Publications

Displaying 101 - 200 of 366
  • Enfield, N. J. (2002). “Fish trap” task. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 61). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Enfield, N. J. (2009). 'Case relations' in Lao, a radically isolating language. In A. L. Malčukov, & A. Spencer (Eds.), The Oxford handbook of case (pp. 808-819). Oxford: Oxford University Press.
  • Enfield, N. J. (2002). Cultural logic and syntactic productivity: Associated posture constructions in Lao. In N. Enfield (Ed.), Ethnosyntax: Explorations in culture and grammar (pp. 231-258). Oxford: Oxford University Press.
  • Enfield, N. J. (2002). Ethnosyntax: Introduction. In N. Enfield (Ed.), Ethnosyntax: Explorations in culture and grammar (pp. 1-30). Oxford: Oxford University Press.
  • Enfield, N. J. (2005). Depictive and other secondary predication in Lao. In N. P. Himmelmann, & E. Schultze-Berndt (Eds.), Secondary predication and adverbial modification (pp. 379-392). Oxford: Oxford University Press.
  • Enfield, N. J. (2002). Combinatoric properties of natural semantic metalanguage expressions in Lao. In C. Goddard, & A. Wierzbicka (Eds.), Meaning and universal grammar: Theory and empirical findings (pp. 145-256). Amsterdam: John Benjamins.
  • Enfield, N. J. (2002). Functions of 'give' and 'take' in Lao complex predicates. In R. S. Bauer (Ed.), Collected papers on Southeast Asian and Pacific languages (pp. 13-36). Canberra: Pacific Linguistics.
  • Enfield, N. J. (2005). Micro and macro dimensions in linguistic systems. In S. Marmaridou, K. Nikiforidou, & E. Antonopoulou (Eds.), Reviewing linguistic thought: Converging trends for the 21st Century (pp. 313-326). Berlin: Mouton de Gruyter.
  • Enfield, N. J., & Levinson, S. C. (2009). Metalanguage for speech acts. In A. Majid (Ed.), Field manual volume 12 (pp. 51-53). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.883559.

    Abstract

    People of all cultures have some degree of concern with categorizing types of communicative social action. All languages have words with meanings like speak, say, talk, complain, curse, promise, accuse, nod, wink, point and chant. But the exact distinctions they make will differ in both quantity and quality. How is communicative social action categorised across languages and cultures? The goal of this task is to establish a basis for cross-linguistic comparison of native metalanguages for social action.
  • Enfield, N. J. (2009). Language and culture. In L. Wei, & V. Cook (Eds.), Contemporary Applied Linguistics Volume 2 (pp. 83-97). London: Continuum.
  • Enfield, N. J. (1999). Lao as a national language. In G. Evans (Ed.), Laos: Culture and society (pp. 258-290). Chiang Mai: Silkworm Books.
  • Enfield, N. J. (2009). Everyday ritual in the residential world. In G. Senft, & E. B. Basso (Eds.), Ritual communication (pp. 51-80). Oxford: Berg.
  • Enfield, N. J., Levinson, S. C., & Stivers, T. (2009). Social action formulation: A "10-minutes" task. In A. Majid (Ed.), Field manual volume 12 (pp. 54-55). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.883564.

    Abstract

    Human actions in the social world – like greeting, requesting, complaining, accusing, asking, confirming, etc. – are recognised through the interpretation of signs. Language is where much of the action is, but gesture, facial expression and other bodily actions matter as well. The goal of this task is to establish a maximally rich description of a representative, good quality piece of conversational interaction, which will serve as a reference point for comparative exploration of the status of social actions and their formulation across language
  • Ernestus, M. (2012). Segmental within-speaker variation. In A. C. Cohn, C. Fougeron, & M. K. Huffman (Eds.), The Oxford handbook of laboratory phonology (pp. 93-102). New York: Oxford University Press.
  • Faller, M. (2002). Remarks on evidential hierarchies. In D. I. Beaver, L. D. C. Martinez, B. Z. Clark., & S. Kaufmann (Eds.), The construction of meaning (pp. 89-111). Stanford: CSLI Publications.
  • Fedor, A., Pléh, C., Brauer, J., Caplan, D., Friederici, A. D., Gulyás, B., Hagoort, P., Nazir, T., & Singer, W. (2009). What are the brain mechanisms underlying syntactic operations? In D. Bickerton, & E. Szathmáry (Eds.), Biological foundations and origin of syntax (pp. 299-324). Cambridge, MA: MIT Press.

    Abstract

    This chapter summarizes the extensive discussions that took place during the Forum as well as the subsequent months thereafter. It assesses current understanding of the neuronal mechanisms that underlie syntactic structure and processing.... It is posited that to understand the neurobiology of syntax, it might be worthwhile to shift the balance from comprehension to syntactic encoding in language production
  • Fisher, S. E. (2002). Isolation of the genetic factors underlying speech and language disorders. In R. Plomin, J. C. DeFries, I. W. Craig, & P. McGuffin (Eds.), Behavioral genetics in the postgenomic era (pp. 205-226). Washington, DC: American Psychological Association.

