigmatic levelling is a characteristic of both production and perception. We explain the effects within an analogy-based approach.
  • Ernestus, M., & Smith, R. (2018). Qualitative and quantitative aspects of phonetic variation in Dutch eigenlijk. In F. Cangemi, M. Clayards, O. Niebuhr, B. Schuppler, & M. Zellers (Eds.), Rethinking reduction: Interdisciplinary perspectives on conditions, mechanisms, and domains for phonetic variation (pp. 129-163). Berlin/Boston: De Gruyter Mouton.
  • Estruch, S. B. (2018). Characterization of transcription factors in monogenic disorders of speech and language. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Evans, N., Levinson, S. C., Enfield, N. J., Gaby, A., & Majid, A. (2004). Reciprocal constructions and situation type. In A. Majid (Ed.), Field Manual Volume 9 (pp. 25-30). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.506955.
  • Fairs, A. (2019). Linguistic dual-tasking: Understanding temporal overlap between production and comprehension. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Fernald, A., McRoberts, G. W., & Swingley, D. (2001). Infants' developing competence in recognizing and understanding words in fluent speech. In J. Weissenborn, & B. Höhle (Eds.), Approaches to Bootstrapping: Phonological, lexical, syntactic and neurophysiological aspects of early language acquisition. Volume 1 (pp. 97-123). Amsterdam: Benjamins.
  • Filippi, P. (2005). Gilbert Ryle: Pensare la Mente. Master Thesis, Università degli Studi di Palermo, Palermo.

    Abstract

    This study focuses on the main work of Gilbert Ryle, “The concept of Mind” (1949). Here the author demolishes what he refers to as the cartesian dogma of “the ghost in the machine”, highlighting the absurdity of categorical ordering in dualist systems, where mental activities are explained as separate from physical actions. Surprisingly, the Italian translator of “The concept of Mind”, Ferruccio Rossi-Landi, missed this key aspect of Ryle’s work, writing up what resulted into a significantly misleading translation. This can be clearly noticed from the title already: “Lo spirito come comportamento” [The ghost as behavior]. This erroneous translation affected the interpretation of “The concept of Mind” as a mere study on behavioral reductionism in Italy. Here, I argue in favor of the originality of Ryle’s approach in pointing out the socio-cultural dynamics as the non - physical dimensions of the human mind, and yet, linked to the human brain. In doing so, I trace the crucial influence of Wittgenstein’s philosophy in Ryle’s interpretation of the concept of mind, which helps in grasping a better understanding of his work. Wittgenstein’s influence shows clearly in Ryle’s conceptual operation of grounding the acquisition of dispositions and competences - which ultimately define the rational subjects as rational agents – in the shared background of social and cultural dynamics. In a nutshell, this social dimension is the defining characteristic of the human mind and of all human actions in Ryle’s philosophy. As Ryle argues in “On thinking” (1979), this intrinsic quality of human actions can reveal itself in actions that one performs absent-mindendly in everyday life, as well as in more complex ones: for instance, when the mind reflects upon itself.
  • Fisher, S. E., & Tilot, A. K. (Eds.). (2019). Bridging senses: Novel insights from synaesthesia [Special Issue]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 374.
  • Fisher, S. E. (2019). Key issues and future directions: Genes and language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 609-620). Cambridge, MA: MIT Press.
  • Fisher, S. E., & Smith, S. (2001). Progress towards the identification of genes influencing developmental dyslexia. In A. Fawcett (Ed.), Dyslexia: Theory and good practice (pp. 39-64). London: Whurr.
  • Fitz, H. (2001). Church's Thesis: A philosophical critique of modern computability theory. Master Thesis, Freie Universität Berlin.
  • Flecken, M., & Von Stutterheim, C. (2018). Sprache und Kognition: Sprachvergleichende und lernersprachliche Untersuchungen zur Ereigniskonzeptualisierung. In S. Schimke, & H. Hopp (Eds.), Sprachverarbeitung im Zweitspracherwerb (pp. 325-356). Berlin: De Gruyter. doi:10.1515/9783110456356-014.
  • Floyd, S. (2018). Egophoricity and argument structure in Cha'palaa. In S. Floyd, E. Norcliffe, & L. San Roque (Eds.), Egophoricity (pp. 269-304). Amsterdam: Benjamins.

