Publications

Displaying 101 - 144 of 144
  • Levshina, N., & Moran, S. (Eds.). (2021). Efficiency in human languages: Corpus evidence for universal principles [Special Issue]. Linguistics Vanguard, 7(s3).
  • Magyari, L. (2005). A nyelv miért nem olyan, mint a szem? (Why is language not like vertebrate eye?). In J. Gervain, K. Kovács, Á. Lukács, & M. Racsmány (Eds.), Az ezer arcú elme (The mind with thousand faces) (first edition, pp. 452-460). Budapest: Akadémiai Kiadó.
  • Mak, M., & Willems, R. M. (2021). Mental simulation during literary reading. In D. Kuiken, & A. M. Jacobs (Eds.), Handbook of empirical literary studies (pp. 63-84). Berlin: De Gruyter.

    Abstract

    Readers experience a number of sensations during reading. They do
    not – or do not only – process words and sentences in a detached, abstract
    manner. Instead they “perceive” what they read about. They see descriptions of
    scenery, feel what characters feel, and hear the sounds in a story. These sensa-
    tions tend to be grouped under the umbrella terms “mental simulation” and
    “mental imagery.” This chapter provides an overview of empirical research on
    the role of mental simulation during literary reading. Our chapter also discusses
    what mental simulation is and how it relates to mental imagery. Moreover, it
    explores how mental simulation plays a role in leading models of literary read-
    ing and investigates under what circumstances mental simulation occurs dur-
    ing literature reading. Finally, the effect of mental simulation on the literary
    reader’s experience is discussed, and suggestions and unresolved issues in this
    field are formulated.
  • Massaro, D. W., & Jesse, A. (2005). The magic of reading: Too many influences for quick and easy explanations. In T. Trabasso, J. Sabatini, D. W. Massaro, & R. C. Calfee (Eds.), From orthography to pedagogy: Essays in honor of Richard L. Venezky. (pp. 37-61). Mahwah, NJ: Lawrence Erlbaum Associates.

    Abstract

    Words are fundamental to reading and yet over a century of research has not masked the controversies around how words are recognized. We review some old and new research that disproves simple ideas such as words are read as wholes or are simply mapped directly to spoken language. We also review theory and research relevant to the question of sublexical influences in word recognition. We describe orthography and phonology, how they are related to each other and describe a series of new experiments on how these sources of information are processed. Tasks include lexical decision, perceptual identification, and naming. Dependent measures are reaction time, accuracy of performance, and a new measure, initial phoneme duration, that refers to the duration of the first phoneme when the target word is pronounced. Important factors in resolving the controversies include the realization that reading has multiple determinants, as well as evaluating the type of task, proper controls such as familiarity of the test items and accuracy of measurement of the response. We also address potential limitations with measures related to the mapping between orthography and phonology, and show that the existence of a sound-to-spelling consistency effect does not require interactive activation, but can be explained and predicted by a feedforward model, the Fuzzy logical model of perception.
  • McDonough, L., Choi, S., Bowerman, M., & Mandler, J. M. (1998). The use of preferential looking as a measure of semantic development. In C. Rovee-Collier, L. P. Lipsitt, & H. Hayne (Eds.), Advances in Infancy Research. Volume 12. (pp. 336-354). Stamford, CT: Ablex Publishing.
  • McQueen, J. M. (2005). Speech perception. In K. Lamberts, & R. Goldstone (Eds.), The Handbook of Cognition (pp. 255-275). London: Sage Publications.
  • McQueen, J. M. (2005). Spoken word recognition and production: Regular but not inseparable bedfellows. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 229-244). Mahwah, NJ: Erlbaum.
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • Naffah, N., Kempen, G., Rohmer, J., Steels, L., Tsichritzis, D., & White, G. (1985). Intelligent Workstation in the office: State of the art and future perspectives. In J. Roukens, & J. Renuart (Eds.), Esprit '84: Status report of ongoing work (pp. 365-378). Amsterdam: Elsevier Science Publishers.
  • Noordman, L. G., & Vonk, W. (1998). Discourse comprehension. In A. D. Friederici (Ed.), Language comprehension: a biological perspective (pp. 229-262). Berlin: Springer.