    Abstract

    This chapter highlights the research in isolating genetic factors underlying specific language impairment (SLI), or developmental dysphasia, which exploits newly developed genotyping technology, novel statistical methodology, and DNA sequence data generated by the Human Genome Project. The author begins with an overview of results from family, twin, and adoption studies supporting genetic involvement and then goes on to outline progress in a number of genetic mapping efforts that have been recently completed or are currently under way. It has been possible for genetic researchers to pinpoint the specific mutation responsible for some speech and language disorders, providing an example of how the availability of human genomic sequence data can greatly accelerate the pace of disease gene discovery. Finally, the author discusses future prospects on how molecular genetics may offer new insight into the etiology underlying speech and language disorders, leading to improvements in diagnosis and treatment.
  • Fitch, W. T., Friederici, A. D., & Hagoort, P. (Eds.). (2012). Pattern perception and computational complexity [Special Issue]. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 367 (1598).
  • Francks, C. (2009). 13 - LRRTM1: A maternally suppressed genetic effect on handedness and schizophrenia. In I. E. C. Sommer, & R. S. Kahn (Eds.), Cerebral lateralization and psychosis (pp. 181-196). Cambridge: Cambridge University Press.

    Abstract

    The molecular, developmental, and evolutionary bases of human brain asymmetry are almost completely unknown. Genetic linkage and association mapping have pin-pointed a gene called LRRTM1 (leucine-rich repeat transmembrane neuronal 1) that may contribute to variability in human handedness. Here I describe how LRRTM1's involvement in handedness was discovered, and also the latest knowledge of its functions in brain development and disease. The association of LRRTM1 with handedness was derived entirely from the paternally inherited gene, and follow-up analysis of gene expression confirmed that LRRTM1 is one of a small number of genes that are imprinted in the human genome, for which the maternally inherited copy is suppressed. The same variation at LRRTM1 that was associated paternally with mixed-/left-handedness was also over-transmitted paternally to schizophrenic patients in a large family study.
    LRRTM1 is expressed in specific regions of the developing and adult forebrain by post-mitotic neurons, and the protein may be involved in axonal trafficking. Thus LRRTM1 has a probable role in neurodevelopment, and its association with handedness suggests that one of its functions may be in establishing or consolidating human brain asymmetry.
    LRRTM1 is the first gene for which allelic variation has been associated with human handedness. The genetic data also suggest indirectly that the epigenetic regulation of this gene may yet prove more important than DNA sequence variation for influencing brain development and disease.
    Intriguingly, the parent-of-origin activity of LRRTM1 suggests that men and women have had conflicting interests in relation to the outcome of lateralized brain development in their offspring.
  • Gaby, A. R. (2005). Some participants are more equal than others: Case and the composition of arguments in Kuuk Thaayorre. In M. Amberber, & H. d. Hoop (Eds.), Competition and variation in natural languages: the case for the case (pp. 9-39). Amsterdam: Elsevier.
  • Gaby, A. (2012). The Thaayorre lexicon of putting and taking. In A. Kopecka, & B. Narasimhan (Eds.), Events of putting and taking: A crosslinguistic perspective (pp. 233-252). Amsterdam: Benjamins.

    Abstract

    This paper investigates the lexical semantics and relative distributions of verbs describing putting and taking events in Kuuk Thaayorre, a Pama-Nyungan language of Cape York (Australia). Thaayorre put/take verbs can be subcategorised according to whether they may combine with an NP encoding a goal, an NP encoding a source, or both. Goal NPs are far more frequent in natural discourse: initial analysis shows 85% of goal-oriented verb tokens to be accompanied by a goal NP, while only 31% of source-oriented verb tokens were accompanied by a source. This finding adds weight to Ikegami’s (1987) assertion of the conceptual primacy of goals over sources, reflected in a cross-linguistic dissymmetry whereby goal-marking is less marked and more widely used than source-marking.
  • Gentner, D., & Bowerman, M. (2009). Why some spatial semantic categories are harder to learn than others: The typological prevalence hypothesis. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 465-480). New York: Psychology Press.
  • Goldin-Meadow, S., Ozyurek, A., Sancar, B., & Mylander, C. (2009). Making language around the globe: A cross-linguistic study of homesign in the United States, China, and Turkey. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 27-39). New York: Psychology Press.
  • Goudbeek, M., Smits, R., Cutler, A., & Swingley, D. (2005). Acquiring auditory and phonetic categories. In H. Cohen, & C. Lefebvre (Eds.), Handbook of categorization in cognitive science (pp. 497-513). Amsterdam: Elsevier.
  • Le Guen, O. (2009). The ethnography of emotions: A field worker's guide. In A. Majid (Ed.), Field manual volume 12 (pp. 31-34). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.446076.

    Abstract

    The goal of this task is to investigate cross-cultural emotion categories in language and thought. This entry is designed to provide researchers with some guidelines to describe the emotional repertoire of a community from an emic perspective. The first objective is to offer ethnographic tools and a questionnaire in order to understand the semantics of emotional terms and the local conception of emotions. The second objective is to identify the local display rules of emotions in communicative interactions.
  • Gullberg, M., & Holmqvist, K. (2002). Visual attention towards gestures in face-to-face interaction vs. on screen. In I. Wachsmuth, & T. Sowa (Eds.), Gesture and sign languages in human-computer interaction (pp. 206-214). Berlin: Springer.
  • Gullberg, M. (2002). Gestures, languages, and language acquisition. In S. Strömqvist (Ed.), The diversity of languages and language learning (pp. 45-56). Lund: Lund University.
  • Gullberg, M., & Burenhult, N. (2012). Probing the linguistic encoding of placement and removal events in Swedish. In A. Kopecka, & B. Narasimhan (Eds.), Events of putting and taking: A crosslinguistic perspective (pp. 167-182). Amsterdam: Benjamins.