    Abstract

    The Cha’palaa language of Ecuador (Barbacoan) features verbal morphology for marking knowledge-based categories that, in usage, show a variant of the cross-linguistically recurrent pattern of ‘egophoric distribution': specific forms associate with speakers in contrast to others in statements and with addressees in contrast to others in questions. These are not person markers, but rather are used by speakers to portray their involvement in states of affairs as active, agentive participants (ego) versus other types of involvement (non-ego). They interact with person and argument structure, but through pragmatic ‘person sensitivities’ rather than through grammatical agreement. Not only does this pattern appear in verbal morphology, it also can be observed in alternations of predicate construction types and case alignment, helping to show how egophoric marking is a pervasive element of Cha'palaa's linguistic system. This chapter gives a first account of egophoricity in Cha’palaa, beginning with a discussion of person sensitivity, egophoric distribution, and issues of flexibility of marking with respect to degree of volition or control. It then focuses on a set of intransitive experiencer (or ‘endopathic') predicates that refer to internal states which mark egophoric values for the undergoer role, not the actor role, showing ‘quirky’ accusative marking instead of nominative case. It concludes with a summary of how egophoricity in Cha'palaa interacts with issues of argument structure in comparison to a language with person agreement, here represented by examples from Cha’palaa’s neighbor Ecuadorian Highland Quechua.
  • Forkel, S. J., & Catani, M. (2018). Structural Neuroimaging. In A. De Groot, & P. Hagoort (Eds.), Research Methods in Psycholinguistics and the Neurobiology of Language: A Practical Guide (pp. 288-308). Hoboken: Wiley. doi:10.1002/9781394259762.ch15.

    Abstract

    Structural imaging based on computerized tomography (CT) and magnetic resonance imaging (MRI) has progressively replaced traditional post‐mortem studies in the process of identifying the neuroanatomical basis of language. In the clinical setting, the information provided by structural imaging has been used to confirm the exact diagnosis and formulate an individualized treatment plan. In the research arena, neuroimaging has permitted to understand neuroanatomy at the individual and group level. The possibility to obtain quantitative measures of lesions has improved correlation analyses between severity of symptoms, lesion load, and lesion location. More recently, the development of structural imaging based on diffusion MRI has provided valid solutions to two major limitations of more conventional imaging. In stroke patients, diffusion can visualize early changes due to a stroke that are otherwise not detectable with more conventional structural imaging, with important implications for the clinical management of acute stroke patients. Beyond the sensitivity to early changes, diffusion imaging tractography presents the possibility of visualizing the trajectories of individual white matter pathways connecting distant regions. A pathway analysis based on tractography is offering a new perspective in neurolinguistics. First, it permits to formulate new anatomical models of language function in the healthy brain and allows to directly test these models in the human population without any reliance on animal models. Second, by defining the exact location of the damage to specific white matter connections we can understand the contribution of different mechanisms to the emergence of language deficits (e.g., cortical versus disconnection mechanisms). Finally, a better understanding of the anatomical variability of different language networks is helping to identify new anatomical predictors of language recovery. In this chapter we will focus on the principles of structural MRI and, in particular, diffusion imaging and tractography and present examples of how these methods have informed our understanding of variance in language performances in the healthy brain and language deficits in patient populations.
  • Fradera, A., & Sauter, D. (2004). Make yourself happy. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 325-327). Sebastopol, CA: O'Reilly.

    Abstract

    Turn on your affective system by tweaking your face muscles - or getting an eyeful of someone else doing the same.
  • Fradera, A., & Sauter, D. (2004). Reminisce hot and cold. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 327-331). Sebastopol, CA: O'Reilly.

    Abstract

    Find the fire that's cooking your memory systems.
  • Fradera, A., & Sauter, D. (2004). Signal emotion. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 320-324). Sebastopol, CA: O'Reilly.