    Abstract

    The human language processor is conceived as a system that consists of several interrelated subsystems. Each subsystem performs a specific task in the complex process of language comprehension and production. A subsystem receives a particular input, performs certain specific operations on this input and yields a particular output. The subsystems can be characterized in terms of the transformations that relate the input representations to the output representations. An important issue in describing the language processing system is to identify the subsystems and to specify the relations between the subsystems. These relations can be conceived in two different ways. In one conception the subsystems are autonomous. They are related to each other only by the input-output channels. The operations in one subsystem are not affected by another system. The subsystems are modular, that is they are independent. In the other conception, the different subsystems influence each other. A subsystem affects the processes in another subsystem. In this conception there is an interaction between the subsystems.
  • Norman, D. A., & Levelt, W. J. M. (1988). Life at the center. In W. Hirst (Ed.), The making of cognitive science: essays in honor of George A. Miller (pp. 100-109). Cambridge University Press.
  • Poletiek, F. H., & Rassin E. (Eds.). (2005). Het (on)bewuste [Special Issue]. De Psycholoog.
  • Poletiek, F. H. (2005). The proof of the pudding is in the eating: Translating Popper's philosophy into a model for testing behaviour. In K. I. Manktelow, & M. C. Chung (Eds.), Psychology of reasoning: Theoretical and historical perspectives (pp. 333-347). Hove: Psychology Press.
  • Roelofs, A. (2005). Spoken word planning, comprehending, and self-monitoring: Evaluation of WEAVER++. In R. Hartsuiker, R. Bastiaanse, A. Postma, & F. Wijnen (Eds.), Phonological encoding and monitoring in normal and pathological speech (pp. 42-63). Hove: Psychology press.
  • Roelofs, A. (2005). From Popper to Lakatos: A case for cumulative computational modeling. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 313-330). Mahwah,NJ: Erlbaum.
  • Rossi, G. (2021). Conversation analysis (CA). In J. Stanlaw (Ed.), The International Encyclopedia of Linguistic Anthropology. Wiley-Blackwell. doi:10.1002/9781118786093.iela0080.

    Abstract

    Conversation analysis (CA) is an approach to the study of language and social interaction that puts at center stage its sequential development. The chain of initiating and responding actions that characterizes any interaction is a source of internal evidence for the meaning of social behavior as it exposes the understandings that participants themselves give of what one another is doing. Such an analysis requires the close and repeated inspection of audio and video recordings of naturally occurring interaction, supported by transcripts and other forms of annotation. Distributional regularities are complemented by a demonstration of participants' orientation to deviant behavior. CA has long maintained a constructive dialogue and reciprocal influence with linguistic anthropology. This includes a recent convergence on the cross-linguistic and cross-cultural study of social interaction.
  • Schiller, N. O. (2005). Verbal self-monitoring. In A. Cutler (Ed.), Twenty-first Century Psycholinguistics: Four cornerstones (pp. 245-261). Lawrence Erlbaum: Mahwah [etc.].
  • Senft, G. (2021). A very special letter. In T. Szczerbowski (Ed.), Language "as round as an orange".. In memory of Professor Krystyna Pisarkowa on the 90th anniversary of her birth (pp. 367). Krakow: Uniwersytetu Pedagogicznj.
  • Senft, G. (1998). 'Noble Savages' and the 'Islands of Love': Trobriand Islanders in 'Popular Publications'. In J. Wassmann (Ed.), Pacific answers to Western hegemony: Cultural practices of identity construction (pp. 119-140). Oxford: Berg Publishers.
  • Senft, G. (2005). Bronislaw Malinowski and linguistic pragmatics. In P. Cap (Ed.), Pragmatics today (pp. 139-155). Frankfurt am Main: Lang.
  • Senft, G. (1998). Zeichenkonzeptionen in Ozeanien. In R. Posner, T. Robering, & T.. Sebeok (Eds.), Semiotics: A handbook on the sign-theoretic foundations of nature and culture (Vol. 2) (pp. 1971-1976). Berlin: de Gruyter.
  • Seuren, P. A. M. (2005). The origin of grammatical terminology. In B. Smelik, R. Hofman, C. Hamans, & D. Cram (Eds.), A companion in linguistics: A Festschrift for Anders Ahlqvist on the occasion of his sixtieth birthday (pp. 185-196). Nijmegen: Stichting Uitgeverij de Keltische Draak.
  • Seuren, P. A. M. (2005). The role of lexical data in semantics. In A. Cruse, F. Hundsnurscher, M. Job, & P. R. Lutzeier (Eds.), Lexikologie / Lexicology. Ein internationales Handbuch zur Natur und Struktur von Wörtern und Wortschätzen/An international handbook on the nature and structure of words and vocabularies. 2. Halbband / Volume 2 (pp. 1690-1696). Berlin: Walter de Gruyter.
  • Seuren, P. A. M. (1988). Lexical meaning and presupposition. In W. Hüllen, & R. Schulze (Eds.), Understanding the lexicon: Meaning, sense and world knowledge in lexical semantics (pp. 170-187). Tübingen: Niemeyer.
  • Seuren, P. A. M. (1973). The comparative. In F. Kiefer, & N. Ruwet (Eds.), Generative grammar in Europe (pp. 528-564). Reidel: Dordrecht.