    Abstract

    This paper explores the linguistic encoding of placement and removal events in Swedish. Drawing on elicited spoken data, it provides a unified approach to caused motion descriptions. The results show uniform syntactic behaviour of placement and removal descriptions and a consistent asymmetry between placement and removal in the semantic specificity of verbs. The results also reveal three further semantic patterns, pertaining to the nature of the relationship between Figure and Ground, that appear to account for how these event types are characterised, viz. whether the Ground is represented by a body part of the Agent; whether the Figure is contained within the Ground; or whether it is supported by the Ground.
  • Gullberg, M., Indefrey, P., & Muysken, P. (2009). Research techniques for the study of code-switching. In B. E. Bullock, & J. A. Toribio (Eds.), The Cambridge handbook on linguistic code-switching (pp. 21-39). Cambridge: Cambridge University Press.

    Abstract

    The aim of this chapter is to provide researchers with a tool kit of semi-experimental and experimental techniques for studying code-switching. It presents an overview of the current off-line and on-line research techniques, ranging from analyses of published bilingual texts of spontaneous conversations, to tightly controlled experiments. A multi-task approach used for studying code-switched sentence production in Papiamento-Dutch bilinguals is also exemplified.
  • Gullberg, M. (2009). Why gestures are relevant to the bilingual mental lexicon. In A. Pavlenko (Ed.), The bilingual mental lexicon: Interdisciplinary approaches (pp. 161-184). Clevedon: Multilingual Matters.

    Abstract

    Gestures, the symbolic movements speakers perform while they speak, are systematically related to speech and language in non-trivial ways. This chapter presents an overview of what gestures can and cannot tell us about the monolingual and the bilingual mental lexicon. Gesture analysis opens for a broader view of the mental lexicon, targeting the interface between conceptual, semantic and syntactic aspects of event construal, and offers new possibilities for examining how languages co-exist and interact in bilinguals beyond the level of surface forms. The first section of this chapter gives a brief introduction to gesture studies and outlines the current views on the relationship between gesture, speech, and language. The second section targets the key questions for the study of the monolingual and bilingual lexicon, and illustrates the methods employed for addressing these questions. It further exemplifies systematic cross-linguistic patterns in gestural behaviour in monolingual and bilingual contexts. The final section discusses some implications of an expanded view of the multilingual lexicon that includes gesture, and outlines directions for future inquiry.

    Files private

    Request files
  • Habscheid, S., & Klein, W. (Eds.). (2012). Dinge und Maschinen in der Kommunikation [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, 42(168).

    Abstract

    “The most profound technologies are those that disappear. They weave themselves into the fabric of everyday life until they are indistinguishable from it.” (Weiser 1991, S. 94). – Die Behauptung stammt aus einem vielzitierten Text von Mark Weiser, ehemals Chief Technology Officer am berühmten Xerox Palo Alto Research Center (PARC), wo nicht nur einige bedeutende computertechnische Innovationen ihren Ursprung hatten, sondern auch grundlegende anthropologische Einsichten zum Umgang mit technischen Artefakten gewonnen wurden.1 In einem populärwissenschaftlichen Artikel mit dem Titel „The Computer for the 21st Century” entwarf Weiser 1991 die Vision einer Zukunft, in der wir nicht mehr mit einem einzelnen PC an unserem Arbeitsplatz umgehen – vielmehr seien wir in jedem Raum umgeben von hunderten elektronischer Vorrichtungen, die untrennbar in Alltagsgegenstände eingebettet und daher in unserer materiellen Umwelt gleichsam „verschwunden“ sind. Dabei ging es Weiser nicht allein um das ubiquitäre Phänomen, das in der Medientheorie als „Transparenz der Medien“ bekannt ist2 oder in allgemeineren Theorien der Alltagserfahrung als eine selbstverständliche Verwobenheit des Menschen mit den Dingen, die uns in ihrem Sinn vertraut und praktisch „zuhanden“ sind.3 Darüber hinaus zielte Weisers Vision darauf, unsere bereits existierende Umwelt durch computerlesbare Daten zu erweitern und in die Operationen eines solchen allgegenwärtigen Netzwerks alltägliche Praktiken gleichsam lückenlos zu integrieren: In der Welt, die Weiser entwirft, öffnen sich Türen für denjenigen, der ein bestimmtes elektronisches Abzeichen trägt, begrüßen Räume Personen, die sie betreten, mit Namen, passen sich Computerterminals an die Präferenzen individueller Nutzer an usw. (Weiser 1991, S. 99).
  • Hagoort, P. (2002). Het unieke menselijke taalvermogen: Van PAUS naar [paus] in een halve seconde. In J. G. van Hell, A. de Klerk, D. E. Strauss, & T. Torremans (Eds.), Taalontwikkeling en taalstoornissen: Theorie, diagnostiek en behandeling (pp. 51-67). Leuven/Apeldoorn: Garant.
  • Hagoort, P. (2009). The fractionation of spoken language understanding by measuring electrical and magnetic brain signals. In B. C. J. Moore, L. K. Tyler, & W. Marslen-Wilson (Eds.), The perception of speech: From sound to meaning (pp. 223-248). New York: Oxford University Press.
  • Hagoort, P. (2005). Breintaal. In S. Knols, & D. Redeker (Eds.), NWO-Spinozapremies 2005 (pp. 21-34). Den Haag: NWO.
  • Hagoort, P. (2005). Broca's complex as the unification space for language. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 157-173). Mahwah, NJ: Erlbaum.
  • Hagoort, P. (2012). From ants to music and language [Preface]. In A. D. Patel, Music, language, and the brain [Chinese translation] (pp. 9-10). Shanghai: East China Normal University Press Ltd.
  • Hagoort, P. (2009). Reflections on the neurobiology of syntax. In D. Bickerton, & E. Szathmáry (Eds.), Biological foundations and origin of syntax (pp. 279-296). Cambridge, MA: MIT Press.