    Abstract

    Emotions are powerful on the inside but often displayed in subtle ways on the outside. Are these displays culturally dependent or universal?
  • Francks, C. (2019). The genetic bases of brain lateralization. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 595-608). Cambridge, MA: MIT Press.
  • Frank, S. L., Monaghan, P., & Tsoukala, C. (2019). Neural network models of language acquisition and processing. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 277-293). Cambridge, MA: MIT Press.
  • Frank, S. L. (2004). Computational modeling of discourse comprehension. PhD Thesis, Tilburg University, Tilburg.
  • Frank, S. L., Koppen, M., Noordman, L. G. M., & Vonk, W. (2007). Modeling multiple levels of text presentation. In F. Schmalhofer, & C. A. Perfetti (Eds.), Higher level language processes in the brain: Inference and comprehension processes (pp. 133-157). Mahwah, NJ: Erlbaum.
  • Franken, M. K. (2018). Listening for speaking: Investigations of the relationship between speech perception and production. PhD Thesis, Radboud University, Nijmegen.

    Abstract

    Speaking and listening are complex tasks that we perform on a daily basis, almost without conscious effort. Interestingly, speaking almost never occurs without listening: whenever we speak, we at least hear our own speech. The research in this thesis is concerned with how the perception of our own speech influences our speaking behavior. We show that unconsciously, we actively monitor this auditory feedback of our own speech. This way, we can efficiently take action and adapt articulation when an error occurs and auditory feedback does not correspond to our expectation. Processing the auditory feedback of our speech does not, however, automatically affect speech production. It is subject to a number of constraints. For example, we do not just track auditory feedback, but also its consistency. If auditory feedback is more consistent over time, it has a stronger influence on speech production. In addition, we investigated how auditory feedback during speech is processed in the brain, using magnetoencephalography (MEG). The results suggest the involvement of a broad cortical network including both auditory and motor-related regions. This is consistent with the view that the auditory center of the brain is involved in comparing auditory feedback to our expectation of auditory feedback. If this comparison yields a mismatch, motor-related regions of the brain can be recruited to alter the ongoing articulations.

    Additional information

    full text via Radboud Repository
  • Friederici, A., & Levelt, W. J. M. (1988). Sprache. In K. Immelmann, K. Scherer, C. Vogel, & P. Schmook (Eds.), Psychobiologie: Grundlagen des Verhaltens (pp. 648-671). Stuttgart: Fischer.
  • Friederici, A., & Levelt, W. J. M. (1987). Sprache. In K. Immelmann, K. Scherer, & C. Vogel (Eds.), Funkkolleg Psychobiologie (pp. 58-87). Weinheim: Beltz.
  • Furuyama, N., & Sekine, K. (2007). Forgetful or strategic? The mystery of the systematic avoidance of reference in the cartoon story nsarrative. In S. D. Duncan, J. Cassel, & E. T. Levy (Eds.), Gesture and the Dynamic Dimension of Language: Essays in honor of David McNeill (pp. 75-81). Amsterdam: John Benjamins Publishing Company.
  • Gaby, A. R. (2005). Some participants are more equal than others: Case and the composition of arguments in Kuuk Thaayorre. In M. Amberber, & H. d. Hoop (Eds.), Competition and variation in natural languages: the case for the case (pp. 9-39). Amsterdam: Elsevier.
  • Gingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2018). Defining the biological bases of individual differences in musicality. In H. Honing (Ed.), The origins of musicality (pp. 221-250). Cambridge, MA: MIT Press.
  • Goriot, C. (2019). Early-English education works no miracles: Cognitive and linguistic development in mainstream, early-English, and bilingual primary-school pupils in the Netherlands. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Goudbeek, M. (2007). The acquisition of auditory categories. PhD Thesis, Radboud University Nijmegen, Nijmegen.

