Publications

Displaying 101 - 200 of 413
  • Eisner, F., & McQueen, J. M. (2018). Speech perception. In S. Thompson-Schill (Ed.), Stevens’ handbook of experimental psychology and cognitive neuroscience (4th ed.). Volume 3: Language & thought (pp. 1-46). Hoboken: Wiley. doi:10.1002/9781119170174.epcn301.

    Abstract

    This chapter reviews the computational processes that are responsible for recognizing word forms in the speech stream. We outline the different stages in a processing hierarchy from the extraction of general acoustic features, through speech‐specific prelexical processes, to the retrieval and selection of lexical representations. We argue that two recurring properties of the system as a whole are abstraction and adaptability. We also present evidence for parallel processing of information on different timescales, more specifically that segmental material in the speech stream (its consonants and vowels) is processed in parallel with suprasegmental material (the prosodic structures of spoken words). We consider evidence from both psycholinguistics and neurobiology wherever possible, and discuss how the two fields are beginning to address common computational problems. The challenge for future research in speech perception will be to build an account that links these computational problems, through functional mechanisms that address them, to neurobiological implementation.
  • Enfield, N. J., Levinson, S. C., & Meira, S. (2001). Recognitional deixis. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 78-81). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874641.

    Abstract

    “Recognitional” words and constructions enshrine our systematic reliance on shared knowledge in dedicated morphological forms and usage patterns. For example, English has a large range of terms for use when a speaker cannot locate the word or name for something or someone (e.g., whatsit, what’s-his-name), but thinks that the interlocutor knows, or can easily work out, what the speaker is talking about. This task aims to identify and investigate these kinds of expressions in the research language, including their grammaticalised status, meaning, distribution, and productivity. The task consists of a questionnaire with examples of relevant hypothetical scenarios that can be used in eliciting the relevant terms. The researcher is then encouraged to pursue further questions in regard to these items.
  • Enfield, N. J. (2001). Body. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 62-77). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874633.

    Abstract

    This task investigates the extensional meaning of body part terms, in particular the terms for the upper and lower limbs. Two questions are addressed, namely (i) are the boundaries of these body parts universal, guided by proposed universals of object recognition? (ii) How can we compare the extensional meanings of body part terms within and across different systems of nomenclature? Consultants receive booklets with line drawings of a body and are asked to colour in specific parts of the body.
  • Enfield, N. J., Levinson, S. C., De Ruiter, J. P., & Stivers, T. (2010). Building a corpus of multimodal interaction in your field site. In E. Norcliffe, & N. J. Enfield (Eds.), Field manual volume 13 (pp. 30-33). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Enfield, N. J. (2009). 'Case relations' in Lao, a radically isolating language. In A. L. Malčukov, & A. Spencer (Eds.), The Oxford handbook of case (pp. 808-819). Oxford: Oxford University Press.
  • Enfield, N. J. (2006). Heterosemy and the grammar-lexicon trade-off. In F. Ameka, A. Dench, & N. Evans (Eds.), Catching Language (pp. 297-320). Berlin: Mouton de Gruyter.
  • Enfield, N. J. (2006). Laos - language situation. In K. Brown (Ed.), Encyclopedia of Language and Linguistics (vol. 6) (pp. 698-700). Amsterdam: Elsevier.

    Abstract

    Laos features a high level of linguistic diversity, with more than 70 languages from four different major language families (Tai, Mon-Khmer, Hmong-Mien, Tibeto-Burman). Mon-Khmer languages were spoken in Laos earlier than other languages, with incoming migrations by Tai speakers (c. 2000 years ago) and Hmong-Mien speakers (c. 200 years ago). There is widespread language contact and multilingualism in upland minority communities, while lowland-dwelling Lao speakers are largely monolingual. Lao is the official national language. Most minority languages are endangered, with a few exceptions (notably Hmong and Kmhmu). There has been relatively little linguistic research on languages of Laos, due to problems of both infrastructure and administration.
  • Enfield, N. J., & Levinson, S. C. (2010). Metalanguage for speech acts. In Field manual volume 13 (pp. 34-36). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    People of all cultures have some degree of concern with categorizing types of communicative social action. All languages have words with meanings like speak, say, talk, complain, curse, promise, accuse, nod, wink, point and chant. But the exact distinctions they make will differ in both quantity and quality. How is communicative social action categorised across languages and cultures? The goal of this task is to establish a basis for cross-linguistic comparison of native metalanguages for social action.
  • Enfield, N. J., & Levinson, S. C. (2009). Metalanguage for speech acts. In A. Majid (Ed.), Field manual volume 12 (pp. 51-53). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.883559.

    Abstract

    People of all cultures have some degree of concern with categorizing types of communicative social action. All languages have words with meanings like speak, say, talk, complain, curse, promise, accuse, nod, wink, point and chant. But the exact distinctions they make will differ in both quantity and quality. How is communicative social action categorised across languages and cultures? The goal of this task is to establish a basis for cross-linguistic comparison of native metalanguages for social action.
  • Enfield, N. J. (2009). Language and culture. In L. Wei, & V. Cook (Eds.), Contemporary Applied Linguistics Volume 2 (pp. 83-97). London: Continuum.
  • Enfield, N. J. (1999). Lao as a national language. In G. Evans (Ed.), Laos: Culture and society (pp. 258-290). Chiang Mai: Silkworm Books.
  • Enfield, N. J., & Bohnemeyer, J. (2001). Hidden colour-chips task: Demonstratives, attention, and interaction. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 21-28). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874636.

