Publications

Displaying 101 - 200 of 520
  • Cutler, A. (2009). Psycholinguistics in our time. In P. Rabbitt (Ed.), Inside psychology: A science over 50 years (pp. 91-101). Oxford: Oxford University Press.
  • Dediu, D., & Graham, S. A. (2014). Genetics and Language. In M. Aronoff (Ed.), Oxford Bibliographies in Linguistics. New York: Oxford University Press. Retrieved from http://www.oxfordbibliographies.com/view/document/obo-9780199772810/obo-9780199772810-0184.xml.

    Abstract

    This article surveys what is currently known about the complex interplay between genetics and the language sciences. It focuses not only on the genetic architecture of language and speech, but also on their interactions on the cultural and evolutionary timescales. Given the complexity of these issues and their current state of flux and high dynamism, this article surveys the main findings and topics of interest while also briefly introducing the main relevant methods, thus allowing the interested reader to fully appreciate and understand them in their proper context. Of course, not all the relevant publications and resources are mentioned, but this article aims to select the most relevant, promising, or accessible for nonspecialists.

    Files private

    Request files
  • Dediu, D. (2014). Language and biology: The multiple interactions between genetics and language. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 686-707). Cambridge: Cambridge University Press.
  • Dediu, D., & Levinson, S. C. (2014). The time frame of the emergence of modern language and its implications. In D. Dor, C. Knight, & J. Lewis (Eds.), The social origins of language (pp. 184-195). Oxford: Oxford University Press.
  • Den Os, E., & Boves, L. (2004). Natural multimodal interaction for design applications. In P. Cunningham (Ed.), Adoption and the knowledge economy (pp. 1403-1410). Amsterdam: IOS Press.
  • Dimroth, C. (2007). Zweitspracherwerb bei Kindern und Jugendlichen: Gemeinsamkeiten und Unterschiede. In T. Anstatt (Ed.), Mehrsprachigkeit bei Kindern und Erwachsenen: Erwerb, Formen, Förderung (pp. 115-137). Tübingen: Attempto.

    Abstract

    This paper discusses the influence of age-related factors like stage of cognitive development, prior linguistic knowledge, and motivation and addresses the specific effects of these ‘age factors’ on second language acquisition as opposed to other learning tasks. Based on longitudinal corpus data from child and adolescent learners of L2 German (L1 = Russian), the paper studies the acquisition of word order (verb raising over negation, verb second) and inflectional morphology (subject-verb-agreement, tense, noun plural, and adjective-noun agreement). Whereas the child learner shows target-like production in all of these areas within the observation period (1½ years), the adolescent learner masters only some of them. The discussion addresses the question of what it is about clusters of grammatical features that make them particularly affected by age.
  • Dimroth, C., & Watorek, M. (2005). Additive scope particles in advanced learner and native speaker discourse. In Hendriks, & Henriëtte (Eds.), The structure of learner varieties (pp. 461-488). Berlin: Mouton de Gruyter.
  • Dimroth, C., & Lasser, I. (Eds.). (2002). Finite options: How L1 and L2 learners cope with the acquisition of finiteness [Special Issue]. Linguistics, 40(4).
  • Dimroth, C. (2009). Stepping stones and stumbling blocks: Why negation accelerates and additive particles delay the acquisition of finiteness in German. In C. Dimroth, & P. Jordens (Eds.), Functional Categories in Learner Language (pp. 137-170). Berlin: Mouton de Gruyter.
  • Dingemanse, M., & Floyd, S. (2014). Conversation across cultures. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 447-480). Cambridge: Cambridge University Press.
  • Dingemanse, M. (2023). Ideophones. In E. Van Lier (Ed.), The Oxford handbook of word classes (pp. 466-476). Oxford: Oxford University Press.

    Abstract

    Many of the world’s languages feature an open lexical class of ideophones, words whose marked forms and sensory meanings invite iconic associations. Ideophones (also known as mimetics or expressives) are well-known from languages in Asia, Africa and the Americas, where they often form a class on the same order of magnitude as other major word classes and take up a considerable functional load as modifying expressions or predicates. Across languages, commonalities in the morphosyntactic behaviour of ideophones can be related to their nature and origin as vocal depictions. At the same time there is ample room for linguistic diversity, raising the need for fine-grained grammatical description of ideophone systems. As vocal depictions, ideophones often form a distinct lexical stratum seemingly conjured out of thin air; but as conventionalized words, they inevitably grow roots in local linguistic systems, showing relations to adverbs, adjectives, verbs and other linguistic resources devoted to modification and predication
  • Dingemanse, M. (2023). Interjections. In E. Van Lier (Ed.), The Oxford handbook of word classes (pp. 477-491). Oxford: Oxford University Press.

    Abstract

    No class of words has better claims to universality than interjections. At the same time, no category has more variable content than this one, traditionally the catch-all basket for linguistic items that bear a complicated relation to sentential syntax. Interjections are a mirror reflecting methodological and theoretical assumptions more than a coherent linguistic category that affords unitary treatment. This chapter focuses on linguistic items that typically function as free-standing utterances, and on some of the conceptual, methodological, and theoretical questions generated by such items. A key move is to study these items in the setting of conversational sequences, rather than from the “flatland” of sequential syntax. This makes visible how some of the most frequent interjections streamline everyday language use and scaffold complex language. Approaching interjections in terms of their sequential positions and interactional functions has the potential to reveal and explain patterns of universality and diversity in interjections.
  • Dirksmeyer, T. (2005). Why do languages die? Approaching taxonomies, (re-)ordering causes. In J. Wohlgemuth, & T. Dirksmeyer (Eds.), Bedrohte Vielfalt. Aspekte des Sprach(en)tods – Aspects of language death (pp. 53-68). Berlin: Weißensee.