    Abstract

    This contribution focuses on the neural infrastructure for parsing and syntactic encoding. From an anatomical point of view, it is argued that Broca's area is an ill-conceived notion. Functionally, Broca's area and adjacent cortex (together Broca's complex) are relevant for language, but not exclusively for this domain of cognition. Its role can be characterized as providing the necessary infrastructure for unification (syntactic and semantic). A general proposal, but with required level of computational detail, is discussed to account for the distribution of labor between different components of the language network in the brain.Arguments are provided for the immediacy principle, which denies a privileged status for syntax in sentence processing. The temporal profile of event-related brain potential (ERP) is suggested to require predictive processing. Finally, since, next to speed, diversity is a hallmark of human languages, the language readiness of the brain might not depend on a universal, dedicated neural machinery for syntax, but rather on a shaping of the neural infrastructure of more general cognitive systems (e.g., memory, unification) in a direction that made it optimally suited for the purpose of communication through language.
  • Hagoort, P., Baggio, G., & Willems, R. M. (2009). Semantic unification. In M. S. Gazzaniga (Ed.), The cognitive neurosciences, 4th ed. (pp. 819-836). Cambridge, MA: MIT Press.

    Abstract

    Language and communication are about the exchange of meaning. A key feature of understanding and producing language is the construction of complex meaning from more elementary semantic building blocks. The functional characteristics of this semantic unification process are revealed by studies using event related brain potentials. These studies have found that word meaning is assembled into compound meaning in not more than 500 ms. World knowledge, information about the speaker, co-occurring visual input and discourse all have an immediate impact on semantic unification, and trigger similar electrophysiological responses as sentence-internal semantic information. Neuroimaging studies show that a network of brain areas, including the left inferior frontal gyrus, the left superior/middle temporal cortex, the left inferior parietal cortex and, to a lesser extent their right hemisphere homologues are recruited to perform semantic unification.
  • Hagoort, P. (2009). Taalontwikkeling: Meer dan woorden alleen. In M. Evenblij (Ed.), Brein in beeld: Beeldvorming bij heersenonderzoek (pp. 53-57). Den Haag: Stichting Bio-Wetenschappen en Maatschappij.
  • Hagoort, P., Brown, C. M., & Osterhout, L. (1999). The neurocognition of syntactic processing. In C. M. Brown, & P. Hagoort (Eds.), The neurocognition of language (pp. 273-317). Oxford: Oxford University Press.
  • Hagoort, P. (1998). The shadows of lexical meaning in patients with semantic impairments. In B. Stemmer, & H. Whitaker (Eds.), Handbook of neurolinguistics (pp. 235-248). New York: Academic Press.
  • Hagoort, P. (1999). The uniquely human capacity for language communication: from 'pope' to [po:p] in half a second. In J. Russell, M. Murphy, T. Meyering, & M. Arbib (Eds.), Neuroscience and the person: Scientific perspectives on divine action (pp. 45-56). California: Berkeley.
  • Hallé, P., & Cristia, A. (2012). Global and detailed speech representations in early language acquisition. In S. Fuchs, M. Weirich, D. Pape, & P. Perrier (Eds.), Speech planning and dynamics (pp. 11-38). Frankfurt am Main: Peter Lang.

    Abstract

    We review data and hypotheses dealing with the mental representations for perceived and produced speech that infants build and use over the course of learning a language. In the early stages of speech perception and vocal production, before the emergence of a receptive or a productive lexicon, the dominant picture emerging from the literature suggests rather non-analytic representations based on units of the size of the syllable: Young children seem to parse speech into syllable-sized units in spite of their ability to detect sound equivalence based on shared phonetic features. Once a productive lexicon has emerged, word form representations are initially rather underspecified phonetically but gradually become more specified with lexical growth, up to the phoneme level. The situation is different for the receptive lexicon, in which phonetic specification for consonants and vowels seem to follow different developmental paths. Consonants in stressed syllables are somewhat well specified already at the first signs of a receptive lexicon, and become even better specified with lexical growth. Vowels seem to follow a different developmental path, with increasing flexibility throughout lexical development. Thus, children come to exhibit a consonant vowel asymmetry in lexical representations, which is clear in adult representations.
  • Hammarström, H. (2012). A full-scale test of the language farming dispersal hypothesis. In S. Wichmann, & A. P. Grant (Eds.), Quantitative approaches to linguistic diversity: Commemorating the centenary of the birth of Morris Swadesh (pp. 7-22). Amsterdam: Benjamins.