    Abstract

    This doctoral dissertation investigated the learning of auditory categories by applying insights from child language learning, visual category learning and phonetic categorization by adults. The experiments in chapter 2 concern supervised learning of multidimensional non-speech categories varying in two dimensions: duration and a non speech analogue of formant frequency. In experiment 1, one dimension of variation determined category membership, variation in the other dimension was irrelevant. Listeners quickly learned to categorize according to this distinction. In experiment 2, both dimensions needed to be combined to categorize correctly. Performance was much lower, but most listeners succeeded in this task. However, in a maintenance phase without feedback or distributional information, listeners reverted to a unidimensional solution. In a maintenance phase with distributional information, listeners did use both dimensions correctly, arguing for the importance of distributional information in (auditory) category acquisition. In chapter 3, the listeners had to classify the same categories, but without feedback. In experiment 1, listeners succeeded to discover the relevant dimension of variation (and ignore the irrelevant one) without feedback. Much of this learning was lost in the maintenance phase, especially for the dimension formant frequency. With two relevant dimensions (Experiment 2), listeners were not able to learn to use both dimensions and reverted to a unidimensional solution. Chapter 4 applied the paradigms of chapter 2 and 3 to the learning of speech categories. Spanish native listeners learned Dutch vowel contrast with one relevant dimension of variation. With feedback, learning was swift, although was not well maintained without feedback or distributional information. Without feedback, Spanish listeners reverted to the dimensions best known in their native phonology, formant frequency, even when distributional information pointed to duration. The results are discussed in chapter 5. The implications for models of speech acquisition are discussed.

    Additional information

    full text via Radboud Repository
  • Goudbeek, M., Smits, R., Cutler, A., & Swingley, D. (2005). Acquiring auditory and phonetic categories. In H. Cohen, & C. Lefebvre (Eds.), Handbook of categorization in cognitive science (pp. 497-513). Amsterdam: Elsevier.
  • Grabe, E. (1998). Comparative intonational phonology: English and German. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.2057683.
  • Gullberg, M., & Holmqvist, K. (2001). Eye tracking and the perception of gestures in face-to-face interaction vs on screen. In C. Cavé, I. Guaïtella, & S. Santi (Eds.), Oralité et gestualité (2001) (pp. 381-384). Paris, France: Editions Harmattan.
  • De Haan, E., & Hagoort, P. (2004). Het brein in beeld. In B. Deelman, P. Eling, E. De Haan, & E. Van Zomeren (Eds.), Klinische neuropsychologie (pp. 82-98). Amsterdam: Boom.
  • Hagoort, P. (2007). The memory, unification, and control (MUC) model of language. In T. Sakamoto (Ed.), Communicating skills of intention (pp. 259-291). Tokyo: Hituzi Syobo.
  • Hagoort, P. (2007). The memory, unification, and control (MUC) model of language. In A. S. Meyer, L. Wheeldon, & A. Krott (Eds.), Automaticity and control in language processing (pp. 243-270). Hove: Psychology Press.
  • Hagoort, P., & Ramsey, N. (2001). De gereedschapskist van de cognitieve neurowetenschap. In F. Wijnen, & F. Verstraten (Eds.), Het brein te kijk (pp. 39-67). Lisse: Swets & Zeitlinger.