    Abstract

    Under what circumstances do languages die? Why has their “mortality rate” increased dramatically in the recent past? What “causes of death” can be identified for historical cases, to what extent are these generalizable, and how can they be captured in an explanatory theory? In pursuing these questions, it becomes apparent that in typical cases of language death various causes tend to interact in multiple ways. Speakers’ attitudes towards their language play a critical role in all of this. Existing categorial taxonomies do not succeed in modeling the complex relationships between these factors. Therefore, an alternative, dimensional approach is called for to more adequately address (and counter) the causes of language death in a given scenario.
  • Drijvers, L., & Mazzini, S. (2023). Neural oscillations in audiovisual language and communication. In Oxford Research Encyclopedia of Neuroscience. Oxford: Oxford University Press. doi:10.1093/acrefore/9780190264086.013.455.

    Abstract

    How do neural oscillations support human audiovisual language and communication? Considering the rhythmic nature of audiovisual language, in which stimuli from different sensory modalities unfold over time, neural oscillations represent an ideal candidate to investigate how audiovisual language is processed in the brain. Modulations of oscillatory phase and power are thought to support audiovisual language and communication in multiple ways. Neural oscillations synchronize by tracking external rhythmic stimuli or by re-setting their phase to presentation of relevant stimuli, resulting in perceptual benefits. In particular, synchronized neural oscillations have been shown to subserve the processing and the integration of auditory speech, visual speech, and hand gestures. Furthermore, synchronized oscillatory modulations have been studied and reported between brains during social interaction, suggesting that their contribution to audiovisual communication goes beyond the processing of single stimuli and applies to natural, face-to-face communication.

    There are still some outstanding questions that need to be answered to reach a better understanding of the neural processes supporting audiovisual language and communication. In particular, it is not entirely clear yet how the multitude of signals encountered during audiovisual communication are combined into a coherent percept and how this is affected during real-world dyadic interactions. In order to address these outstanding questions, it is fundamental to consider language as a multimodal phenomenon, involving the processing of multiple stimuli unfolding at different rhythms over time, and to study language in its natural context: social interaction. Other outstanding questions could be addressed by implementing novel techniques (such as rapid invisible frequency tagging, dual-electroencephalography, or multi-brain stimulation) and analysis methods (e.g., using temporal response functions) to better understand the relationship between oscillatory dynamics and efficient audiovisual communication.
  • Drude, S., Trilsbeek, P., Sloetjes, H., & Broeder, D. (2014). Best practices in the creation, archiving and dissemination of speech corpora at the Language Archive. In S. Ruhi, M. Haugh, T. Schmidt, & K. Wörner (Eds.), Best Practices for Spoken Corpora in Linguistic Research (pp. 183-207). Newcastle upon Tyne: Cambridge Scholars Publishing.
  • Drude, S. (2005). A contribuição alemã à Lingüística e Antropologia dos índios do Brasil, especialmente da Amazônia. In J. J. A. Alves (Ed.), Múltiplas Faces da Históriadas Ciência na Amazônia (pp. 175-196). Belém: EDUFPA.
  • Drude, S. (2002). Fala masculina e feminina em Awetí. In A. D. Rodrigues, & A. S. A. C. Cabral (Eds.), Línguas indígenas Brasileiras: Fonologia, gramática e história. (Atas do I Encontro Internacional do Grupo de Trabalho sobre Línguas Indígenas da ANPOLL). vol. 1 (pp. 177-190). Belém: EDUFPA.
  • Drude, S. (2006). On the position of the Awetí language in the Tupí family. In W. Dietrich, & H. Symeonidis (Eds.), Guarani y "Maweti-Tupi-Guarani. Estudios historicos y descriptivos sobre una familia lingüistica de America del Sur (pp. 11-45). Berlin: LIT Verlag.

    Abstract

    Conclusion In this study we have examined the evidence for the exact genetic position of the Awetí language in the large Tupí family, especially evidence for an internal classification of the larger branch of Tupí called “Mawetí-Guaraní” which comprises the Tupí-Guaraní family, Awetí and Sateré-Mawé. As it turns out, we did not find any clear example of an uncommon sound change which would have happened after the separation of the antecessor of one branch but before the split between the other two. There is some just probability that Awetí belongs somewhat closer to Tupí-Guaraní within Mawetí-Guaraní (configuration A in Table 1), but we did not find any conclusive evidence. All we have are some weak indications the majority of which, however, point in this direction: • a higher number of cognates found between Awetí and proto-Tupí-Guarani; • lexicostatistic results (number of cognates in a 100-item-word-list proposed by Swadesh); • loss of long vowels in Awetí and Tupí-Guaraní, but not in Sateré-Mawé; • some sound changes suggest that in the development to Awetí and to proto-Tupí-Guaraní velar segments changes to dental segments (cf. the discussion of the correspondence set j : t : w); • possibly some of the correspondence sets given in Table 20. We consider it to be too soon to conclude that there is a branch Awetí + Tupí-Guaraní of Mawetí-Guaraní, opposed to Sateré-Mawé, but if there is any grouping, this hypothesis is most promising. 29
  • Drude, S. (2014). Reduplication as a tool for morphological and phonological analysis in Awetí. In G. G. Gómez, & H. Van der Voort (Eds.), Reduplication in Indigenous languages of South America (pp. 185-216). Leiden: Brill.
  • Düngen, D., Sarfati, M., & Ravignani, A. (2023). Cross-species research in biomusicality: Methods, pitfalls, and prospects. In E. H. Margulis, P. Loui, & D. Loughridge (Eds.), The science-music borderlands: Reckoning with the past and imagining the future (pp. 57-95). Cambridge, MA, USA: The MIT Press. doi:10.7551/mitpress/14186.003.0008.
  • Dunn, M. (2007). Vernacular literacy in the Touo language of the Solomon Islands. In A. J. Liddicoat (Ed.), Language planning and policy: Issues in language planning and literacy (pp. 209-220). Clevedon: Multilingual matters.