    Abstract

    Originally published in Diachronica 27:2 (2010) One attempt at explaining why some language families are large (while others are small) is the hypothesis that the families that are now large became large because their ancestral speakers had a technological advantage, most often agriculture. Variants of this idea are referred to as the Language Farming Dispersal Hypothesis. Previously, detailed language family studies have uncovered various supporting examples and counterexamples to this idea. In the present paper I weigh the evidence from ALL attested language families. For each family, I use the number of member languages as a measure of cardinal size, member language coordinates to measure geospatial size and ethnographic evidence to assess subsistence status. This data shows that, although agricultural families tend to be larger in cardinal size, their size is hardly due to the simple presence of farming. If farming were responsible for language family expansions, we would expect a greater east-west geospatial spread of large families than is actually observed. The data, however, is compatible with weaker versions of the farming dispersal hypothesis as well with models where large families acquire farming because of their size, rather than the other way around.
  • Hammarström, H., & van den Heuvel, W. (Eds.). (2012). On the history, contact & classification of Papuan languages [Special Issue]. Language & Linguistics in Melanesia, 2012. Retrieved from http://www.langlxmelanesia.com/specialissues.htm.
  • Hammarström, H., & Nordhoff, S. (2012). The languages of Melanesia: Quantifying the level of coverage. In N. Evans, & M. Klamer (Eds.), Melanesian languages on the edge of Asia: Challenges for the 21st Century (pp. 13-33). Honolulu: University of Hawai'i Press. Retrieved from http://hdl.handle.net/10125/4559.
  • Hanulikova, A. (2009). The role of syllabification in the lexical segmentation of German and Slovak. In S. Fuchs, H. Loevenbruck, D. Pape, & P. Perrier (Eds.), Some aspects of speech and the brain (pp. 331-361). Frankfurt am Main: Peter Lang.

    Abstract

    Two experiments were carried out to examine the syllable affiliation of intervocalic consonant clusters and their effects on speech segmentation in two different languages. In a syllable reversal task, Slovak and German speakers divided bisyllabic non-words that were presented aurally into two parts, starting with the second syllable. Following the maximal onset principle, intervocalic consonants should be maximally assigned to the onset of the following syllable in conformity with language-specific restrictions, e.g., /du.gru/, /zu.kro:/ (dot indicates a syllable boundary). According to German phonology, syllables require branching rhymes (hence, /zuk.ro:/). In Slovak, both /du.gru/ and /dug.ru/ are possible syllabifications. Experiment 1 showed that German speakers more often closed the first syllable (/zuk.ro:/), following the requirement for a branching rhyme. In Experiment 2, Slovak speakers showed no clear preference; the first syllable was either closed (/dug.ru/) or open (/du.gru/). Correlation analyses on previously conducted word-spotting studies (Hanulíková, in press, 2008) suggest that speech segmentation is unaffected by these syllabification preferences.
  • Hoiting, N., & Slobin, D. I. (2002). Transcription as a tool for understanding: The Berkeley Transcription System for sign language research (BTS). In G. Morgan, & B. Woll (Eds.), Directions in sign language acquisition (pp. 55-75). Amsterdam: John Benjamins.
  • Hoiting, N., & Slobin, D. I. (2002). What a deaf child needs to see: Advantages of a natural sign language over a sign system. In R. Schulmeister, & H. Reinitzer (Eds.), Progress in sign language research. In honor of Siegmund Prillwitz / Fortschritte in der Gebärdensprach-forschung. Festschrift für Siegmund Prillwitz (pp. 267-277). Hamburg: Signum.
  • De Hoop, H., & Narasimhan, B. (2005). Differential case-marking in Hindi. In M. Amberber, & H. de Hoop (Eds.), Competition and variation in natural languages: The case for case (pp. 321-345). Amsterdam: Elsevier.
  • Hurford, J. R., & Dediu, D. (2009). Diversity in language, genes and the language faculty. In R. Botha, & C. Knight (Eds.), The cradle of language (pp. 167-188). Oxford: Oxford University Press.
  • Ibarretxe-Antuñano, I. (2012). Placement and removal events in Basque and Spanish. In A. Kopecka, & B. Narasimhan (Eds.), Events of putting and taking: A crosslinguistic perspective (pp. 123-144). Amsterdam: Benjamins.

    Abstract

    This paper examines how placement and removal events are lexicalised and conceptualised in Basque and Peninsular Spanish. After a brief description of the main linguistic devices employed for the coding of these types of events, the paper discusses how speakers of the two languages choose to talk about these events. Finally, the paper focuses on two aspects that seem to be crucial in the description of these events (1) the role of force dynamics: both languages distinguish between different degrees of force, causality, and intentionality, and (2) the influence of the verb-framed lexicalisation pattern. Data come from six Basque and ten Peninsular Spanish native speakers.
  • Indefrey, P. (2012). Hemodynamic studies of syntactic processing. In M. Faust (Ed.), Handbook of the neuropsychology of language. Volume 1: Language processing in the brain: Basic science (pp. 209-228). Malden, MA: Wiley-Blackwell.
  • Indefrey, P., & Davidson, D. J. (2009). Second language acquisition. In L. R. Squire (Ed.), Encyclopedia of neuroscience (pp. 517-523). London: Academic Press.