  • Hagoort, P., & Indefrey, P. (1997). De neurale architectuur van het menselijk taalvermogen. In H. Peters (Ed.), Handboek stem-, spraak-, en taalpathologie (pp. 1-36). Houten: Bohn Stafleu Van Loghum.
  • Hagoort, P. (2001). De verbeelding aan de macht: Hoe het menselijk taalvermogen zichtbaar wordt in de (beeld) analyse van hersenactiviteit. In J. Joosse (Ed.), Biologie en psychologie: Naar vruchtbare kruisbestuivingen (pp. 41-60). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.
  • Hagoort, P., & Brown, C. M. (1995). Electrophysiological insights into language and speech processing. In K. Elenius, & P. Branderud (Eds.), Proceedings of the XIIIth International Congress of Phonetic Sciences: ICPhS 95: Stockholm, Sweden, 13-19 August, 1995 (pp. 172-178). Stockholm: Stockholm University.
  • Hagoort, P., & Kutas, M. (1995). Electrophysiological insights into language deficits. In F. Boller, & J. Grafman (Eds.), Handbook of neuropsychology: Vol. 10 (pp. 105-134). Amsterdam: Elsevier.
  • Hagoort, P. (2004). Er is geen behoefte aan trompetten als gordijnen. In H. Procee, H. Meijer, P. Timmerman, & R. Tuinsma (Eds.), Bij die wereld wil ik horen! Zesendertig columns en drie essays over de vorming tot academicus (pp. 78-80). Amsterdam: Boom.
  • Hagoort, P. (2005). Breintaal. In S. Knols, & D. Redeker (Eds.), NWO-Spinozapremies 2005 (pp. 21-34). Den Haag: NWO.
  • Hagoort, P. (2005). Broca's complex as the unification space for language. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 157-173). Mahwah, NJ: Erlbaum.
  • Hagoort, P. (2004). Het zwarte gat tussen brein en bewustzijn. In N. Korteweg (Ed.), De oorsprong: Over het ontstaan van het leven en alles eromheen (pp. 107-124). Amsterdam: Boom.
  • Hagoort, P., & Beckmann, C. F. (2019). Key issues and future directions: The neural architecture for language. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 527-532). Cambridge, MA: MIT Press.
  • Hagoort, P. (2019). Introduction. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 1-6). Cambridge, MA: MIT Press.
  • Hagoort, P., & Van Turennout, M. (1997). The electrophysiology of speaking: Possibilities of event-related potential research for speech production. In W. Hulstijn, H. Peters, & P. Van Lieshout (Eds.), Speech motor production and fluency disorders: Brain research in speech production (pp. 351-361). Amsterdam: Elsevier.
  • Hagoort, P., & Wassenaar, M. (1997). Taalstoornissen: Van theorie tot therapie. In B. Deelman, P. Eling, E. De Haan, A. Jennekens, & A. Van Zomeren (Eds.), Klinische Neuropsychologie (pp. 232-248). Meppel: Boom.
  • Hagoort, P. (1998). The shadows of lexical meaning in patients with semantic impairments. In B. Stemmer, & H. Whitaker (Eds.), Handbook of neurolinguistics (pp. 235-248). New York: Academic Press.
  • Hagoort, P. (1995). Wat zijn woorden en waar vinden we ze in ons brein? In E. Marani, & J. Lanser (Eds.), Dyslexie: Foutloos spellen alleen weggelegd voor gestoorden? (pp. 37-46). Leiden: Boerhaave Commissie voor Postacademisch Onderwijs in de Geneeskunde, Rijksuniversiteit Leiden.
  • Hagoort, P. (1997). Zonder fosfor geen gedachten: Gagarin, geest en brein. In Brain & Mind (pp. 6-14). Utrecht: Reünistenvereniging Veritas.
  • Hammarström, H. (2019). An inventory of Bantu languages. In M. Van de Velde, K. Bostoen, D. Nurse, & G. Philippson (Eds.), The Bantu languages (2nd). London: Routledge.