    Abstract

    The Touo language is a non-Austronesian language spoken on Rendova Island (Western Province, Solomon Islands). First language speakers of Touo are typically multilingual, and are likely to speak other (Austronesian) vernaculars, as well as Solomon Island Pijin and English. There is no institutional support of literacy in Touo: schools function in English, and church-based support for vernacular literacy focuses on the major Austronesian languages of the local area. Touo vernacular literacy exists in a restricted niche of the linguistic ecology, where it is utilised for symbolic rather than communicative goals. Competing vernacular orthographic traditions complicate the situation further.
  • Dunn, M. (2014). Gender determined dialect variation. In G. G. Corbett (Ed.), The expression of gender (pp. 39-68). Berlin: De Gruyter.
  • Dunn, M. (2014). Language phylogenies. In C. Bowern, & B. Evans (Eds.), The Routledge handbook of historical linguistics (pp. 190-211). London: Routlege.
  • Dunn, M., & Terrill, A. (2004). Lexical comparison between Papuan languages: Inland bird and tree species. In A. Majid (Ed.), Field Manual Volume 9 (pp. 65-69). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492942.

    Abstract

    The Pioneers project seeks to uncover relationships between the Papuan languages of Island Melanesia. One basic way to uncover linguistic relationships, either contact or genetic, is through lexical comparison. We have seen very few shared words between our Papuan languages and any other languages, either Oceanic or Papuan, but most of the words which are shared are shared because they are commonly borrowed from Oceanic languages. This task is aimed at enabling fieldworkers to collect terms for inland bird and tree species. In the past it is has proved very difficult for non-experts to identify plant and bird species, so the task consists of a booklet of colour pictures of some of the more common species, with information on the range and habits of each species, as well as some information on their cultural uses, which should enable better identification. It is intended that fieldworkers will show this book to consultants and use it as an elicitation aid.
  • Eibl-Eibesfeldt, I., Senft, B., & Senft, G. (1998). Trobriander (Ost-Neuguinea, Trobriand Inseln, Kaile'una) Fadenspiele 'ninikula'. In Ethnologie - Humanethologische Begleitpublikationen von I. Eibl-Eibesfeldt und Mitarbeitern. Sammelband I, 1985-1987. Göttingen: Institut für den Wissenschaftlichen Film.
  • Ekerdt, C., Takashima, A., & McQueen, J. M. (2023). Memory consolidation in second language neurocognition. In K. Morgan-Short, & J. G. Van Hell (Eds.), The Routledge handbook of second language acquisition and neurolinguistics. Oxfordshire: Routledge.

    Abstract

    Acquiring a second language (L2) requires newly learned information to be integrated with existing knowledge. It has been proposed that several memory systems work together to enable this process of rapidly encoding new information and then slowly incorporating it with existing knowledge, such that it is consolidated and integrated into the language network without catastrophic interference. This chapter focuses on consolidation of L2 vocabulary. First, the complementary learning systems model is outlined, along with the model’s predictions regarding lexical consolidation. Next, word learning studies in first language (L1) that investigate the factors playing a role in consolidation, and the neural mechanisms underlying this, are reviewed. Using the L1 memory consolidation literature as background, the chapter then presents what is currently known about memory consolidation in L2 word learning. Finally, considering what is already known about L1 but not about L2, future research investigating memory consolidation in L2 neurocognition is proposed.
  • Emmorey, K., & Ozyurek, A. (2014). Language in our hands: Neural underpinnings of sign language and co-speech gesture. In M. S. Gazzaniga, & G. R. Mangun (Eds.), The cognitive neurosciences (5th ed., pp. 657-666). Cambridge, Mass: MIT Press.
  • Enfield, N. J. (2002). Semantics and combinatorics of 'sit', 'stand', and 'lie' in Lao. In J. Newman (Ed.), The linguistics of sitting, standing, and lying (pp. 25-41). Amsterdam: Benjamins.
  • Enfield, N. J. (2002). Body 2002. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 19-32). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Enfield, N. J., Levinson, S. C., De Ruiter, J. P., & Stivers, T. (2007). Building a corpus of multimodal interaction in your field site. In A. Majid (Ed.), Field Manual Volume 10 (pp. 96-99). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.468728.

    Abstract

    Research on video- and audio-recordings of spontaneous naturally-occurring conversation in English has shown that conversation is a rule-guided, practice-oriented domain that can be investigated for its underlying mechanics or structure. Systematic study could yield something like a grammar for conversation. The goal of this task is to acquire a corpus of video-data, for investigating the underlying structure(s) of interaction cross-linguistically and cross-culturally.
  • Enfield, N. J., Levinson, S. C., De Ruiter, J. P., & Stivers, T. (2004). Building a corpus of multimodal interaction in your field site. In A. Majid (Ed.), Field Manual Volume 9 (pp. 32-36). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.506951.

