Publications

Displaying 101 - 200 of 390
  • Danziger, E. (1995). Posture verb survey. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 33-34). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3004235.

    Abstract

    Expressions of human activities and states are a rich area for cross-linguistic comparison. Some languages of the world treat human posture verbs (e.g., sit, lie, kneel) as a special class of predicates, with distinct formal properties. This survey examines lexical, semantic and grammatical patterns for posture verbs, with special reference to contrasts between “stative” (maintaining a posture), “inchoative” (adopting a posture), and “agentive” (causing something to adopt a posture) constructions. The enquiry is thematically linked to the more general questionnaire 'Intransitive Predicate Form Class Survey'.
  • Dediu, D. (2010). Linguistic and genetic diversity - how and why are they related? In M. Brüne, F. Salter, & W. McGrew (Eds.), Building bridges between anthropology, medicine and human ethology: Tributes to Wulf Schiefenhövel (pp. 169-178). Bochum: Europäischer Universitätsverlag.

    Abstract

    There are some 6000 languages spoken today, classfied in approximately 90 linguistic families and many isolates, and also differing across structural, typological, dimensions. Genetically, the human species is remarkably homogeneous, with the existant genetic diversity mostly explain by intra-population differences between individuals, but the remaining inter-population differences have a non-trivial structure. Populations splits and contacts influence both languages and genes, in principle allowing them to evolve in parallel ways. The farming/language co-dispersal hypothesis is a well-known such theory, whereby farmers spreading agriculture from its places of origin also spread their genes and languages. A different type of relationship was recently proposed, involving a genetic bias which influences the structural properties of language as it is transmitted across generations. Such a bias was proposed to explain the correlations between the distribution of tone languages and two brain development-related human genes and, if confirmed by experimental studies, it could represent a new factor explaining the distrbution of diversity. The present chapter overviews these related topics in the hope that a truly interdisciplinary approach could allow a better understanding of our complex (recent as well as evolutionary) history.
  • Dimroth, C. (2010). The acquisition of negation. In L. R. Horn (Ed.), The expression of negation (pp. 39-73). Berlin/New York: Mouton de Gruyter.
  • Dingemanse, M. (2010). Folk definitions of ideophones. In E. Norcliffe, & N. J. Enfield (Eds.), Field manual volume 13 (pp. 24-29). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.529151.

    Abstract

    Ideophones are marked words that depict sensory events, for example English hippety-hoppety ‘in a limping and hobbling manner’ or Siwu mukumuku ‘mouth movements of a toothless person eating’. They typically have special sound patterns and distinct grammatical properties. Ideophones are found in many languages of the world, suggesting a common fascination with detailed sensory depiction, but reliable data on their meaning and use is still very scarce. This task involves video-recording spontaneous, informal explanations (“folk definitions”) of individual ideophones by native speakers, in their own language. The approach facilitates collection of rich primary data in a planned context while ensuring a large amount of spontaneity and freedom.
  • Dobel, C. E., Meyer, A. S., & Levelt, W. J. M. (2001). Registrierung von Augenbewegungen bei Studien zur Sprachproduktion. In A. Zimmer (Ed.), Experimentelle Psychologie. Proceedings of 43. Tagung experimentell arbeitender Psychologen (pp. 116-122). Lengerich, Germany: Pabst Science Publishers.
  • Dolscheid, S., Shayan, S., Ozturk, O., Majid, A., & Casasanto, D. (2010). Language shapes mental representations of musical pitch: Implications for metaphorical language processing [Abstract]. In Proceedings of the 16th Annual Conference on Architectures and Mechanisms for Language Processing [AMLaP 2010] (pp. 137). York: University of York.

