Publications

Displaying 101 - 110 of 110
  • Van Putten, S. (2009). Talking about motion in Avatime. Master Thesis, Leiden University.
  • Verdonschot, R. G. (2011). Word processing in languages using non-alphabetic scripts: The cases of Japanese and Chinese. PhD Thesis, Leiden University, Leiden, The Netherlands.

    Abstract

    This thesis investigates the processing of words written in Japanese kanji and Chinese hànzì, i.e. logographic scripts. Special attention is given to the fact that the majority of Japanese kanji have multiple pronunciations (generally depending on the combination a kanji forms with other characters). First, using masked priming, it is established that upon presentation of a Japanese kanji multiple pronunciations are activated. In subsequent experiments using word naming with context pictures it is concluded that both Chinese hànzì and Japanese kanji are read out loud via a direct route from orthography to phonology. However, only Japanese kanji become susceptible to semantic or phonological context effects as a result of a cost due to the processing of multiple pronunciations. Finally, zooming in on the size of the articulatory planning unit in Japanese it is concluded that the mora as a phonological unit best complies with the observed data pattern and not the phoneme or the syllable
  • Verhagen, J. (2009). Finiteness in Dutch as a second language. PhD Thesis, VU University, Amsterdam.
  • Verhoef, E. (2021). Why do we change how we speak? Multivariate genetic analyses of language and related traits across development and disorder. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Vernes, S. C., Janik, V. M., Fitch, W. T., & Slater, P. J. B. (Eds.). (2021). Vocal learning in animals and humans [Special Issue]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376.
  • von Stutterheim, C., & Flecken, M. (Eds.). (2013). Principles of information organization in L2 discourse [Special Issue]. International Review of Applied linguistics in Language Teaching (IRAL), 51(2).
  • Wang, L. (2011). The influence of information structure on language comprehension: A neurocognitive perspective. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Willems, R. M. (2009). Neural reflections of meaning in gesture, language, and action. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Witteman, M. J. (2013). Lexical processing of foreign-accented speech: Rapid and flexible adaptation. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • De Zubicaray, G. I., Acheson, D. J., & Hartsuiker, R. J. (Eds.). (2013). Mind what you say - general and specific mechanisms for monitoring in speech production [Research topic] [Special Issue]. Frontiers in Human Neuroscience. Retrieved from http://www.frontiersin.org/human_neuroscience/researchtopics/mind_what_you_say_-_general_an/1197.

    Abstract

    Psycholinguistic research has typically portrayed speech production as a relatively automatic process. This is because when errors are made, they occur as seldom as one in every thousand words we utter. However, it has long been recognised that we need some form of control over what we are currently saying and what we plan to say. This capacity to both monitor our inner speech and self-correct our speech output has often been assumed to be a property of the language comprehension system. More recently, it has been demonstrated that speech production benefits from interfacing with more general cognitive processes such as selective attention, short-term memory (STM) and online response monitoring to resolve potential conflict and successfully produce the output of a verbal plan. The conditions and levels of representation according to which these more general planning, monitoring and control processes are engaged during speech production remain poorly understood. Moreover, there remains a paucity of information about their neural substrates, despite some of the first evidence of more general monitoring having come from electrophysiological studies of error related negativities (ERNs). While aphasic speech errors continue to be a rich source of information, there has been comparatively little research focus on instances of speech repair. The purpose of this Frontiers Research Topic is to provide a forum for researchers to contribute investigations employing behavioural, neuropsychological, electrophysiological, neuroimaging and virtual lesioning techniques. In addition, while the focus of the research topic is on novel findings, we welcome submission of computational simulations, review articles and methods papers.

Share this page