    Abstract

    This Field Manual entry has been superceded by the 2007 version:
    https://doi.org/10.17617/2.468728

    Files private

    Request files
  • Enfield, N. J. (2014). Causal dynamics of language. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 325-342). Cambridge: Cambridge University Press.
  • Enfield, N. J. (2002). “Fish trap” task. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 61). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Enfield, N. J. (2009). 'Case relations' in Lao, a radically isolating language. In A. L. Malčukov, & A. Spencer (Eds.), The Oxford handbook of case (pp. 808-819). Oxford: Oxford University Press.
  • Enfield, N. J. (2002). Cultural logic and syntactic productivity: Associated posture constructions in Lao. In N. Enfield (Ed.), Ethnosyntax: Explorations in culture and grammar (pp. 231-258). Oxford: Oxford University Press.
  • Enfield, N. J. (2002). Ethnosyntax: Introduction. In N. Enfield (Ed.), Ethnosyntax: Explorations in culture and grammar (pp. 1-30). Oxford: Oxford University Press.
  • Enfield, N. J. (2005). Depictive and other secondary predication in Lao. In N. P. Himmelmann, & E. Schultze-Berndt (Eds.), Secondary predication and adverbial modification (pp. 379-392). Oxford: Oxford University Press.
  • Enfield, N. J. (2002). Combinatoric properties of natural semantic metalanguage expressions in Lao. In C. Goddard, & A. Wierzbicka (Eds.), Meaning and universal grammar: Theory and empirical findings (pp. 145-256). Amsterdam: John Benjamins.
  • Enfield, N. J. (2004). Adjectives in Lao. In R. M. W. Dixon, & A. Y. Aikhenvald (Eds.), Adjective classes: A cross-linguistic typology (pp. 323-347). Oxford: Oxford University Press.
  • Enfield, N. J. (2002). Functions of 'give' and 'take' in Lao complex predicates. In R. S. Bauer (Ed.), Collected papers on Southeast Asian and Pacific languages (pp. 13-36). Canberra: Pacific Linguistics.
  • Enfield, N. J. (2006). Heterosemy and the grammar-lexicon trade-off. In F. Ameka, A. Dench, & N. Evans (Eds.), Catching Language (pp. 297-320). Berlin: Mouton de Gruyter.
  • Enfield, N. J. (2007). Meanings of the unmarked: How 'default' person reference does more than just refer. In N. Enfield, & T. Stivers (Eds.), Person reference in interaction: Linguistic, cultural, and social perspectives (pp. 97-120). Cambridge: Cambridge University Press.
  • Enfield, N. J. (2005). Micro and macro dimensions in linguistic systems. In S. Marmaridou, K. Nikiforidou, & E. Antonopoulou (Eds.), Reviewing linguistic thought: Converging trends for the 21st Century (pp. 313-326). Berlin: Mouton de Gruyter.
  • Enfield, N. J. (2006). Laos - language situation. In K. Brown (Ed.), Encyclopedia of Language and Linguistics (vol. 6) (pp. 698-700). Amsterdam: Elsevier.

    Abstract

    Laos features a high level of linguistic diversity, with more than 70 languages from four different major language families (Tai, Mon-Khmer, Hmong-Mien, Tibeto-Burman). Mon-Khmer languages were spoken in Laos earlier than other languages, with incoming migrations by Tai speakers (c. 2000 years ago) and Hmong-Mien speakers (c. 200 years ago). There is widespread language contact and multilingualism in upland minority communities, while lowland-dwelling Lao speakers are largely monolingual. Lao is the official national language. Most minority languages are endangered, with a few exceptions (notably Hmong and Kmhmu). There has been relatively little linguistic research on languages of Laos, due to problems of both infrastructure and administration.
  • Enfield, N. J. (2014). Human agency and the infrastructure for requests. In P. Drew, & E. Couper-Kuhlen (Eds.), Requesting in social interaction (pp. 35-50). Amsterdam: John Benjamins.

    Abstract

    This chapter discusses some of the elements of human sociality that serve as the social and cognitive infrastructure or preconditions for the use of requests and other kinds of recruitments in interaction. The notion of an agent with goals is a canonical starting point, though importantly agency tends not to be wholly located in individuals, but rather is socially distributed. This is well illustrated in the case of requests, in which the person or group that has a certain goal is not necessarily the one who carries out the behavior towards that goal. The chapter focuses on the role of semiotic (mostly linguistic) resources in negotiating the distribution of agency with request-like actions, with examples from video-recorded interaction in Lao, a language spoken in Laos and nearby countries. The examples illustrate five hallmarks of requesting in human interaction, which show some ways in which our ‘manipulation’ of other people is quite unlike our manipulation of tools: (1) that even though B is being manipulated, B wants to help, (2) that while A is manipulating B now, A may be manipulated in return later; (3) that the goal of the behavior may be shared between A and B, (4) that B may not comply, or may comply differently than requested, due to actual or potential contingencies, and (5) that A and B are accountable to one another; reasons may be asked for, and/or given, for the request. These hallmarks of requesting are grounded in a prosocial framework of human agency.
  • Enfield, N. J., & Levinson, S. C. (2009). Metalanguage for speech acts. In A. Majid (Ed.), Field manual volume 12 (pp. 51-53). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.883559.

    Abstract

    People of all cultures have some degree of concern with categorizing types of communicative social action. All languages have words with meanings like speak, say, talk, complain, curse, promise, accuse, nod, wink, point and chant. But the exact distinctions they make will differ in both quantity and quality. How is communicative social action categorised across languages and cultures? The goal of this task is to establish a basis for cross-linguistic comparison of native metalanguages for social action.
  • Enfield, N. J. (2009). Language and culture. In L. Wei, & V. Cook (Eds.), Contemporary Applied Linguistics Volume 2 (pp. 83-97). London: Continuum.
  • Enfield, N. J., & Sidnell, J. (2014). Language presupposes an enchronic infrastructure for social interaction. In D. Dor, C. Knight, & J. Lewis (Eds.), The social origins of language (pp. 92-104). Oxford: Oxford University Press.
  • Enfield, N. J., Kockelman, P., & Sidnell, J. (2014). Interdisciplinary perspectives. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 599-602). Cambridge: Cambridge University Press.
  • Enfield, N. J., Kockelman, P., & Sidnell, J. (2014). Introduction: Directions in the anthropology of language. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 1-24). Cambridge: Cambridge University Press.
  • Enfield, N. J. (2009). Everyday ritual in the residential world. In G. Senft, & E. B. Basso (Eds.), Ritual communication (pp. 51-80). Oxford: Berg.
  • Enfield, N. J. (2007). Repair sequences in interaction. In A. Majid (Ed.), Field Manual Volume 10 (pp. 100-103). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.468724.