    Abstract

    Speakers often use spatial metaphors to talk about musical pitch (e.g., a low note, a high soprano). Previous experiments suggest that English speakers also think about pitches as high or low in space, even when theyʼre not using language or musical notation (Casasanto, 2010). Do metaphors in language merely reflect pre-existing associations between space and pitch, or might language also shape these non-linguistic metaphorical mappings? To investigate the role of language in pitch tepresentation, we conducted a pair of non-linguistic spacepitch interference experiments in speakers of two languages that use different spatial metaphors. Dutch speakers usually describe pitches as ʻhighʼ (hoog) and ʻlowʼ (laag). Farsi speakers, however, often describe high-frequency pitches as ʻthinʼ (naazok) and low-frequency pitches as ʻthickʼ (koloft). Do Dutch and Farsi speakers mentally represent pitch differently? To find out, we asked participants to reproduce musical pitches that they heard in the presence of irrelevant spatial information (i.e., lines that varied either in height or in thickness). For the Height Interference experiment, horizontal lines bisected a vertical reference line at one of nine different locations. For the Thickness Interference experiment, a vertical line appeared in the middle of the screen in one of nine thicknesses. In each experiment, the nine different lines were crossed with nine different pitches ranging from C4 to G#4 in semitone increments, to produce 81 distinct trials. If Dutch and Farsi speakers mentally represent pitch the way they talk about it, using different kinds of spatial representations, they should show contrasting patterns of cross-dimensional interference: Dutch speakersʼ pitch estimates should be more strongly affected by irrelevant height information, and Farsi speakersʼ by irrelevant thickness information. As predicted, Dutch speakersʼ pitch estimates were significantly modulated by spatial height but not by thickness. Conversely, Farsi speakersʼ pitch estimates were modulated by spatial thickness but not by height (2x2 ANOVA on normalized slopes of the effect of space on pitch: F(1,71)=17,15 p<.001). To determine whether language plays a causal role in shaping pitch representations, we conducted a training experiment. Native Dutch speakers learned to use Farsi-like metaphors, describing pitch relationships in terms of thickness (e.g., a cello sounds ʻthickerʼ than a flute). After training, Dutch speakers showed a significant effect of Thickness interference in the non-linguistic pitch reproduction task, similar to native Farsi speakers: on average, pitches accompanied by thicker lines were reproduced as lower in pitch (effect of thickness on pitch: r=-.22, p=.002). By conducting psychophysical tasks, we tested the ʻWhorfianʼ question without using words. Yet, results also inform theories of metaphorical language processing. According to psycholinguistic theories (e.g., Bowdle & Gentner, 2005), highly conventional metaphors are processed without any active mapping from the source to the target domain (e.g., from space to pitch). Our data, however, suggest that when people use verbal metaphors they activate a corresponding non-linguistic mapping from either height or thickness to pitch, strengthening this association at the expense of competing associations. As a result, people who use different metaphors in their native languages form correspondingly different representations of musical pitch. Casasanto, D. (2010). Space for Thinking. In Language, Cognition and Space: State of the art and new directions. V. Evans & P. Chilton (Eds.), 453-478, London: Equinox Publishing. Bowdle, B. & Gentner, D. (2005). The career of metaphor. Psychological Review, 112, 193-216.
  • Drexler, H., Verbunt, A., & Wittenburg, P. (1996). Max Planck Electronic Information Desk. In B. den Brinker, J. Beek, A. Hollander, & R. Nieuwboer (Eds.), Zesde workshop computers in de psychologie: Programma en uitgebreide samenvattingen (pp. 64-66). Amsterdam: Vrije Universiteit Amsterdam, IFKB.
  • Drozd, K. F. (1998). No as a determiner in child English: A summary of categorical evidence. In A. Sorace, C. Heycock, & R. Shillcock (Eds.), Proceedings of the Gala '97 Conference on Language Acquisition (pp. 34-39). Edinburgh, UK: Edinburgh University Press,.