    Abstract

    No idea is older in the history of linguistics than the thought that there is, somehow hidden underneath the surface of sentences, a form or a structure which provides a semantic analysis and lays bare their logical structure. In Plato’s Cratylus the theory was proposed, deriving from Heraclitus’ theory of explanatory underlying structure in physical nature, that words contain within themselves bits of syntactic structure giving their meanings. The Stoics held the same view and maintained moreover that every sentence has an underlying logical structure, which for them was the Aristotelian subject- predicate form. They even proposed transformational processes to derive the surface from the deep structure. The idea of a semantically analytic logical form underlying the sentences of every language kept reappearing in various guises at various times. Quite recently it re-emerged under the name of generative semantics.
  • Seuren, P. A. M. (1973). The new approach to the study of language. In B. Douglas (Ed.), Linguistics and the mind (pp. 11-20). Sydney: Sydney University Extension Board.
  • Seuren, P. A. M. (1998). Towards a discourse-semantic account of donkey anaphora. In S. Botley, & T. McEnery (Eds.), New Approaches to Discourse Anaphora: Proceedings of the Second Colloquium on Discourse Anaphora and Anaphor Resolution (DAARC2) (pp. 212-220). Lancaster: Universiy Centre for Computer Corpus Research on Language, Lancaster University.
  • Sidnell, J., & Stivers, T. (Eds.). (2005). Multimodal Interaction [Special Issue]. Semiotica, 156.
  • Skiba, R. (1988). Computer analysis of language data using the data transformation program TEXTWOLF in conjunction with a database system. In U. Jung (Ed.), Computers in applied linguistics and language teaching (pp. 155-159). Frankfurt am Main: Peter Lang.
  • Skiba, R. (1988). Computerunterstützte Analyse von sprachlichen Daten mit Hilfe des Datenumwandlungsprogramms TextWolf in Kombination mit einem Datenbanksystem. In B. Spillner (Ed.), Angewandte Linguistik und Computer (pp. 86-88). Tübingen: Gunter Narr.
  • Stolker, C. J. J. M., & Poletiek, F. H. (1998). Smartengeld - Wat zijn we eigenlijk aan het doen? Naar een juridische en psychologische evaluatie. In F. Stadermann (Ed.), Bewijs en letselschade (pp. 71-86). Lelystad, The Netherlands: Koninklijke Vermande.
  • Suppes, P., Böttner, M., & Liang, L. (1998). Machine Learning of Physics Word Problems: A Preliminary Report. In A. Aliseda, R. van Glabbeek, & D. Westerståhl (Eds.), Computing Natural Language (pp. 141-154). Stanford, CA, USA: CSLI Publications.
  • Trilsbeek, P., & Wittenburg, P. (2005). Archiving challenges. In J. Gippert, N. Himmelmann, & U. Mosel (Eds.), Essentials of language documentation (pp. 311-335). Berlin: Mouton de Gruyter.
  • Trujillo, J. P., Levinson, S. C., & Holler, J. (2021). Visual information in computer-mediated interaction matters: Investigating the association between the availability of gesture and turn transition timing in conversation. In M. Kurosu (Ed.), Human-Computer Interaction. Design and User Experience Case Studies. HCII 2021 (pp. 643-657). Cham: Springer. doi:10.1007/978-3-030-78468-3_44.