    Abstract

    This chapter aims to provide an updated list of all Bantu languages known at present and to provide individual pointers to further information on the inventory. The area division has some correlation with what are perceived genealogical relations between Bantu languages, but they are not defined as such and do not change whenever there is an update in our understanding of genealogical relations. Given the popularity of Guthrie codes in Bantu linguistics, our listing also features a complete mapping to Guthrie codes. The language inventory listed excludes sign languages used in the Bantu area, speech registers, pidgins, drummed/whistled languages and urban youth languages. Pointers to such languages in the Bantu area are included in the continent-wide overview in Hammarstrom. The most important alternative names, subvarieties and spelling variants are given for each language, though such lists are necessarily incomplete and reflect some degree of arbitrary selection.
  • Hammarström, H. (2018). Language isolates in the New Guinea region. In L. Campbell (Ed.), Language Isolates (pp. 287-322). London: Routledge.
  • Haun, D. B. M. (2007). Cognitive cladistics and the relativity of spatial cognition. PhD Thesis, Radboud University Nijmegen, Nijmegen.

    Abstract

    This thesis elaborates on a methodological approach to reliably infer cognitive preferences in an extinct evolutionary ancestor of modern humans. In attempts to understand cognitive evolution, humans have been compared to capuchin monkeys, tamarins, and chimpanzees to name but a few. But comparisons between humans and one other, maybe even distantly related primate, as interesting as they might be, will not tell us anything about an evolutionary ancestor to humans. To put it bluntly: None of the living primates, not even chimpanzees, are a human ancestor. With that in mind, we can still use a comparative approach to gain information about our evolutionary ancestors, as long as we are careful about whom we compare with whom. If a certain trait exists in all genera of a phylogenetic clade, it was most likely present in their common ancestor. The great apes are such a clade (Pongo, Gorilla, Pan and Homo). It follows that, if members of all great ape genera shared a particular cognitive preference or ability, it is most likely part of the evolutionary inheritance of the clade at least ever since their last common ancestor, and therefore also an evolutionarily old, inherited cognitive default in humans. This thesis contains studies comparing all 4 extant Hominid genera, including humans of 4 different age-groups and 2 different cultures. Results show that all great apes do indeed share some cognitive preferences, which they most likely inherited from an evolutionary ancestor. Additionally, human cognitive preferences can change away from such an inherited predisposition given ontogenetic factors, and are at least in part variably adaptable to cultural circumstance.

    Additional information

    full text via Radboud Repository
  • Haveman, A. (1997). The open-/closed-class distinction in spoken-word recognition. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.2057704.
  • Hawkins, J. A., & Cutler, A. (1988). Psycholinguistic factors in morphological asymmetry. In J. A. Hawkins (Ed.), Explaining language universals (pp. 280-317). Oxford: Blackwell.
  • Hayano, K. (2007). Repetitional agreement and anaphorical agreement: negotiation of affiliation and disaffiliation in Japanese conversation. Master Thesis, University of California, Los Angeles.
  • Hellwig, F. M., & Lüpke, F. (2001). Caused positions. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 126-128). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874644.

    Abstract

    What kinds of resources to languages have for describing location and position? For some languages, verbs have an important role to play in describing different kinds of situations (e.g., whether a bottle is standing or lying on the table). This task is designed to examine the use of positional verbs in locative constructions, with respect to the presence or absence of a human “positioner”. Participants are asked to describe video clips showing locative states that occur spontaneously, or because of active interference from a person. The task follows on from two earlier tools for the elicitation of static locative descriptions (BowPed and the Ameka picture book task). A number of additional variables (e.g. canonical v. non-canonical orientation of the figure) are also targeted in the stimuli set.

    Additional information

    2001_Caused_positions.zip
  • Hill, C. (2018). Person reference and interaction in Umpila/Kuuku Ya'u narrative. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Hoey, E., & Kendrick, K. H. (2018). Conversation analysis. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 151-173). Hoboken: Wiley.

    Abstract

    Conversation Analysis (CA) is an inductive, micro-analytic, and predominantly qualitative
    method for studying human social interactions. This chapter describes and illustrates the basic
    methods of CA. We first situate the method by describing its sociological foundations, key areas
    of analysis, and particular approach in using naturally occurring data. The bulk of the chapter is
    devoted to practical explanations of the typical conversation analytic process for collecting data
    and producing an analysis. We analyze a candidate interactional practice – the assessmentimplicative
    interrogative – using real data extracts as a demonstration of the method, explicitly
    laying out the relevant questions and considerations for every stage of an analysis. The chapter
    concludes with some discussion of quantitative approaches to conversational interaction, and
    links between CA and psycholinguistic concerns
  • Holler, J. (2004). Semantic and pragmatic aspects of representational gestures: Towards a unified model of communication in talk. PhD Thesis, University of Manchester, Manchester.
  • Holler, J., & Beattie, G. (2004). The interaction of iconic gesture and speech. In A. Cammurri, & G. Volpe (Eds.), Lecture Notes in Computer Science, 5th International Gesture Workshop, Genova, Italy, 2003; Selected Revised Papers (pp. 63-69). Heidelberg: Springer Verlag.
  • Hömke, P. (2019). The face in face-to-face communication: Signals of understanding and non-understanding. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • De Hoop, H., & Narasimhan, B. (2005). Differential case-marking in Hindi. In M. Amberber, & H. de Hoop (Eds.), Competition and variation in natural languages: The case for case (pp. 321-345). Amsterdam: Elsevier.
  • Huettig, F., & Altmann, G. T. M. (2004). The online processing of ambiguous and unambiguous words in context: Evidence from head-mounted eye-tracking. In M. Carreiras, & C. Clifton (Eds.), The on-line study of sentence comprehension: Eyetracking, ERP and beyond (pp. 187-207). New York: Psychology Press.
  • Huettig, F., Kolinsky, R., & Lachmann, T. (Eds.). (2018). The effects of literacy on cognition and brain functioning [Special Issue]. Language, Cognition and Neuroscience, 33(3).
  • Hunley, K., Dunn, M., Lindström, E., Reesink, G., Terrill, A., Norton, H., Scheinfeldt, L., Friedlaender, F. R., Merriwether, D. A., Koki, G., & Friedlaender, J. S. (2007). Inferring prehistory from genetic, linguistic, and geographic variation. In J. S. Friedlaender (Ed.), Genes, language, & culture history in the Southwest Pacific (pp. 141-154). Oxford: Oxford University Press.