    Abstract

    Demonstratives are typically described as encoding degrees of physical distance between the object referred to, and the speaker or addressee. For example, this in English is used to talk about things that are physically near the speaker, and that for things that are not. But is this how speakers really choose between these words in actual talk? This task aims to generate spontaneous language data concerning deixis, gesture, and demonstratives, and to investigate the significance of different factors (e.g., physical distance, attention) in demonstrative selection. In the presence of one consultant (the “memoriser”), sixteen colour chips are hidden under objects in a specified array. Another consultant enters the area and asks the memoriser to recount the locations of the chips. The task is designed to create a situation where the speaker genuinely attempts to manipulate the addressee’s attention on objects in the immediate physical space.
  • Enfield, N. J. (2001). Linguistic evidence for a Lao perspective on facial expression of emotion. In J. Harkins, & A. Wierzbicka (Eds.), Emotions in crosslinguistic perspective (pp. 149-166). Berlin: Mouton de Gruyter.
  • Enfield, N. J. (2009). Everyday ritual in the residential world. In G. Senft, & E. B. Basso (Eds.), Ritual communication (pp. 51-80). Oxford: Berg.
  • Enfield, N. J. (2001). On genetic and areal linguistics in Mainland South-East Asia: Parallel polyfunctionality of ‘acquire’. In A. Y. Aikhenvald, & R. M. Dixon (Eds.), Areal diffusion and genetic inheritance: Problems in comparative linguistics (pp. 255-290). Oxford University Press.
  • Enfield, N. J., Levinson, S. C., & Stivers, T. (2009). Social action formulation: A "10-minutes" task. In A. Majid (Ed.), Field manual volume 12 (pp. 54-55). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.883564.

    Abstract

    Human actions in the social world – like greeting, requesting, complaining, accusing, asking, confirming, etc. – are recognised through the interpretation of signs. Language is where much of the action is, but gesture, facial expression and other bodily actions matter as well. The goal of this task is to establish a maximally rich description of a representative, good quality piece of conversational interaction, which will serve as a reference point for comparative exploration of the status of social actions and their formulation across language
  • Enfield, N. J., & Dunn, M. (2001). Supplements to the Wilkins 1999 demonstrative questionnaire. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 82-84). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874638.
  • Ernestus, M., & Baayen, R. H. (2006). The functionality of incomplete neutralization in Dutch: The case of past-tense formation. In L. Goldstein, D. Whalen, & C. Best (Eds.), Laboratory Phonology 8 (pp. 27-49). Berlin: Mouton de Gruyter.
  • Ernestus, M., & Smith, R. (2018). Qualitative and quantitative aspects of phonetic variation in Dutch eigenlijk. In F. Cangemi, M. Clayards, O. Niebuhr, B. Schuppler, & M. Zellers (Eds.), Rethinking reduction: Interdisciplinary perspectives on conditions, mechanisms, and domains for phonetic variation (pp. 129-163). Berlin/Boston: De Gruyter Mouton.
  • Fedor, A., Pléh, C., Brauer, J., Caplan, D., Friederici, A. D., Gulyás, B., Hagoort, P., Nazir, T., & Singer, W. (2009). What are the brain mechanisms underlying syntactic operations? In D. Bickerton, & E. Szathmáry (Eds.), Biological foundations and origin of syntax (pp. 299-324). Cambridge, MA: MIT Press.

    Abstract

    This chapter summarizes the extensive discussions that took place during the Forum as well as the subsequent months thereafter. It assesses current understanding of the neuronal mechanisms that underlie syntactic structure and processing.... It is posited that to understand the neurobiology of syntax, it might be worthwhile to shift the balance from comprehension to syntactic encoding in language production
  • Fernald, A., McRoberts, G. W., & Swingley, D. (2001). Infants' developing competence in recognizing and understanding words in fluent speech. In J. Weissenborn, & B. Höhle (Eds.), Approaches to Bootstrapping: Phonological, lexical, syntactic and neurophysiological aspects of early language acquisition. Volume 1 (pp. 97-123). Amsterdam: Benjamins.
  • Fisher, S. E. (2006). How can animal studies help to uncover the roles of genes implicated in human speech and language disorders? In G. S. Fisch, & J. Flint (Eds.), Transgenic and knockout models of neuropsychiatric disorders (pp. 127-149). Totowa, NJ: Humana Press.

    Abstract

    The mysterious human propensity for acquiring speech and language has fascinated scientists for decades. A substantial body of evidence suggests that this capacity is rooted in aspects of neurodevelopment that are specified at the genomic level. Researchers have begun to identify genetic factors that increase susceptibility to developmental disorders of speech and language, thereby offering the first molecular entry points into neuronal mechanisms underlying human vocal communication. The identification of genetic variants influencing language acquisition facilitates the analysis of animal models in which the corresponding orthologs are disrupted. At face value, the situation raises aperplexing question: if speech and language are uniquely human, can any relevant insights be gained from investigations of gene function in other species? This chapter addresses the question using the example of FOXP2, a gene implicated in a severe monogenic speech and language disorder. FOXP2 encodes a transcription factor that is highly conserved in vertebrate species, both in terms of protein sequence and expression patterns. Current data suggest that an earlier version of this gene, present in the common ancestor of humans, rodents, and birds, was already involved in establishing neuronal circuits underlying sensory-motor integration and learning of complex motor sequences. This may have represented one of the factors providing a permissive neural environment for subsequent evolution of vocal learning. Thus, dissection of neuromolecular pathways regulated by Foxp2 in nonlinguistic species is a necessary prerequisite for understanding the role of the human version of the gene in speech and language.
  • Fisher, S. E., & Smith, S. (2001). Progress towards the identification of genes influencing developmental dyslexia. In A. Fawcett (Ed.), Dyslexia: Theory and good practice (pp. 39-64). London: Whurr.
  • Fitz, H. (2006). Church's thesis and physical computation. In A. Olszewski, J. Wolenski, & R. Janusz (Eds.), Church's Thesis after 70 years (pp. 175-219). Frankfurt a. M: Ontos Verlag.
  • Flecken, M., & Von Stutterheim, C. (2018). Sprache und Kognition: Sprachvergleichende und lernersprachliche Untersuchungen zur Ereigniskonzeptualisierung. In S. Schimke, & H. Hopp (Eds.), Sprachverarbeitung im Zweitspracherwerb (pp. 325-356). Berlin: De Gruyter. doi:10.1515/9783110456356-014.
  • Floyd, S. (2018). Egophoricity and argument structure in Cha'palaa. In S. Floyd, E. Norcliffe, & L. San Roque (Eds.), Egophoricity (pp. 269-304). Amsterdam: Benjamins.