    Abstract

    This article reviews neurocognitive evidence on second language (L2) processing at speech sound, word, and sentence levels. Hemodynamic (functional magnetic resonance imaging and positron emission tomography) data suggest that L2s are implemented in the same brain structures as the native language but with quantitative differences in the strength of activation that are modulated by age of L2 acquisition and L2 proficiency. Electrophysiological data show a more complex pattern of first and L2 similarities and differences, providing some, although not conclusive, evidence for qualitative differences between L1 and L2 syntactic processing.
  • Irizarri van Suchtelen, P. (2012). Dative constructions in the Spanish of heritage speakers in the Netherlands. In Z. Wąsik, & P. P. Chruszczewski (Eds.), Languages in contact 2011 (pp. 103-118). Wrocław: Philological School of Higher Education in Wrocław Publishing.

    Abstract

    Spanish can use dative as well as non-dative strategies to encode Possessors, Human Sources, Interestees (datives of interest) and Experiencers. In Dutch this optionality is virtually absent, restricting dative encoding mainly to the Recipient of a ditransitive. The present study examines whether this may lead to instability of the non-prototypical dative constructions in the Spanish of Dutch-Spanish bilinguals. Elicited data of 12 Chilean heritage informants from the Netherlands were analyzed. Whereas the evidence on the stability of dative Experiencers was not conclusive, the results indicate that the use of prototypical datives, dative External Possessors, dative Human Sources and datives of interest is fairly stable in bilinguals, except for those with limited childhood exposure to Spanish. It is argued that the consistent preference for non-dative strategies of this group was primarily attributable to instability of the dative clitic, which affected all constructions, even the encoding of prototypical indirect objects
  • Ishibashi, M. (2012). The expression of ‘putting’ and ‘taking’ events in Japanese: The asymmetry of Source and Goal revisited. In A. Kopecka, & B. Narasimhan (Eds.), Events of putting and taking: A crosslinguistic perspective (pp. 253-272). Amsterdam: Benjamins.

    Abstract

    This study explores the expression of Source and Goal in describing placement and removal events in adult Japanese. Although placement and removal events a priori represent symmetry regarding the orientation of motion, their (c)overt expressions actually exhibit multiple asymmetries at various structural levels. The results show that the expression of the Source is less frequent than the expression of the Goal, but, if expressed, morphosyntactically more complex, suggesting that ‘taking’ events are more complex than ‘putting’ events in their construal. It is stressed that finer linguistic analysis is necessary before explaining linguistic asymmetries in terms of non-linguistic foundations of spatial language.
  • Janzen, G. (2005). Wie das mensliche Gehirn Orientierung ermöglicht. In G. Plehn (Ed.), Jahrbuch der Max-Planck-Gesellschaft (pp. 599-601). Göttingen: Vandenhoeck & Ruprecht.
  • Johnsrude, I., Davis, M., & Hervais-Adelman, A. (2005). From sound to meaning: Hierarchical processing in speech comprehension. In D. Pressnitzer, S. McAdams, A. DeCheveigne, & L. Collet (Eds.), Auditory Signal Processing: Physiology, Psychoacoustics, and Models (pp. 299-306). New York: Springer.
  • Jolink, A. (2009). Finiteness in children with SLI: A functional approach. In C. Dimroth, & P. Jordens (Eds.), Functional categories in learner language (pp. 235-260). Berlin: Mouton de Gruyter.
  • Jordan, F., & Mace, R. (2005). The evolution of human sex-ratio at birth: A bio-cultural analysis. In R. Mace, C. J. Holden, & S. Shennan (Eds.), The evolution of cultural diversity: A phylogenetic approach (pp. 207-216). London: UCL Press.
  • Jordens, P. (1998). Defaultformen des Präteritums. Zum Erwerb der Vergangenheitsmorphologie im Niederlänidischen. In H. Wegener (Ed.), Eine zweite Sprache lernen (pp. 61-88). Tübingen, Germany: Verlag Gunter Narr.
  • Jordens, P. (2009). The acquisition of functional categories in child L1 and adult L2 acquisition. In C. Dimroth, & P. Jordens (Eds.), Functional categories in learner language (pp. 45-96). Berlin: Mouton de Gruyter.
  • Kempen, G., & Harbusch, K. (2002). Performance Grammar: A declarative definition. In A. Nijholt, M. Theune, & H. Hondorp (Eds.), Computational linguistics in the Netherlands 2001: Selected papers from the Twelfth CLIN Meeting (pp. 148-162). Amsterdam: Rodopi.