    Abstract

    This sub-project is concerned with analysis and cross-linguistic comparison of the mechanisms of signaling and redressing ‘trouble’ during conversation. Speakers and listeners constantly face difficulties with many different aspects of speech production and comprehension during conversation. A speaker may mispronounce a word, or may be unable to find a word, or be unable to formulate in words an idea he or she has in mind. A listener may have troubling hearing (part of) what was said, may not know who a speaker is referring to, may not be sure of the current relevance of what is being said. There may be problems in the organisation of turns at talk, for instance, two speakers’ speech may be in overlap. The goal of this task is to investigate the range of practices that a language uses to address problems of speaking, hearing and understanding in conversation.
  • Enfield, N. J. (2004). Repair sequences in interaction. In A. Majid (Ed.), Field Manual Volume 9 (pp. 48-52). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492945.

    Abstract

    This Field Manual entry has been superceded by the 2007 version: https://doi.org/10.17617/2.468724

    Files private

    Request files
  • Enfield, N. J., Levinson, S. C., & Stivers, T. (2009). Social action formulation: A "10-minutes" task. In A. Majid (Ed.), Field manual volume 12 (pp. 54-55). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.883564.

    Abstract

    Human actions in the social world – like greeting, requesting, complaining, accusing, asking, confirming, etc. – are recognised through the interpretation of signs. Language is where much of the action is, but gesture, facial expression and other bodily actions matter as well. The goal of this task is to establish a maximally rich description of a representative, good quality piece of conversational interaction, which will serve as a reference point for comparative exploration of the status of social actions and their formulation across language
  • Enfield, N. J., Sidnell, J., & Kockelman, P. (2014). System and function. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 25-28). Cambridge: Cambridge University Press.
  • Enfield, N. J. (2014). The item/system problem. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 48-77). Cambridge: Cambridge University Press.
  • Enfield, N. J. (2014). Transmission biases in the cultural evolution of language: Towards an explanatory framework. In D. Dor, C. Knight, & J. Lewis (Eds.), The social origins of language (pp. 325-335). Oxford: Oxford University Press.
  • Ernestus, M., & Baayen, R. H. (2006). The functionality of incomplete neutralization in Dutch: The case of past-tense formation. In L. Goldstein, D. Whalen, & C. Best (Eds.), Laboratory Phonology 8 (pp. 27-49). Berlin: Mouton de Gruyter.
  • Ernestus, M., & Giezenaar, G. (2014). Een goed verstaander heeft maar een half woord nodig. In B. Bossers (Ed.), Vakwerk 9: Achtergronden van de NT2-lespraktijk: Lezingen conferentie Hoeven 2014 (pp. 81-92). Amsterdam: BV NT2.
  • Ernestus, M., & Baayen, R. H. (2007). Intraparadigmatic effects on the perception of voice. In J. van de Weijer, & E. J. van der Torre (Eds.), Voicing in Dutch: (De)voicing-phonology, phonetics, and psycholinguistics (pp. 153-173). Amsterdam: Benjamins.

    Abstract

    In Dutch, all morpheme-final obstruents are voiceless in word-final position. As a consequence, the distinction between obstruents that are voiced before vowel-initial suffixes and those that are always voiceless is neutralized. This study adds to the existing evidence that the neutralization is incomplete: neutralized, alternating plosives tend to have shorter bursts than non-alternating plosives. Furthermore, in a rating study, listeners scored the alternating plosives as more voiced than the nonalternating plosives, showing sensitivity to the subtle subphonemic cues in the acoustic signal. Importantly, the participants who were presented with the complete words, instead of just the final rhymes, scored the alternating plosives as even more voiced. This shows that listeners’ perception of voice is affected by their knowledge of the obstruent’s realization in the word’s morphological paradigm. Apparently, subphonemic paradigmatic levelling is a characteristic of both production and perception. We explain the effects within an analogy-based approach.
  • Evans, N., Levinson, S. C., Enfield, N. J., Gaby, A., & Majid, A. (2004). Reciprocal constructions and situation type. In A. Majid (Ed.), Field Manual Volume 9 (pp. 25-30). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.506955.
  • Faller, M. (2002). Remarks on evidential hierarchies. In D. I. Beaver, L. D. C. Martinez, B. Z. Clark., & S. Kaufmann (Eds.), The construction of meaning (pp. 89-111). Stanford: CSLI Publications.
  • Fedor, A., Pléh, C., Brauer, J., Caplan, D., Friederici, A. D., Gulyás, B., Hagoort, P., Nazir, T., & Singer, W. (2009). What are the brain mechanisms underlying syntactic operations? In D. Bickerton, & E. Szathmáry (Eds.), Biological foundations and origin of syntax (pp. 299-324). Cambridge, MA: MIT Press.

    Abstract

    This chapter summarizes the extensive discussions that took place during the Forum as well as the subsequent months thereafter. It assesses current understanding of the neuronal mechanisms that underlie syntactic structure and processing.... It is posited that to understand the neurobiology of syntax, it might be worthwhile to shift the balance from comprehension to syntactic encoding in language production
  • Fisher, S. E. (2006). How can animal studies help to uncover the roles of genes implicated in human speech and language disorders? In G. S. Fisch, & J. Flint (Eds.), Transgenic and knockout models of neuropsychiatric disorders (pp. 127-149). Totowa, NJ: Humana Press.