    Abstract

    The Cha’palaa language of Ecuador (Barbacoan) features verbal morphology for marking knowledge-based categories that, in usage, show a variant of the cross-linguistically recurrent pattern of ‘egophoric distribution': specific forms associate with speakers in contrast to others in statements and with addressees in contrast to others in questions. These are not person markers, but rather are used by speakers to portray their involvement in states of affairs as active, agentive participants (ego) versus other types of involvement (non-ego). They interact with person and argument structure, but through pragmatic ‘person sensitivities’ rather than through grammatical agreement. Not only does this pattern appear in verbal morphology, it also can be observed in alternations of predicate construction types and case alignment, helping to show how egophoric marking is a pervasive element of Cha'palaa's linguistic system. This chapter gives a first account of egophoricity in Cha’palaa, beginning with a discussion of person sensitivity, egophoric distribution, and issues of flexibility of marking with respect to degree of volition or control. It then focuses on a set of intransitive experiencer (or ‘endopathic') predicates that refer to internal states which mark egophoric values for the undergoer role, not the actor role, showing ‘quirky’ accusative marking instead of nominative case. It concludes with a summary of how egophoricity in Cha'palaa interacts with issues of argument structure in comparison to a language with person agreement, here represented by examples from Cha’palaa’s neighbor Ecuadorian Highland Quechua.
  • Folia, V., Uddén, J., De Vries, M., Forkstam, C., & Petersson, K. M. (2010). Artificial language learning in adults and children. In M. Gullberg, & P. Indefrey (Eds.), The earliest stages of language learning (pp. 188-220). Malden, MA: Wiley-Blackwell.
  • Forkel, S. J., & Catani, M. (2018). Structural Neuroimaging. In A. De Groot, & P. Hagoort (Eds.), Research Methods in Psycholinguistics and the Neurobiology of Language: A Practical Guide (pp. 288-308). Hoboken: Wiley. doi:10.1002/9781394259762.ch15.

    Abstract

    Structural imaging based on computerized tomography (CT) and magnetic resonance imaging (MRI) has progressively replaced traditional post‐mortem studies in the process of identifying the neuroanatomical basis of language. In the clinical setting, the information provided by structural imaging has been used to confirm the exact diagnosis and formulate an individualized treatment plan. In the research arena, neuroimaging has permitted to understand neuroanatomy at the individual and group level. The possibility to obtain quantitative measures of lesions has improved correlation analyses between severity of symptoms, lesion load, and lesion location. More recently, the development of structural imaging based on diffusion MRI has provided valid solutions to two major limitations of more conventional imaging. In stroke patients, diffusion can visualize early changes due to a stroke that are otherwise not detectable with more conventional structural imaging, with important implications for the clinical management of acute stroke patients. Beyond the sensitivity to early changes, diffusion imaging tractography presents the possibility of visualizing the trajectories of individual white matter pathways connecting distant regions. A pathway analysis based on tractography is offering a new perspective in neurolinguistics. First, it permits to formulate new anatomical models of language function in the healthy brain and allows to directly test these models in the human population without any reliance on animal models. Second, by defining the exact location of the damage to specific white matter connections we can understand the contribution of different mechanisms to the emergence of language deficits (e.g., cortical versus disconnection mechanisms). Finally, a better understanding of the anatomical variability of different language networks is helping to identify new anatomical predictors of language recovery. In this chapter we will focus on the principles of structural MRI and, in particular, diffusion imaging and tractography and present examples of how these methods have informed our understanding of variance in language performances in the healthy brain and language deficits in patient populations.
  • Francks, C. (2009). 13 - LRRTM1: A maternally suppressed genetic effect on handedness and schizophrenia. In I. E. C. Sommer, & R. S. Kahn (Eds.), Cerebral lateralization and psychosis (pp. 181-196). Cambridge: Cambridge University Press.

    Abstract

    The molecular, developmental, and evolutionary bases of human brain asymmetry are almost completely unknown. Genetic linkage and association mapping have pin-pointed a gene called LRRTM1 (leucine-rich repeat transmembrane neuronal 1) that may contribute to variability in human handedness. Here I describe how LRRTM1's involvement in handedness was discovered, and also the latest knowledge of its functions in brain development and disease. The association of LRRTM1 with handedness was derived entirely from the paternally inherited gene, and follow-up analysis of gene expression confirmed that LRRTM1 is one of a small number of genes that are imprinted in the human genome, for which the maternally inherited copy is suppressed. The same variation at LRRTM1 that was associated paternally with mixed-/left-handedness was also over-transmitted paternally to schizophrenic patients in a large family study.
    LRRTM1 is expressed in specific regions of the developing and adult forebrain by post-mitotic neurons, and the protein may be involved in axonal trafficking. Thus LRRTM1 has a probable role in neurodevelopment, and its association with handedness suggests that one of its functions may be in establishing or consolidating human brain asymmetry.
    LRRTM1 is the first gene for which allelic variation has been associated with human handedness. The genetic data also suggest indirectly that the epigenetic regulation of this gene may yet prove more important than DNA sequence variation for influencing brain development and disease.
    Intriguingly, the parent-of-origin activity of LRRTM1 suggests that men and women have had conflicting interests in relation to the outcome of lateralized brain development in their offspring.
  • Furman, R., & Ozyurek, A. (2006). The use of discourse markers in adult and child Turkish oral narratives: Şey, yani and işte. In S. Yagcioglu, & A. Dem Deger (Eds.), Advances in Turkish linguistics (pp. 467-480). Izmir: Dokuz Eylul University Press.
  • Gentner, D., & Bowerman, M. (2009). Why some spatial semantic categories are harder to learn than others: The typological prevalence hypothesis. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 465-480). New York: Psychology Press.
  • Gingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2018). Defining the biological bases of individual differences in musicality. In H. Honing (Ed.), The origins of musicality (pp. 221-250). Cambridge, MA: MIT Press.
  • Goldin-Meadow, S., Ozyurek, A., Sancar, B., & Mylander, C. (2009). Making language around the globe: A cross-linguistic study of homesign in the United States, China, and Turkey. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 27-39). New York: Psychology Press.
  • Le Guen, O. (2009). The ethnography of emotions: A field worker's guide. In A. Majid (Ed.), Field manual volume 12 (pp. 31-34). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.446076.