    Abstract

    In this paper we present a definition of Performance Grammar (PG), a psycholinguistically motivated syntax formalism, in declarative terms. PG aims not only at describing and explaining intuitive judgments and other data concerning the well–formedness of sentences of a language, but also at contributing to accounts of syntactic processing phenomena observable in language comprehension and language production. We highlight two general properties of human sentence generation, incrementality and late linearization,which make special demands on the design of grammar formalisms claiming psychological plausibility. In order to meet these demands, PG generates syntactic structures in a two-stage process. In the first and most important ‘hierarchical’ stage, unordered hierarchical structures (‘mobiles’) are assembled out of lexical building blocks. The key operation at work here is typed feature unification, which also delimits the positional options of the syntactic constituents in terms of so-called topological features. The second, much simpler stage takes care of arranging the branches of the mobile from left to right by ‘reading–out’ one positional option of every constituent. In this paper we concentrate on the structure assembly formalism in PG’s hierarchical component. We provide a declarative definition couched in an HPSG–style notation based on typed feature unification. Our emphasis throughout is on linear order constraints.
  • Kempen, G., & Harbusch, K. (2005). The relationship between grammaticality ratings and corpus frequencies: A case study into word order variability in the midfield of German clauses. In S. Kepser, & M. Reis (Eds.), Linguistic evidence - emperical, theoretical, and computational perspectives (pp. 329-349). Berlin: Mouton de Gruyter.
  • Kempen, G. (1977). Building a psychologically plausible sentence generator. In P. A. M. Seuren (Ed.), Symposium on semantic theory: held at Nijmegen, March 14-18, 1977 / Volume 9 (pp. 107-117 ). Nijmegen: Katholieke Universiteit Nijmegen.

    Abstract

    The psychological process of translating semantic into syntactic structures has dynamic properties such as the following. (1) The speaker is able to start pronouncing an utterance before having worked out the semantic content he wishes to express. Selection of semantic content and construction of syntactic form proceed partially in parallel. (2) The human sentence generator takes as input not only a specification of semantic content but also some indication of desired syntactic shape. Such indications, if present, do not complicate the generation process but make it easier. (3) Certain regularities of speech errors suggest a two-stage generation process. Stage I constructs the “syntactic skeleton” of an utterance; stage II provides the skeleton with morpho- honological information. An outline is given of the type of grammar which is used by a sentence generation system embodying these characteristics. The system is being implemented on a computer.
  • Kempen, G. (1977). Conceptualizing and formulating in sentence production. In S. Rosenberg (Ed.), Sentence production: Developments in research and theory (pp. 259-274). Hillsdale, NJ: Erlbaum.
  • Kempen, G. (1977). Man's sentence generator: Aspects of its control structure. In M. De Mey, R. Pinxten, M. Poriau, & E. Vandamme (Eds.), International workshop on the cognitive viewpoint. Ghent: University of Ghent, Communication & Cognition.
  • Kempen, G. (1998). Sentence parsing. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 213-228). Berlin: Springer.
  • Kempen, G. (1977). Wat is psycholinguistiek? In B. T. M. Tervoort (Ed.), Wetenschap en taal: Het verschijnsel taal van verschillende zijden benaderd (pp. 86-99 ). Muiderberg: Coutinho.
  • Kempen, G. (1999). Visual Grammar: Multimedia for grammar and spelling instruction in primary education. In K. Cameron (Ed.), CALL: Media, design, and applications (pp. 223-238). Lisse: Swets & Zeitlinger.
  • Kirschenbaum, A., Wittenburg, P., & Heyer, G. (2012). Unsupervised morphological analysis of small corpora: First experiments with Kilivila. In F. Seifart, G. Haig, N. P. Himmelmann, D. Jung, A. Margetts, & P. Trilsbeek (Eds.), Potentials of language documentation: Methods, analyses, and utilization (pp. 32-38). Honolulu: University of Hawai'i Press.

    Abstract

    Language documentation involves linguistic analysis of the collected material, which is typically done manually. Automatic methods for language processing usually require large corpora. The method presented in this paper uses techniques from bioinformatics and contextual information to morphologically analyze raw text corpora. This paper presents initial results of the method when applied on a small Kilivila corpus.
  • Kita, S., & Ozyurek, A. (1999). Semantische Koordination zwischen Sprache und spontanen ikonischen Gesten: Eine sprachvergleichende Untersuchung. In Max-Planck-Gesellschaft (Ed.), Jahrbuch 1998 (pp. 388-391). Göttingen: Vandenhoeck & Ruprecht.
  • Kita, S. (2002). Preface and priorities. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 3-4). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Klaas, G. (2009). Hints and recommendations concerning field equipment. In A. Majid (Ed.), Field manual volume 12 (pp. VI-VII). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Klein, W. (2005). Söldner des Wissens. In R. Kiesow, R. Ogorek, & S. Simitis (Eds.), Summa: Dieter Simon zum 70. Geburtstag (pp. 319-332). Frankfurt am Main: Klostermann.
  • Klein, W., & Von Stutterheim, C. (2002). Quaestio and L-perspectivation. In C. F. Graumann, & W. Kallmeyer (Eds.), Perspective and perspectivation in discourse (pp. 59-88). Amsterdam: Benjamins.
  • Klein, W. (Ed.). (2002). Sprache des Rechts II [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, 128.
  • Klein, W., & Dimroth, C. (Eds.). (2005). Spracherwerb [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, 140.
  • Klein, W. (2002). The argument-time structure of recipient constructions in German. In W. Abraham, & J.-W. Zwart (Eds.), Issues in formal german(ic) typology (pp. 141-178). Amsterdam: Benjamins.