    Abstract

    The mysterious human propensity for acquiring speech and language has fascinated scientists for decades. A substantial body of evidence suggests that this capacity is rooted in aspects of neurodevelopment that are specified at the genomic level. Researchers have begun to identify genetic factors that increase susceptibility to developmental disorders of speech and language, thereby offering the first molecular entry points into neuronal mechanisms underlying human vocal communication. The identification of genetic variants influencing language acquisition facilitates the analysis of animal models in which the corresponding orthologs are disrupted. At face value, the situation raises aperplexing question: if speech and language are uniquely human, can any relevant insights be gained from investigations of gene function in other species? This chapter addresses the question using the example of FOXP2, a gene implicated in a severe monogenic speech and language disorder. FOXP2 encodes a transcription factor that is highly conserved in vertebrate species, both in terms of protein sequence and expression patterns. Current data suggest that an earlier version of this gene, present in the common ancestor of humans, rodents, and birds, was already involved in establishing neuronal circuits underlying sensory-motor integration and learning of complex motor sequences. This may have represented one of the factors providing a permissive neural environment for subsequent evolution of vocal learning. Thus, dissection of neuromolecular pathways regulated by Foxp2 in nonlinguistic species is a necessary prerequisite for understanding the role of the human version of the gene in speech and language.
  • Fisher, S. E. (2002). Isolation of the genetic factors underlying speech and language disorders. In R. Plomin, J. C. DeFries, I. W. Craig, & P. McGuffin (Eds.), Behavioral genetics in the postgenomic era (pp. 205-226). Washington, DC: American Psychological Association.

    Abstract

    This chapter highlights the research in isolating genetic factors underlying specific language impairment (SLI), or developmental dysphasia, which exploits newly developed genotyping technology, novel statistical methodology, and DNA sequence data generated by the Human Genome Project. The author begins with an overview of results from family, twin, and adoption studies supporting genetic involvement and then goes on to outline progress in a number of genetic mapping efforts that have been recently completed or are currently under way. It has been possible for genetic researchers to pinpoint the specific mutation responsible for some speech and language disorders, providing an example of how the availability of human genomic sequence data can greatly accelerate the pace of disease gene discovery. Finally, the author discusses future prospects on how molecular genetics may offer new insight into the etiology underlying speech and language disorders, leading to improvements in diagnosis and treatment.
  • Fitz, H. (2014). Computermodelle für Spracherwerb und Sprachproduktion. Forschungsbericht 2014 - Max-Planck-Institut für Psycholinguistik. In Max-Planck-Gesellschaft Jahrbuch 2014. München: Max Planck Society for the Advancement of Science. Retrieved from http://www.mpg.de/7850678/Psycholinguistik_JB_2014?c=8236817.

    Abstract

    Relative clauses are a syntactic device to create complex sentences and they make language structurally productive. Despite a considerable number of experimental studies, it is still largely unclear how children learn relative clauses and how these are processed in the language system. Researchers at the MPI for Psycholinguistics used a computational learning model to gain novel insights into these issues. The model explains the differential development of relative clauses in English as well as cross-linguistic differences
  • Fitz, H. (2006). Church's thesis and physical computation. In A. Olszewski, J. Wolenski, & R. Janusz (Eds.), Church's Thesis after 70 years (pp. 175-219). Frankfurt a. M: Ontos Verlag.
  • Floyd, S. (2014). 'We’ as social categorization in Cha’palaa: A language of Ecuador. In T.-S. Pavlidou (Ed.), Constructing collectivity: 'We' across languages and contexts (pp. 135-158). Amsterdam: Benjamins.

    Abstract

    This chapter connects the grammar of the first person collective pronoun in the Cha’palaa language of Ecuador with its use in interaction for collective reference and social category membership attribution, addressing the problem posed by the fact that non-singular pronouns do not have distributional semantics (“speakers”) but are rather associational (“speaker and relevant associates”). It advocates a cross-disciplinary approach that jointly considers elements of linguistic form, situated usages of those forms in instances of interaction, and the broader ethnographic context of those instances. Focusing on large-scale and relatively stable categories such as racial and ethnic groups, it argues that looking at how speakers categorize themselves and others in the speech situation by using pronouns provides empirical data on the status of macro-social categories for members of a society

    Files private

    Request files
  • Floyd, S. (2014). Four types of reduplication in the Cha'palaa language of Ecuador. In H. van der Voort, & G. Goodwin Gómez (Eds.), Reduplication in Indigenous Languages of South America (pp. 77-114). Leiden: Brill.
  • Fradera, A., & Sauter, D. (2004). Make yourself happy. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 325-327). Sebastopol, CA: O'Reilly.

    Abstract

    Turn on your affective system by tweaking your face muscles - or getting an eyeful of someone else doing the same.
  • Fradera, A., & Sauter, D. (2004). Reminisce hot and cold. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 327-331). Sebastopol, CA: O'Reilly.

    Abstract

    Find the fire that's cooking your memory systems.
  • Fradera, A., & Sauter, D. (2004). Signal emotion. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 320-324). Sebastopol, CA: O'Reilly.

    Abstract

    Emotions are powerful on the inside but often displayed in subtle ways on the outside. Are these displays culturally dependent or universal?
  • Francks, C. (2009). 13 - LRRTM1: A maternally suppressed genetic effect on handedness and schizophrenia. In I. E. C. Sommer, & R. S. Kahn (Eds.), Cerebral lateralization and psychosis (pp. 181-196). Cambridge: Cambridge University Press.