    Abstract

    The goal of this task is to investigate cross-cultural emotion categories in language and thought. This entry is designed to provide researchers with some guidelines to describe the emotional repertoire of a community from an emic perspective. The first objective is to offer ethnographic tools and a questionnaire in order to understand the semantics of emotional terms and the local conception of emotions. The second objective is to identify the local display rules of emotions in communicative interactions.
  • Gullberg, M., Roberts, L., Dimroth, C., Veroude, K., & Indefrey, P. (2010). Adult language learning after minimal exposure to an unknown natural language. In M. Gullberg, & P. Indefrey (Eds.), The earliest stages of language learning (pp. 5-24). Malden, MA: Wiley-Blackwell.
  • Gullberg, M., & Holmqvist, K. (2001). Eye tracking and the perception of gestures in face-to-face interaction vs on screen. In C. Cavé, I. Guaïtella, & S. Santi (Eds.), Oralité et gestualité (2001) (pp. 381-384). Paris, France: Editions Harmattan.
  • Gullberg, M., De Bot, K., & Volterra, V. (2010). Gestures and some key issues in the study of language development. In M. Gullberg, & K. De Bot (Eds.), Gestures in language development (pp. 3-33). Amsterdam: Benjamins.
  • Gullberg, M., Indefrey, P., & Muysken, P. (2009). Research techniques for the study of code-switching. In B. E. Bullock, & J. A. Toribio (Eds.), The Cambridge handbook on linguistic code-switching (pp. 21-39). Cambridge: Cambridge University Press.

    Abstract

    The aim of this chapter is to provide researchers with a tool kit of semi-experimental and experimental techniques for studying code-switching. It presents an overview of the current off-line and on-line research techniques, ranging from analyses of published bilingual texts of spontaneous conversations, to tightly controlled experiments. A multi-task approach used for studying code-switched sentence production in Papiamento-Dutch bilinguals is also exemplified.
  • Gullberg, M. (2009). Why gestures are relevant to the bilingual mental lexicon. In A. Pavlenko (Ed.), The bilingual mental lexicon: Interdisciplinary approaches (pp. 161-184). Clevedon: Multilingual Matters.

    Abstract

    Gestures, the symbolic movements speakers perform while they speak, are systematically related to speech and language in non-trivial ways. This chapter presents an overview of what gestures can and cannot tell us about the monolingual and the bilingual mental lexicon. Gesture analysis opens for a broader view of the mental lexicon, targeting the interface between conceptual, semantic and syntactic aspects of event construal, and offers new possibilities for examining how languages co-exist and interact in bilinguals beyond the level of surface forms. The first section of this chapter gives a brief introduction to gesture studies and outlines the current views on the relationship between gesture, speech, and language. The second section targets the key questions for the study of the monolingual and bilingual lexicon, and illustrates the methods employed for addressing these questions. It further exemplifies systematic cross-linguistic patterns in gestural behaviour in monolingual and bilingual contexts. The final section discusses some implications of an expanded view of the multilingual lexicon that includes gesture, and outlines directions for future inquiry.

    Files private

    Request files
  • Hagoort, P. (2006). On Broca, brain and binding. In Y. Grodzinsky, & K. Amunts (Eds.), Broca's region (pp. 240-251). Oxford: Oxford University Press.
  • Hagoort, P., & Ramsey, N. (2001). De gereedschapskist van de cognitieve neurowetenschap. In F. Wijnen, & F. Verstraten (Eds.), Het brein te kijk (pp. 39-67). Lisse: Swets & Zeitlinger.
  • Hagoort, P. (2006). Het zwarte gat tussen brein en bewustzijn. In J. Janssen, & J. Van Vugt (Eds.), Brein en bewustzijn: Gedachtensprongen tussen hersenen en mensbeeld (pp. 9-24). Damon: Nijmegen.
  • Hagoort, P. (2009). The fractionation of spoken language understanding by measuring electrical and magnetic brain signals. In B. C. J. Moore, L. K. Tyler, & W. Marslen-Wilson (Eds.), The perception of speech: From sound to meaning (pp. 223-248). New York: Oxford University Press.
  • Hagoort, P., & Indefrey, P. (1997). De neurale architectuur van het menselijk taalvermogen. In H. Peters (Ed.), Handboek stem-, spraak-, en taalpathologie (pp. 1-36). Houten: Bohn Stafleu Van Loghum.
  • Hagoort, P. (2001). De verbeelding aan de macht: Hoe het menselijk taalvermogen zichtbaar wordt in de (beeld) analyse van hersenactiviteit. In J. Joosse (Ed.), Biologie en psychologie: Naar vruchtbare kruisbestuivingen (pp. 41-60). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.
  • Hagoort, P. (2009). Reflections on the neurobiology of syntax. In D. Bickerton, & E. Szathmáry (Eds.), Biological foundations and origin of syntax (pp. 279-296). Cambridge, MA: MIT Press.