    Abstract

    This paper summarizes the results of a descriptive syntactic category analysis of child English no which reveals that young children use and represent no as a determiner and negatives like no pen as NPs, contra standard analyses.
  • Dugoujon, J.-M., Larrouy, G., Mazières, S., Brucato, N., Sevin, A., Cassar, O., & Gessain, A. (2010). Histoire et dynamique du peuplement humain en Amazonie: L’exemple de la Guyane. In A. Pavé, & G. Fornet (Eds.), Amazonie: Une aventure scientifique et humaine du CNRS (pp. 128-132). Paris: Galaade Éditions.
  • Eibl-Eibesfeldt, I., Senft, B., & Senft, G. (1998). Trobriander (Ost-Neuguinea, Trobriand Inseln, Kaile'una) Fadenspiele 'ninikula'. In Ethnologie - Humanethologische Begleitpublikationen von I. Eibl-Eibesfeldt und Mitarbeitern. Sammelband I, 1985-1987. Göttingen: Institut für den Wissenschaftlichen Film.
  • Eisenbeiss, S., McGregor, B., & Schmidt, C. M. (1999). Story book stimulus for the elicitation of external possessor constructions and dative constructions ('the circle of dirt'). In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 140-144). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3002750.

    Abstract

    How involved in an event is a person that possesses one of the event participants? Some languages can treat such “external possessors” as very closely involved, even marking them on the verb along with core roles such as subject and object. Other languages only allow possessors to be expressed as non-core participants. This task explores possibilities for the encoding of possessors and other related roles such as beneficiaries. The materials consist of a sequence of thirty drawings designed to elicit target construction types.

    Additional information

    1999_Story_book_booklet.pdf
  • Eisner, F., Weber, A., & Melinger, A. (2010). Generalization of learning in pre-lexical adjustments to word-final devoicing [Abstract]. Journal of the Acoustical Society of America, 128, 2323.

    Abstract

    Pre-lexical representations of speech sounds have been to shown to change dynamically through a mechanism of lexically driven learning. [Norris et al. (2003).] Here we investigated whether this type of learning occurs in native British English (BE) listeners for a word-final stop contrast which is commonly de-voiced in Dutch-accented English. Specifically, this study asked whether the change in pre-lexical representation also encodes information about the position of the critical sound within a word. After exposure to a native Dutch speaker's productions of de-voiced stops in word-final position (but not in any other positions), BE listeners showed evidence of perceptual learning in a subsequent cross-modal priming task, where auditory primes with voiceless final stops (e.g., [si:t], “seat”) facilitated recognition of visual targets with voiced final stops (e.g., “seed”). This learning generalized to test pairs where the critical contrast was in word-initial position, e.g., auditory primes such as [taun] (“town”), facilitated recognition of visual targets like “down”. Control listeners, who had not heard any stops by the speaker during exposure, showed no learning effects. The results suggest that under these exposure conditions, word position is not encoded in the pre-lexical adjustment to the accented phoneme contras
  • Enfield, N. J., Levinson, S. C., & Meira, S. (2001). Recognitional deixis. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 78-81). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874641.

    Abstract

    “Recognitional” words and constructions enshrine our systematic reliance on shared knowledge in dedicated morphological forms and usage patterns. For example, English has a large range of terms for use when a speaker cannot locate the word or name for something or someone (e.g., whatsit, what’s-his-name), but thinks that the interlocutor knows, or can easily work out, what the speaker is talking about. This task aims to identify and investigate these kinds of expressions in the research language, including their grammaticalised status, meaning, distribution, and productivity. The task consists of a questionnaire with examples of relevant hypothetical scenarios that can be used in eliciting the relevant terms. The researcher is then encouraged to pursue further questions in regard to these items.
  • Enfield, N. J. (2001). Body. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 62-77). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874633.