    Abstract

    The molecular, developmental, and evolutionary bases of human brain asymmetry are almost completely unknown. Genetic linkage and association mapping have pin-pointed a gene called LRRTM1 (leucine-rich repeat transmembrane neuronal 1) that may contribute to variability in human handedness. Here I describe how LRRTM1's involvement in handedness was discovered, and also the latest knowledge of its functions in brain development and disease. The association of LRRTM1 with handedness was derived entirely from the paternally inherited gene, and follow-up analysis of gene expression confirmed that LRRTM1 is one of a small number of genes that are imprinted in the human genome, for which the maternally inherited copy is suppressed. The same variation at LRRTM1 that was associated paternally with mixed-/left-handedness was also over-transmitted paternally to schizophrenic patients in a large family study.
    LRRTM1 is expressed in specific regions of the developing and adult forebrain by post-mitotic neurons, and the protein may be involved in axonal trafficking. Thus LRRTM1 has a probable role in neurodevelopment, and its association with handedness suggests that one of its functions may be in establishing or consolidating human brain asymmetry.
    LRRTM1 is the first gene for which allelic variation has been associated with human handedness. The genetic data also suggest indirectly that the epigenetic regulation of this gene may yet prove more important than DNA sequence variation for influencing brain development and disease.
    Intriguingly, the parent-of-origin activity of LRRTM1 suggests that men and women have had conflicting interests in relation to the outcome of lateralized brain development in their offspring.
  • Frank, S. L., Koppen, M., Noordman, L. G. M., & Vonk, W. (2007). Modeling multiple levels of text presentation. In F. Schmalhofer, & C. A. Perfetti (Eds.), Higher level language processes in the brain: Inference and comprehension processes (pp. 133-157). Mahwah, NJ: Erlbaum.
  • Furman, R., & Ozyurek, A. (2006). The use of discourse markers in adult and child Turkish oral narratives: Şey, yani and işte. In S. Yagcioglu, & A. Dem Deger (Eds.), Advances in Turkish linguistics (pp. 467-480). Izmir: Dokuz Eylul University Press.
  • Furuyama, N., & Sekine, K. (2007). Forgetful or strategic? The mystery of the systematic avoidance of reference in the cartoon story nsarrative. In S. D. Duncan, J. Cassel, & E. T. Levy (Eds.), Gesture and the Dynamic Dimension of Language: Essays in honor of David McNeill (pp. 75-81). Amsterdam: John Benjamins Publishing Company.
  • Gaby, A. R. (2005). Some participants are more equal than others: Case and the composition of arguments in Kuuk Thaayorre. In M. Amberber, & H. d. Hoop (Eds.), Competition and variation in natural languages: the case for the case (pp. 9-39). Amsterdam: Elsevier.
  • Ganushchak, L. Y., & Acheson, D. J. (Eds.). (2014). What's to be learned from speaking aloud? - Advances in the neurophysiological measurement of overt language production. [Research topic] [Special Issue]. Frontiers in Language Sciences. Retrieved from http://www.frontiersin.org/Language_Sciences/researchtopics/What_s_to_be_Learned_from_Spea/1671.

    Abstract

    Researchers have long avoided neurophysiological experiments of overt speech production due to the suspicion that artifacts caused by muscle activity may lead to a bad signal-to-noise ratio in the measurements. However, the need to actually produce speech may influence earlier processing and qualitatively change speech production processes and what we can infer from neurophysiological measures thereof. Recently, however, overt speech has been successfully investigated using EEG, MEG, and fMRI. The aim of this Research Topic is to draw together recent research on the neurophysiological basis of language production, with the aim of developing and extending theoretical accounts of the language production process. In this Research Topic of Frontiers in Language Sciences, we invite both experimental and review papers, as well as those about the latest methods in acquisition and analysis of overt language production data. All aspects of language production are welcome: i.e., from conceptualization to articulation during native as well as multilingual language production. Focus should be placed on using the neurophysiological data to inform questions about the processing stages of language production. In addition, emphasis should be placed on the extent to which the identified components of the electrophysiological signal (e.g., ERP/ERF, neuronal oscillations, etc.), brain areas or networks are related to language comprehension and other cognitive domains. By bringing together electrophysiological and neuroimaging evidence on language production mechanisms, a more complete picture of the locus of language production processes and their temporal and neurophysiological signatures will emerge.
  • Gast, V., & Levshina, N. (2014). Motivating w(h)-Clefts in English and German: A hypothesis-driven parallel corpus study. In A.-M. De Cesare (Ed.), Frequency, Forms and Functions of Cleft Constructions in Romance and Germanic: Contrastive, Corpus-Based Studies (pp. 377-414). Berlin: De Gruyter.
  • Gentner, D., & Bowerman, M. (2009). Why some spatial semantic categories are harder to learn than others: The typological prevalence hypothesis. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 465-480). New York: Psychology Press.
  • Goldin-Meadow, S., Ozyurek, A., Sancar, B., & Mylander, C. (2009). Making language around the globe: A cross-linguistic study of homesign in the United States, China, and Turkey. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 27-39). New York: Psychology Press.
  • Goudbeek, M., Smits, R., Cutler, A., & Swingley, D. (2005). Acquiring auditory and phonetic categories. In H. Cohen, & C. Lefebvre (Eds.), Handbook of categorization in cognitive science (pp. 497-513). Amsterdam: Elsevier.
  • Le Guen, O. (2009). The ethnography of emotions: A field worker's guide. In A. Majid (Ed.), Field manual volume 12 (pp. 31-34). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.446076.