    Abstract

    Natural human interaction involves the fast-paced exchange of speaker turns. Crucially, if a next speaker waited with planning their turn until the current speaker was finished, language production models would predict much longer turn transition times than what we observe. Next speakers must therefore prepare their turn in parallel to listening. Visual signals likely play a role in this process, for example by helping the next speaker to process the ongoing utterance and thus prepare an appropriately-timed response.

    To understand how visual signals contribute to the timing of turn-taking, and to move beyond the mostly qualitative studies of gesture in conversation, we examined unconstrained, computer-mediated conversations between 20 pairs of participants while systematically manipulating speaker visibility. Using motion tracking and manual gesture annotation, we assessed 1) how visibility affected the timing of turn transitions, and 2) whether use of co-speech gestures and 3) the communicative kinematic features of these gestures were associated with changes in turn transition timing.

    We found that 1) decreased visibility was associated with less tightly timed turn transitions, and 2) the presence of gestures was associated with more tightly timed turn transitions across visibility conditions. Finally, 3) structural and salient kinematics contributed to gesture’s facilitatory effect on turn transition times.

    Our findings suggest that speaker visibility--and especially the presence and kinematic form of gestures--during conversation contributes to the temporal coordination of conversational turns in computer-mediated settings. Furthermore, our study demonstrates that it is possible to use naturalistic conversation and still obtain controlled results.
  • Van Wijk, C., & Kempen, G. (1985). From sentence structure to intonation contour: An algorithm for computing pitch contours on the basis of sentence accents and syntactic structure. In B. Müller (Ed.), Sprachsynthese: Zur Synthese von natürlich gesprochener Sprache aus Texten und Konzepten (pp. 157-182). Hildesheim: Georg Olms.
  • Van Wijk, C., & Kempen, G. (1982). Kost zinsbouw echt tijd? In R. Stuip, & W. Zwanenberg (Eds.), Handelingen van het zevenendertigste Nederlands Filologencongres (pp. 223-231). Amsterdam: APA-Holland University Press.
  • Van Geenhoven, V. (1998). On the Argument Structure of some Noun Incorporating Verbs in West Greenlandic. In M. Butt, & W. Geuder (Eds.), The Projection of Arguments - Lexical and Compositional Factors (pp. 225-263). Stanford, CA, USA: CSLI Publications.
  • Van Valin Jr., R. D. (1998). The acquisition of WH-questions and the mechanisms of language acquisition. In M. Tomasello (Ed.), The new psychology of language: Cognitive and functional approaches to language structure (pp. 221-249). Mahwah, New Jersey: Erlbaum.
  • Vernes, S. C., Janik, V. M., Fitch, W. T., & Slater, P. J. B. (Eds.). (2021). Vocal learning in animals and humans [Special Issue]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376.
  • Weissenborn, J. (1988). Von der demonstratio ad oculos zur Deixis am Phantasma. Die Entwicklung der lokalen Referenz bei Kindern. In Karl Bühler's Theory of Language. Proceedings of the Conference held at Kirchberg, August 26, 1984 and Essen, November 21–24, 1984 (pp. 257-276). Amsterdam: Benjamins.
  • Zeshan, U. (2005). Sign languages. In M. Haspelmath, M. S. Dryer, D. Gil, & B. Comrie (Eds.), The world atlas of language structures (pp. 558-559). Oxford: Oxford University Press.
  • Zeshan, U. (2005). Question particles in sign languages. In M. Haspelmath, M. S. Dryer, D. Gil, & B. Comrie (Eds.), The world atlas of language structures (pp. 564-567). Oxford: Oxford University Press.
  • Zeshan, U., Pfau, R., & Aboh, E. (2005). When a wh-word is not a wh-word: the case of Indian sign language. In B. Tanmoy (Ed.), Yearbook of South Asian languages and linguistics 2005 (pp. 11-43). Berlin: Mouton de Gruyter.
  • Zeshan, U. (2005). Irregular negatives in sign languages. In M. Haspelmath, M. S. Dryer, D. Gil, & B. Comrie (Eds.), The world atlas of language structures (pp. 560-563). Oxford: Oxford University Press.

Share this page