    Abstract

    This contribution focuses on the neural infrastructure for parsing and syntactic encoding. From an anatomical point of view, it is argued that Broca's area is an ill-conceived notion. Functionally, Broca's area and adjacent cortex (together Broca's complex) are relevant for language, but not exclusively for this domain of cognition. Its role can be characterized as providing the necessary infrastructure for unification (syntactic and semantic). A general proposal, but with required level of computational detail, is discussed to account for the distribution of labor between different components of the language network in the brain.Arguments are provided for the immediacy principle, which denies a privileged status for syntax in sentence processing. The temporal profile of event-related brain potential (ERP) is suggested to require predictive processing. Finally, since, next to speed, diversity is a hallmark of human languages, the language readiness of the brain might not depend on a universal, dedicated neural machinery for syntax, but rather on a shaping of the neural infrastructure of more general cognitive systems (e.g., memory, unification) in a direction that made it optimally suited for the purpose of communication through language.
  • Hagoort, P., & Van Turennout, M. (1997). The electrophysiology of speaking: Possibilities of event-related potential research for speech production. In W. Hulstijn, H. Peters, & P. Van Lieshout (Eds.), Speech motor production and fluency disorders: Brain research in speech production (pp. 351-361). Amsterdam: Elsevier.
  • Hagoort, P., Baggio, G., & Willems, R. M. (2009). Semantic unification. In M. S. Gazzaniga (Ed.), The cognitive neurosciences, 4th ed. (pp. 819-836). Cambridge, MA: MIT Press.

    Abstract

    Language and communication are about the exchange of meaning. A key feature of understanding and producing language is the construction of complex meaning from more elementary semantic building blocks. The functional characteristics of this semantic unification process are revealed by studies using event related brain potentials. These studies have found that word meaning is assembled into compound meaning in not more than 500 ms. World knowledge, information about the speaker, co-occurring visual input and discourse all have an immediate impact on semantic unification, and trigger similar electrophysiological responses as sentence-internal semantic information. Neuroimaging studies show that a network of brain areas, including the left inferior frontal gyrus, the left superior/middle temporal cortex, the left inferior parietal cortex and, to a lesser extent their right hemisphere homologues are recruited to perform semantic unification.
  • Hagoort, P. (2009). Taalontwikkeling: Meer dan woorden alleen. In M. Evenblij (Ed.), Brein in beeld: Beeldvorming bij heersenonderzoek (pp. 53-57). Den Haag: Stichting Bio-Wetenschappen en Maatschappij.
  • Hagoort, P., & Wassenaar, M. (1997). Taalstoornissen: Van theorie tot therapie. In B. Deelman, P. Eling, E. De Haan, A. Jennekens, & A. Van Zomeren (Eds.), Klinische Neuropsychologie (pp. 232-248). Meppel: Boom.
  • Hagoort, P., Brown, C. M., & Osterhout, L. (1999). The neurocognition of syntactic processing. In C. M. Brown, & P. Hagoort (Eds.), The neurocognition of language (pp. 273-317). Oxford: Oxford University Press.
  • Hagoort, P. (1998). The shadows of lexical meaning in patients with semantic impairments. In B. Stemmer, & H. Whitaker (Eds.), Handbook of neurolinguistics (pp. 235-248). New York: Academic Press.
  • Hagoort, P. (1999). The uniquely human capacity for language communication: from 'pope' to [po:p] in half a second. In J. Russell, M. Murphy, T. Meyering, & M. Arbib (Eds.), Neuroscience and the person: Scientific perspectives on divine action (pp. 45-56). California: Berkeley.
  • Hagoort, P. (1997). Zonder fosfor geen gedachten: Gagarin, geest en brein. In Brain & Mind (pp. 6-14). Utrecht: Reünistenvereniging Veritas.
  • Hamans, C., & Seuren, P. A. M. (2010). Chomsky in search of a pedigree. In D. A. Kibbee (Ed.), Chomskyan (R)evolutions (pp. 377-394). Amsterdam/Philadelphia: Benjamins.

    Abstract

    This paper follows the changing fortunes of Chomsky’s search for a pedigree in the history of Western thought during the late 1960s. Having achieved a unique position of supremacy in the theory of syntax and having exploited that position far beyond the narrow circles of professional syntacticians, he felt the need to shore up his theory with the authority of history. It is shown that this attempt, resulting mainly in his Cartesian Linguistics of 1966, was widely, and rightly, judged to be a radical failure, even though it led to a sudden revival of interest in the history of linguistics. Ironically, the very upswing in historical studies caused by Cartesian Linguistics ended up showing that the real pedigree belongs to Generative Semantics, developed by the same ‘angry young men’ Chomsky was so bent on destroying.
  • Hammarström, H. (2018). Language isolates in the New Guinea region. In L. Campbell (Ed.), Language Isolates (pp. 287-322). London: Routledge.
  • Hammarström, H. (2010). Rarities in numeral systems. In J. Wohlgemuth, & M. Cysouw (Eds.), Rethinking universals. How rarities affect linguistic theory (pp. 11-60). Berlin: De Gruyter.
  • Hanulikova, A. (2009). The role of syllabification in the lexical segmentation of German and Slovak. In S. Fuchs, H. Loevenbruck, D. Pape, & P. Perrier (Eds.), Some aspects of speech and the brain (pp. 331-361). Frankfurt am Main: Peter Lang.

    Abstract

    Two experiments were carried out to examine the syllable affiliation of intervocalic consonant clusters and their effects on speech segmentation in two different languages. In a syllable reversal task, Slovak and German speakers divided bisyllabic non-words that were presented aurally into two parts, starting with the second syllable. Following the maximal onset principle, intervocalic consonants should be maximally assigned to the onset of the following syllable in conformity with language-specific restrictions, e.g., /du.gru/, /zu.kro:/ (dot indicates a syllable boundary). According to German phonology, syllables require branching rhymes (hence, /zuk.ro:/). In Slovak, both /du.gru/ and /dug.ru/ are possible syllabifications. Experiment 1 showed that German speakers more often closed the first syllable (/zuk.ro:/), following the requirement for a branching rhyme. In Experiment 2, Slovak speakers showed no clear preference; the first syllable was either closed (/dug.ru/) or open (/du.gru/). Correlation analyses on previously conducted word-spotting studies (Hanulíková, in press, 2008) suggest that speech segmentation is unaffected by these syllabification preferences.
  • Hellwig, F. M., & Lüpke, F. (2001). Caused positions. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 126-128). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874644.