    Abstract

    This task investigates the extensional meaning of body part terms, in particular the terms for the upper and lower limbs. Two questions are addressed, namely (i) are the boundaries of these body parts universal, guided by proposed universals of object recognition? (ii) How can we compare the extensional meanings of body part terms within and across different systems of nomenclature? Consultants receive booklets with line drawings of a body and are asked to colour in specific parts of the body.
  • Enfield, N. J., Levinson, S. C., De Ruiter, J. P., & Stivers, T. (2010). Building a corpus of multimodal interaction in your field site. In E. Norcliffe, & N. J. Enfield (Eds.), Field manual volume 13 (pp. 30-33). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Enfield, N. J., & Levinson, S. C. (2010). Metalanguage for speech acts. In Field manual volume 13 (pp. 34-36). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    People of all cultures have some degree of concern with categorizing types of communicative social action. All languages have words with meanings like speak, say, talk, complain, curse, promise, accuse, nod, wink, point and chant. But the exact distinctions they make will differ in both quantity and quality. How is communicative social action categorised across languages and cultures? The goal of this task is to establish a basis for cross-linguistic comparison of native metalanguages for social action.
  • Enfield, N. J. (1999). Lao as a national language. In G. Evans (Ed.), Laos: Culture and society (pp. 258-290). Chiang Mai: Silkworm Books.
  • Enfield, N. J., & Bohnemeyer, J. (2001). Hidden colour-chips task: Demonstratives, attention, and interaction. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 21-28). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874636.

    Abstract

    Demonstratives are typically described as encoding degrees of physical distance between the object referred to, and the speaker or addressee. For example, this in English is used to talk about things that are physically near the speaker, and that for things that are not. But is this how speakers really choose between these words in actual talk? This task aims to generate spontaneous language data concerning deixis, gesture, and demonstratives, and to investigate the significance of different factors (e.g., physical distance, attention) in demonstrative selection. In the presence of one consultant (the “memoriser”), sixteen colour chips are hidden under objects in a specified array. Another consultant enters the area and asks the memoriser to recount the locations of the chips. The task is designed to create a situation where the speaker genuinely attempts to manipulate the addressee’s attention on objects in the immediate physical space.
  • Enfield, N. J. (2001). Linguistic evidence for a Lao perspective on facial expression of emotion. In J. Harkins, & A. Wierzbicka (Eds.), Emotions in crosslinguistic perspective (pp. 149-166). Berlin: Mouton de Gruyter.
  • Enfield, N. J. (2001). On genetic and areal linguistics in Mainland South-East Asia: Parallel polyfunctionality of ‘acquire’. In A. Y. Aikhenvald, & R. M. Dixon (Eds.), Areal diffusion and genetic inheritance: Problems in comparative linguistics (pp. 255-290). Oxford University Press.
  • Enfield, N. J., & Dunn, M. (2001). Supplements to the Wilkins 1999 demonstrative questionnaire. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 82-84). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874638.
  • Fernald, A., McRoberts, G. W., & Swingley, D. (2001). Infants' developing competence in recognizing and understanding words in fluent speech. In J. Weissenborn, & B. Höhle (Eds.), Approaches to Bootstrapping: Phonological, lexical, syntactic and neurophysiological aspects of early language acquisition. Volume 1 (pp. 97-123). Amsterdam: Benjamins.
  • Fisher, S. E., & Smith, S. (2001). Progress towards the identification of genes influencing developmental dyslexia. In A. Fawcett (Ed.), Dyslexia: Theory and good practice (pp. 39-64). London: Whurr.
  • Fitz, H. (2010). Statistical learning of complex questions. In S. Ohlsson, & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 2692-2698). Austin, TX: Cognitive Science Society.

    Abstract

    The problem of auxiliary fronting in complex polar questions occupies a prominent position within the nature versus nurture controversy in language acquisition. We employ a model of statistical learning which uses sequential and semantic information to produce utterances from a bag of words. This linear learner is capable of generating grammatical questions without exposure to these structures in its training environment. We also demonstrate that the model performs superior to n-gram learners on this task. Implications for nativist theories of language acquisition are discussed.
  • Folia, V., Uddén, J., De Vries, M., Forkstam, C., & Petersson, K. M. (2010). Artificial language learning in adults and children. In M. Gullberg, & P. Indefrey (Eds.), The earliest stages of language learning (pp. 188-220). Malden, MA: Wiley-Blackwell.
  • Furman, R., Ozyurek, A., & Küntay, A. C. (2010). Early language-specificity in Turkish children's caused motion event expressions in speech and gesture. In K. Franich, K. M. Iserman, & L. L. Keil (Eds.), Proceedings of the 34th Boston University Conference on Language Development. Volume 1 (pp. 126-137). Somerville, MA: Cascadilla Press.
  • Goudbeek, M., & Broersma, M. (2010). The Demo/Kemo corpus: A principled approach to the study of cross-cultural differences in the vocal expression and perception of emotion. In Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC 2010) (pp. 2211-2215). Paris: ELRA.