    Abstract

    It is generally assumed that verbs have an ‘argument structure’, which imposes various constraints on the noun phrases that can or must go with the verb, and an ‘event structure’, which characterises the particular temporal characteristics of the ‘event’ which the verb relates to: this event may be a state, a process, an activity, an ‘event in the narrow sense’, and others. In this paper, it is argued that that argument structure and event structure should be brought together. The lexical content of a verb assigns descriptive properties to one or more arguments at one or more times, hence verbs have an ‘argument time-structure’ (AT-structure). Numerous morphological and syntactical operations, such as participle formation or complex verb constructions, modify this AT-structure. This is illustrated with German recipient constructions such as ein Buch geschenkt bekommen or das Fenster geöffnet kriegen.
  • Klein, W. (2005). The grammar of varieties. In U. Ammon, N. Dittmar, K. J. Mattheier, & P. Trudgill (Eds.), Sociolinguistics: An international handbook of the Science of Language and Society (pp. 1163-1171). Berlin: Walter de Gruyter.
  • Klein, W. (2002). Why case marking? In I. Kaufmann, & B. Stiebels (Eds.), More than words: Festschrift for Dieter Wunderlich (pp. 251-273). Berlin: Akademie Verlag.
  • Klein, W. (2012). Auf dem Markt der Wissenschaften oder: Weniger wäre mehr. In K. Sonntag (Ed.), Heidelberger Profile. Herausragende Persönlichkeiten berichten über ihre Begegnung mit Heidelberg. (pp. 61-84). Heidelberg: Universitätsverlag Winter.
  • Klein, W. (2012). A way to look at second language acquisition. In M. Watorek, S. Benazzo, & M. Hickmann (Eds.), Comparative perspectives on language acquisition: A tribute to Clive Perdue (pp. 23-36). Bristol: Multilingual Matters.
  • Klein, W. (2012). Alle zwei Wochen verschwindet eine Sprache. In G. Stock (Ed.), Die Akademie am Gendarmenmarkt 2012/13, Jahresmagazin 2012/13 (pp. 8-13). Berlin: Berlin-Brandenburgische Akademie der Wissenschaften.
  • Klein, W. (2009). Concepts of time. In W. Klein, & P. Li (Eds.), The expression of time (pp. 5-38). Berlin: Mouton de Gruyter.
  • Klein, W., & Musan, R. (Eds.). (1999). Das deutsche Perfekt [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (113).
  • Klein, W. (1998). Ein Blick zurück auf die Varietätengrammatik. In U. Ammon, K. Mattheier, & P. Nelde (Eds.), Sociolinguistica: Internationales Jahrbuch für europäische Soziolinguistik (pp. 22-38). Tübingen: Niemeyer.
  • Klein, W. (1999). Die Lehren des Zweitspracherwerbs. In N. Dittmar, & A. Ramat (Eds.), Grammatik und Diskurs: Studien zum Erwerb des Deutschen und des Italienischen (pp. 279-290). Tübingen: Stauffenberg.
  • Klein, W. (2012). Die Sprache der Denker. In J. Voss, & M. Stolleis (Eds.), Fachsprachen und Normalsprache (pp. 49-60). Göttingen: Wallstein.
  • Klein, W. (1977). Die Wissenschaft der Interpretation. In W. Klein (Ed.), Methoden der Textanalyse (pp. 1-23). Heidelberg: Quelle und Meyer.
  • Klein, W. (1998). Assertion and finiteness. In N. Dittmar, & Z. Penner (Eds.), Issues in the theory of language acquisition: Essays in honor of Jürgen Weissenborn (pp. 225-245). Bern: Peter Lang.
  • Klein, W., & Jungbluth, K. (Eds.). (2002). Deixis [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, 125.
  • Klein, W. (2005). Der alte und der neue Grimm. In Grimm-Sozietät (Ed.), Die Brüder Grimm in Berlin (pp. 167-176). Stuttgart: Hirzel.
  • Klein, W., & Musan, R. (2002). (A)Symmetry in language: seit and bis, and others. In C. Maienborn (Ed.), (A)Symmetrien - (A)Symmetry. Beiträge zu Ehren von Ewald Lang - Papers in Honor of Ewald Lang (pp. 283-295). Tübingen: Stauffenburg.
  • Klein, W. (Ed.). (2005). Nicht nur Literatur [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, 137.
  • Klein, W. (2009). Finiteness, universal grammar, and the language faculty. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 333-344). New York: Psychology Press.
  • Klein, W. (2009). How time is encoded. In W. Klein, & P. Li (Eds.), The expression of time (pp. 39-82). Berlin: Mouton de Gruyter.
  • Klein, W. (2012). Grußworte. In C. Markschies, & E. Osterkamp (Eds.), Vademekum der Inspirationsmittel (pp. 63-65). Göttingen: Wallstein.
  • Klein, W., & Li, P. (2009). Introduction. In W. Klein, & P. Li (Eds.), The expression of time (pp. 1-4). Berlin: Mouton de Gruyter.
  • Klein, W. (Ed.). (1998). Kaleidoskop [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (112).

Share this page