    Abstract

    What kinds of resources to languages have for describing location and position? For some languages, verbs have an important role to play in describing different kinds of situations (e.g., whether a bottle is standing or lying on the table). This task is designed to examine the use of positional verbs in locative constructions, with respect to the presence or absence of a human “positioner”. Participants are asked to describe video clips showing locative states that occur spontaneously, or because of active interference from a person. The task follows on from two earlier tools for the elicitation of static locative descriptions (BowPed and the Ameka picture book task). A number of additional variables (e.g. canonical v. non-canonical orientation of the figure) are also targeted in the stimuli set.

    Additional information

    2001_Caused_positions.zip
  • Hill, C. (2010). Emergency language documentation teams: The Cape York Peninsula experience. In J. Hobson, K. Lowe, S. Poetsch, & M. Walsh (Eds.), Re-awakening languages: Theory and practice in the revitalisation of Australia’s Indigenous languages (pp. 418-432). Sydney: Sydney University Press.
  • Hoey, E., & Kendrick, K. H. (2018). Conversation analysis. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 151-173). Hoboken: Wiley.

    Abstract

    Conversation Analysis (CA) is an inductive, micro-analytic, and predominantly qualitative
    method for studying human social interactions. This chapter describes and illustrates the basic
    methods of CA. We first situate the method by describing its sociological foundations, key areas
    of analysis, and particular approach in using naturally occurring data. The bulk of the chapter is
    devoted to practical explanations of the typical conversation analytic process for collecting data
    and producing an analysis. We analyze a candidate interactional practice – the assessmentimplicative
    interrogative – using real data extracts as a demonstration of the method, explicitly
    laying out the relevant questions and considerations for every stage of an analysis. The chapter
    concludes with some discussion of quantitative approaches to conversational interaction, and
    links between CA and psycholinguistic concerns
  • Holler, J. (2010). Speakers’ use of interactive gestures to mark common ground. In S. Kopp, & I. Wachsmuth (Eds.), Gesture in embodied communication and human-computer interaction. 8th International Gesture Workshop, Bielefeld, Germany, 2009; Selected Revised Papers (pp. 11-22). Heidelberg: Springer Verlag.
  • Hulten, A. (2010). Sanan tuottaminen [Word production]. In Kieli ja aivot [Language and the Brain - Textbook series] (pp. 106-116).
  • Hurford, J. R., & Dediu, D. (2009). Diversity in language, genes and the language faculty. In R. Botha, & C. Knight (Eds.), The cradle of language (pp. 167-188). Oxford: Oxford University Press.
  • Indefrey, P. (1997). PET research in language production. In W. Hulstijn, H. F. M. Peters, & P. H. H. M. Van Lieshout (Eds.), Speech production: motor control, brain research and fluency disorders (pp. 269-278). Amsterdam: Elsevier.

    Abstract

    The aim of this paper is to discuss an inherent difficulty of PET (and fMRI) research in language production. On the one hand, language production presupposes some degree of freedom for the subject, on the other hand, interpretability of results presupposes restrictions of this freedom. This difficulty is reflected in the existing PET literature in some neglect of the general principle to design experiments in such a way that the results do not allow for alternative interpretations. It is argued that by narrowing down the scope of experiments a gain in interpretability can be achieved.
  • Indefrey, P., & Gullberg, M. (2010). The earliest stages of language learning: Introduction. In M. Gullberg, & P. Indefrey (Eds.), The earliest stages of language learning (pp. 1-4). Malden, MA: Wiley-Blackwell.
  • Indefrey, P., & Davidson, D. J. (2009). Second language acquisition. In L. R. Squire (Ed.), Encyclopedia of neuroscience (pp. 517-523). London: Academic Press.

    Abstract

    This article reviews neurocognitive evidence on second language (L2) processing at speech sound, word, and sentence levels. Hemodynamic (functional magnetic resonance imaging and positron emission tomography) data suggest that L2s are implemented in the same brain structures as the native language but with quantitative differences in the strength of activation that are modulated by age of L2 acquisition and L2 proficiency. Electrophysiological data show a more complex pattern of first and L2 similarities and differences, providing some, although not conclusive, evidence for qualitative differences between L1 and L2 syntactic processing.
  • Indefrey, P. (2018). The relationship between syntactic production and comprehension. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 486-505). Oxford: Oxford University Press.

    Abstract

    This chapter deals with the question of whether there is one syntactic system that is shared by language production and comprehension or whether there are two separate systems. It first discusses arguments in favor of one or the other option and then presents the current evidence on the brain structures involved in sentence processing. The results of meta-analyses of numerous neuroimaging studies suggest that there is one system consisting of functionally distinct cortical regions: the dorsal part of Broca’s area subserving compositional syntactic processing; the ventral part of Broca’s area subserving compositional semantic processing; and the left posterior temporal cortex (Wernicke’s area) subserving the retrieval of lexical syntactic and semantic information. Sentence production, the comprehension of simple and complex sentences, and the parsing of sentences containing grammatical violations differ with respect to the recruitment of these functional components.
  • Janssen, R., & Dediu, D. (2018). Genetic biases affecting language: What do computer models and experimental approaches suggest? In T. Poibeau, & A. Villavicencio (Eds.), Language, Cognition and Computational Models (pp. 256-288). Cambridge: Cambridge University Press.