    Abstract

    The goal of this task is to investigate cross-cultural emotion categories in language and thought. This entry is designed to provide researchers with some guidelines to describe the emotional repertoire of a community from an emic perspective. The first objective is to offer ethnographic tools and a questionnaire in order to understand the semantics of emotional terms and the local conception of emotions. The second objective is to identify the local display rules of emotions in communicative interactions.
  • Gullberg, M., & Indefrey, P. (Eds.). (2006). The cognitive neuroscience of second language acquisition [Special Issue]. Language Learning, 56(suppl. 1).
  • Gullberg, M., & Holmqvist, K. (2002). Visual attention towards gestures in face-to-face interaction vs. on screen. In I. Wachsmuth, & T. Sowa (Eds.), Gesture and sign languages in human-computer interaction (pp. 206-214). Berlin: Springer.
  • Gullberg, M. (Ed.). (2006). Gestures and second language acquisition [Special Issue]. International Review of Applied Linguistics, 44(2).
  • Gullberg, M. (2002). Gestures, languages, and language acquisition. In S. Strömqvist (Ed.), The diversity of languages and language learning (pp. 45-56). Lund: Lund University.
  • Gullberg, M., Indefrey, P., & Muysken, P. (2009). Research techniques for the study of code-switching. In B. E. Bullock, & J. A. Toribio (Eds.), The Cambridge handbook on linguistic code-switching (pp. 21-39). Cambridge: Cambridge University Press.

    Abstract

    The aim of this chapter is to provide researchers with a tool kit of semi-experimental and experimental techniques for studying code-switching. It presents an overview of the current off-line and on-line research techniques, ranging from analyses of published bilingual texts of spontaneous conversations, to tightly controlled experiments. A multi-task approach used for studying code-switched sentence production in Papiamento-Dutch bilinguals is also exemplified.
  • Gullberg, M. (2009). Why gestures are relevant to the bilingual mental lexicon. In A. Pavlenko (Ed.), The bilingual mental lexicon: Interdisciplinary approaches (pp. 161-184). Clevedon: Multilingual Matters.

    Abstract

    Gestures, the symbolic movements speakers perform while they speak, are systematically related to speech and language in non-trivial ways. This chapter presents an overview of what gestures can and cannot tell us about the monolingual and the bilingual mental lexicon. Gesture analysis opens for a broader view of the mental lexicon, targeting the interface between conceptual, semantic and syntactic aspects of event construal, and offers new possibilities for examining how languages co-exist and interact in bilinguals beyond the level of surface forms. The first section of this chapter gives a brief introduction to gesture studies and outlines the current views on the relationship between gesture, speech, and language. The second section targets the key questions for the study of the monolingual and bilingual lexicon, and illustrates the methods employed for addressing these questions. It further exemplifies systematic cross-linguistic patterns in gestural behaviour in monolingual and bilingual contexts. The final section discusses some implications of an expanded view of the multilingual lexicon that includes gesture, and outlines directions for future inquiry.

    Files private

    Request files
  • De Haan, E., & Hagoort, P. (2004). Het brein in beeld. In B. Deelman, P. Eling, E. De Haan, & E. Van Zomeren (Eds.), Klinische neuropsychologie (pp. 82-98). Amsterdam: Boom.
  • Hagoort, P. (2006). On Broca, brain and binding. In Y. Grodzinsky, & K. Amunts (Eds.), Broca's region (pp. 240-251). Oxford: Oxford University Press.
  • Hagoort, P. (2007). The memory, unification, and control (MUC) model of language. In T. Sakamoto (Ed.), Communicating skills of intention (pp. 259-291). Tokyo: Hituzi Syobo.
  • Hagoort, P. (2007). The memory, unification, and control (MUC) model of language. In A. S. Meyer, L. Wheeldon, & A. Krott (Eds.), Automaticity and control in language processing (pp. 243-270). Hove: Psychology Press.
  • Hagoort, P. (2002). Het unieke menselijke taalvermogen: Van PAUS naar [paus] in een halve seconde. In J. G. van Hell, A. de Klerk, D. E. Strauss, & T. Torremans (Eds.), Taalontwikkeling en taalstoornissen: Theorie, diagnostiek en behandeling (pp. 51-67). Leuven/Apeldoorn: Garant.
  • Hagoort, P. (2006). Het zwarte gat tussen brein en bewustzijn. In J. Janssen, & J. Van Vugt (Eds.), Brein en bewustzijn: Gedachtensprongen tussen hersenen en mensbeeld (pp. 9-24). Damon: Nijmegen.
  • Hagoort, P. (2009). The fractionation of spoken language understanding by measuring electrical and magnetic brain signals. In B. C. J. Moore, L. K. Tyler, & W. Marslen-Wilson (Eds.), The perception of speech: From sound to meaning (pp. 223-248). New York: Oxford University Press.
  • Hagoort, P. (2004). Er is geen behoefte aan trompetten als gordijnen. In H. Procee, H. Meijer, P. Timmerman, & R. Tuinsma (Eds.), Bij die wereld wil ik horen! Zesendertig columns en drie essays over de vorming tot academicus (pp. 78-80). Amsterdam: Boom.
  • Hagoort, P. (2005). Breintaal. In S. Knols, & D. Redeker (Eds.), NWO-Spinozapremies 2005 (pp. 21-34). Den Haag: NWO.
  • Hagoort, P. (2005). Broca's complex as the unification space for language. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 157-173). Mahwah, NJ: Erlbaum.
  • Hagoort, P. (2004). Het zwarte gat tussen brein en bewustzijn. In N. Korteweg (Ed.), De oorsprong: Over het ontstaan van het leven en alles eromheen (pp. 107-124). Amsterdam: Boom.

Share this page