    Abstract

    This chapter investigates the fit of genetic, phenotypic, and linguistic data to two well-known models of population history. The first of these models, termed the population fissions model, emphasizes population splitting, isolation, and independent evolution. It predicts that genetic and linguistic data will be perfectly tree-like. The second model, termed isolation by distance, emphasizes genetic exchange among geographically proximate populations. It predicts a monotonic decline in genetic similarity with increasing geographic distance. While these models are overly simplistic, deviations from them were expected to provide important insights into the population history of northern Island Melanesia. The chapter finds scant support for either model because the prehistory of the region has been so complex. Nonetheless, the genetic and linguistic data are consistent with an early radiation of proto-Papuan speakers into the region followed by a much later migration of Austronesian speaking peoples. While these groups subsequently experienced substantial genetic and cultural exchange, this exchange has been insufficient to erase this history of separate migrations.
  • Indefrey, P., & Cutler, A. (2004). Prelexical and lexical processing in listening. In M. Gazzaniga (Ed.), The cognitive neurosciences III. (pp. 759-774). Cambridge, MA: MIT Press.

    Abstract

    This paper presents a meta-analysis of hemodynamic studies on passive auditory language processing. We assess the overlap of hemodynamic activation areas and activation maxima reported in experiments involving the presentation of sentences, words, pseudowords, or sublexical or non-linguistic auditory stimuli. Areas that have been reliably replicated are identified. The results of the meta-analysis are compared to electrophysiological, magnetencephalic (MEG), and clinical findings. It is concluded that auditory language input is processed in a left posterior frontal and bilateral temporal cortical network. Within this network, no processing leve l is related to a single cortical area. The temporal lobes seem to differ with respect to their involvement in post-lexical processing, in that the left temporal lobe has greater involvement than the right, and also in the degree of anatomical specialization for phonological, lexical, and sentence -level processing, with greater overlap on the right contrasting with a higher degree of differentiation on the left.
  • Indefrey, P. (2007). Brain imaging studies of language production. In G. Gaskell (Ed.), Oxford handbook of psycholinguistics (pp. 547-564). Oxford: Oxford University Press.

    Abstract

    Neurocognitive studies of language production have provided sufficient evidence on both the spatial and the temporal patterns of brain activation to allow tentative and in some cases not so tentative conclusions about function-structure relationships. This chapter reports meta-analysis results that identify reliable activation areas for a range of word, sentence, and narrative production tasks both in the native language and a second language. Based on a theoretically motivated analysis of language production tasks it is possible to specify relationships between brain areas and functional processing components of language production that could not have been derived from the data provided by any single task.
  • Indefrey, P. (2004). Hirnaktivierungen bei syntaktischer Sprachverarbeitung: Eine Meta-Analyse. In H. Müller, & G. Rickheit (Eds.), Neurokognition der Sprache (pp. 31-50). Tübingen: Stauffenburg.
  • Indefrey, P. (1997). PET research in language production. In W. Hulstijn, H. F. M. Peters, & P. H. H. M. Van Lieshout (Eds.), Speech production: motor control, brain research and fluency disorders (pp. 269-278). Amsterdam: Elsevier.

    Abstract

    The aim of this paper is to discuss an inherent difficulty of PET (and fMRI) research in language production. On the one hand, language production presupposes some degree of freedom for the subject, on the other hand, interpretability of results presupposes restrictions of this freedom. This difficulty is reflected in the existing PET literature in some neglect of the general principle to design experiments in such a way that the results do not allow for alternative interpretations. It is argued that by narrowing down the scope of experiments a gain in interpretability can be achieved.

Share this page