    Abstract

    Computer models of cultural evolution have shown language properties emerging on interacting agents with a brain that lacks dedicated, nativist language modules. Notably, models using Bayesian agents provide a precise specification of (extra-)liguististic factors (e.g., genetic) that shape language through iterated learning (biases on language), and demonstrate that weak biases get expressed more strongly over time (bias amplification). Other models attempt to lessen assumption on agents’ innate predispositions even more, and emphasize self-organization within agents, highlighting glossogenesis (the development of language from a nonlinguistic state). Ultimately however, one also has to recognize that biology and culture are strongly interacting, forming a coevolving system. As such, computer models show that agents might (biologically) evolve to a state predisposed to language adaptability, where (culturally) stable language features might get assimilated into the genome via Baldwinian niche construction. In summary, while many questions about language evolution remain unanswered, it is clear that it is not to be completely understood from a purely biological, cognitivist perspective. Language should be regarded as (partially) emerging on the social interactions between large populations of speakers. In this context, agent models provide a sound approach to investigate the complex dynamics of genetic biasing on language and speech
  • Järvikivi, J., & Pyykkönen, P. (2010). Lauseiden ymmärtäminen [Engl. Sentence comprehension]. In P. Korpilahti, O. Aaltonen, & M. Laine (Eds.), Kieli ja aivot: Kommunikaation perusteet, häiriöt ja kuntoutus (pp. 117-125). Turku: Turku yliopisto.

    Abstract

    Kun kuuntelemme puhetta tai luemme tekstiä, alamme välittömästi rakentaa koherenttia tulkintaa. Toisin kuin lukemisessa, puheen havaitsemisessa kuulija voi harvoin kontrolloida nopeutta, jolla hänelle puhutaan. Huolimatta hyvin nopeasta syötteestä - noin 4-7 tavua sekunnissa - ihmiset kykenevät tulkitsemaan puhetta hyvin vaivattomasti. Lauseen ymmärtämisen tutkimuksessa selvitetäänkin, miten tällainen nopea ja useimmiten vaivaton tulkintaprosessi tapahtuu, mitkä kognitiiviset prosessit osallistuvat reaaliaikaiseen tulkintaan ja millaista informaatiota missäkin vaiheessa prosessointia ihminen käyttää hyväkseen johdonmukaisen tulkinnan muodostamiseksi. Tämä kappale on katsaus lauseen ymmärtämisen prosesseihin ja niiden tutkimukseen. Käsittelemme lyhyesti prosessointimalleja, aikuisten ja lasten kielen suhdetta, lauseen sisäisten ja välisten viittaussuhteiden tulkintaa ja sensorisen ympäristön sekä motorisen toiminnan roolia lauseiden tulkintaprosessissa.
  • Jolink, A. (2009). Finiteness in children with SLI: A functional approach. In C. Dimroth, & P. Jordens (Eds.), Functional categories in learner language (pp. 235-260). Berlin: Mouton de Gruyter.
  • Jordens, P. (1998). Defaultformen des Präteritums. Zum Erwerb der Vergangenheitsmorphologie im Niederlänidischen. In H. Wegener (Ed.), Eine zweite Sprache lernen (pp. 61-88). Tübingen, Germany: Verlag Gunter Narr.
  • Jordens, P., & Dimroth, C. (2006). Finiteness in children and adults learning Dutch. In N. Gagarina, & I. Gülzow (Eds.), The acquisition of verbs and their grammar: The effect of particular languages (pp. 173-200). Dordrecht: Springer.
  • Jordens, P. (2006). Inversion as an artifact: The acquisition of topicalization in child L1- and adult L2-Dutch. In S. H. Foster-Cohen, M. Medved Krajnovic, & J. Mihaljevic Djigunovic (Eds.), EUROSLA Yearbook 6 (pp. 101-120).
  • Jordens, P. (2009). The acquisition of functional categories in child L1 and adult L2 acquisition. In C. Dimroth, & P. Jordens (Eds.), Functional categories in learner language (pp. 45-96). Berlin: Mouton de Gruyter.
  • Kempen, G. (1998). Sentence parsing. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 213-228). Berlin: Springer.
  • Kempen, G. (1997). Taalpsychologie week. In Wetenschappelijke Scheurkalender 1998. Beek: Natuur & Techniek.

    Abstract

    [Seven one-page psycholinguistic sketches]
  • Kempen, G. (1999). Visual Grammar: Multimedia for grammar and spelling instruction in primary education. In K. Cameron (Ed.), CALL: Media, design, and applications (pp. 223-238). Lisse: Swets & Zeitlinger.
  • Kidd, E. (2006). The acquisition of complement clause constructions. In E. V. Clark, & B. F. Kelly (Eds.), Constructions in acquisition (pp. 311-332). Stanford: Center for the Study of Language and Information.
  • Kita, S., Danziger, E., & Stolz, C. (2001). Cultural specificity of spatial schemas, as manifested in spontaneous gestures. In M. Gattis (Ed.), Spatial Schemas and Abstract Thought (pp. 115-146). Cambridge, MA, USA: MIT Press.
  • Kita, S. (1997). Miburi to Kotoba [gesture and speech]. In H. Kobayashi, & M. Sasaki (Eds.), Kodomotachi no gengokakutoku [Child language development] (pp. 68-84). Tokyo, Japan: Taishukan.
  • Kita, S. (2001). Locally-anchored spatial gestures, version 2: Historical description of the local environment as a gesture elicitation task. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 132-135). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874647.

    Abstract

    Gesture is an integral part of face-to-face communication, and provides a rich area for cross-cultural comparison. “Locally-anchored spatial gestures” are gestures that are roughly oriented to the actual geographical direction of referents. For example, such gestures may point to a location or a thing, trace the shape of a path, or indicate the direction of a particular area. The goal of this task is to elicit locally-anchored spatial gestures across different cultures. The task follows an interview format, where one participant prompts another to talk in detail about a specific area that the main speaker knows well. The data can be used for additional purposes such as the investigation of demonstratives.
  • Kita, S. (2001). Recording recommendations for gesture studies. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 130-131). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Kita, S., & Ozyurek, A. (1999). Semantische Koordination zwischen Sprache und spontanen ikonischen Gesten: Eine sprachvergleichende Untersuchung. In Max-Planck-Gesellschaft (Ed.), Jahrbuch 1998 (pp. 388-391). Göttingen: Vandenhoeck & Ruprecht.
  • Klaas, G. (2009). Hints and recommendations concerning field equipment. In A. Majid (Ed.), Field manual volume 12 (pp. VI-VII). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Klein, W. (2006). On finiteness. In V. Van Geenhoven (Ed.), Semantics in acquisition (pp. 245-272). Dordrecht: Springer.

    Abstract

    The distinction between finite and non-finite verb forms is well-established but not particularly well-defined. It cannot just be a matter of verb morphology, because it is also made when there is hardly any morphological difference: by far most English verb forms can be finite as well as non-finite. More importantly, many structural phenomena are clearly associated with the presence or absence of finiteness, a fact which is clearly reflected in the early stages of first and second language acquisition. In syntax, these include basic word order rules, gapping, the licensing of a grammatical subject and the licensing of expletives. In semantics, the specific interpretation of indefinite noun phrases is crucially linked to the presence of a finite element. These phenomena are surveyed, and it is argued that finiteness (a) links the descriptive content of the sentence (the 'sentence basis') to its topic component (in particular, to its topic time), and (b) it confines the illocutionary force to that topic component. In a declarative main clause, for example, the assertion is confined to a particular time, the topic time. It is shown that most of the syntactic and semantic effects connected to finiteness naturally follow from this assumption.
  • Klein, W. (2009). Concepts of time. In W. Klein, & P. Li (Eds.), The expression of time (pp. 5-38). Berlin: Mouton de Gruyter.
  • Klein, W., & Geyken, A. (2010). Das Digitale Wörterbuch der Deutschen Sprache (DWDS). In U. Heid, S. Schierholz, W. Schweickard, H. E. Wiegand, R. H. Gouws, & W. Wolski (Eds.), Lexicographica: International annual for lexicography (pp. 79-96). Berlin, New York: De Gruyter.

    Abstract

    No area in the study of human languages has a longer history and a higher practical signifi cance than lexicography. The advent of the computer has dramaticually changed this discipline in ways which go far beyond the digitisation of materials in combination with effi cient search tools, or the transfer of an existing dictionary onto the computer. They allow the stepwise elaboration of what is called here Digital Lexical Systems, i.e., computerized systems in which the underlying data - in form of an extendable corpus - and description of lexical properties on various levels can be effi ciently combined. This paper discusses the range of these possibilities and describes the present form of the German „Digital Lexical System of the Academy“, a project of the Berlin-Brandenburg Academy of Sciences (www.dwds.de).
  • Klein, W. (2001). Das Ende vor Augen: Deutsch als Wissenschaftssprache. In F. Debus, F. Kollmann, & U. Pörken (Eds.), Deutsch als Wissenschaftssprache im 20. Jahrhundert (pp. 289-293). Mainz: Akademie der Wissenschaften und der Literatur.
  • Klein, W. (2001). Deiktische Orientierung. In M. Haspelmath, E. König, W. Oesterreicher, & W. Raible (Eds.), Sprachtypologie und sprachliche Universalien: Vol. 1/1 (pp. 575-590). Berlin: de Gruyter.
  • Klein, W. (2010). Der mühselige Weg zur Erforschung des Schönen. In S. Walther, G. Staupe, & T. Macho (Eds.), Was ist schön? Begleitbuch zur Ausstellung (pp. 124-131). Göttingen: Wallstein.
  • Klein, W. (1998). Ein Blick zurück auf die Varietätengrammatik. In U. Ammon, K. Mattheier, & P. Nelde (Eds.), Sociolinguistica: Internationales Jahrbuch für europäische Soziolinguistik (pp. 22-38). Tübingen: Niemeyer.
  • Klein, W. (2001). Elementary forms of linguistic organisation. In S. Ward, & J. Trabant (Eds.), The origins of language (pp. 81-102). Berlin: Mouton de Gruyter.
  • Klein, W. (1999). Die Lehren des Zweitspracherwerbs. In N. Dittmar, & A. Ramat (Eds.), Grammatik und Diskurs: Studien zum Erwerb des Deutschen und des Italienischen (pp. 279-290). Tübingen: Stauffenberg.
  • Klein, W. (2001). Die Linguistik ist anders geworden. In S. Anschütz, S. Kanngießer, & G. Rickheit (Eds.), A Festschrift for Manfred Briegel: Spektren der Linguistik (pp. 51-72). Wiesbaden: Deutscher Universitätsverlag.
  • Klein, W. (1998). Assertion and finiteness. In N. Dittmar, & Z. Penner (Eds.), Issues in the theory of language acquisition: Essays in honor of Jürgen Weissenborn (pp. 225-245). Bern: Peter Lang.
  • Klein, W. (2009). Finiteness, universal grammar, and the language faculty. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 333-344). New York: Psychology Press.
  • Klein, W. (2009). How time is encoded. In W. Klein, & P. Li (Eds.), The expression of time (pp. 39-82). Berlin: Mouton de Gruyter.
  • Klein, W., & Nüse, R. (1997). La complexité du simple: L'éxpression de la spatialité dans le langage humain. In M. Denis (Ed.), Langage et cognition spatiale (pp. 1-23). Paris: Masson.
  • Klein, W. (2001). Lexicology and lexicography. In N. Smelser, & P. Baltes (Eds.), International encyclopedia of the social & behavioral sciences: Vol. 13 (pp. 8764-8768). Amsterdam: Elsevier Science.

Share this page