    Abstract

    This paper presents the Demo / Kemo corpus of Dutch and Korean emotional speech. The corpus has been specifically developed for the purpose of cross-linguistic comparison, and is more balanced than any similar corpus available so far: a) it contains expressions by both Dutch and Korean actors as well as judgments by both Dutch and Korean listeners; b) the same elicitation technique and recording procedure was used for recordings of both languages; c) the same nonsense sentence, which was constructed to be permissible in both languages, was used for recordings of both languages; and d) the emotions present in the corpus are balanced in terms of valence, arousal, and dominance. The corpus contains a comparatively large number of emotions (eight) uttered by a large number of speakers (eight Dutch and eight Korean). The counterbalanced nature of the corpus will enable a stricter investigation of language-specific versus universal aspects of emotional expression than was possible so far. Furthermore, given the carefully controlled phonetic content of the expressions, it allows for analysis of the role of specific phonetic features in emotional expression in Dutch and Korean.
  • Gubian, M., Bergmann, C., & Boves, L. (2010). Investigating word learning processes in an artificial agent. In Proceedings of the IXth IEEE International Conference on Development and Learning (ICDL). Ann Arbor, MI, 18-21 Aug. 2010 (pp. 178 -184). IEEE.

    Abstract

    Researchers in human language processing and acquisition are making an increasing use of computational models. Computer simulations provide a valuable platform to reproduce hypothesised learning mechanisms that are otherwise very difficult, if not impossible, to verify on human subjects. However, computational models come with problems and risks. It is difficult to (automatically) extract essential information about the developing internal representations from a set of simulation runs, and often researchers limit themselves to analysing learning curves based on empirical recognition accuracy through time. The associated risk is to erroneously deem a specific learning behaviour as generalisable to human learners, while it could also be a mere consequence (artifact) of the implementation of the artificial learner or of the input coding scheme. In this paper a set of simulation runs taken from the ACORNS project is investigated. First a look `inside the box' of the learner is provided by employing novel quantitative methods for analysing changing structures in large data sets. Then, the obtained findings are discussed in the perspective of their ecological validity in the field of child language acquisition.
  • Gullberg, M., Roberts, L., Dimroth, C., Veroude, K., & Indefrey, P. (2010). Adult language learning after minimal exposure to an unknown natural language. In M. Gullberg, & P. Indefrey (Eds.), The earliest stages of language learning (pp. 5-24). Malden, MA: Wiley-Blackwell.
  • Gullberg, M., & Holmqvist, K. (2001). Eye tracking and the perception of gestures in face-to-face interaction vs on screen. In C. Cavé, I. Guaïtella, & S. Santi (Eds.), Oralité et gestualité (2001) (pp. 381-384). Paris, France: Editions Harmattan.
  • Gullberg, M., De Bot, K., & Volterra, V. (2010). Gestures and some key issues in the study of language development. In M. Gullberg, & K. De Bot (Eds.), Gestures in language development (pp. 3-33). Amsterdam: Benjamins.
  • Gumperz, J. J., & Levinson, S. C. (1996). Introduction to part I. In J. J. Gumperz, & S. C. Levinson (Eds.), Rethinking linguistic relativity (pp. 21-36). Cambridge: Cambridge University Press.
  • Gumperz, J. J., & Levinson, S. C. (1996). Introduction to part III. In J. J. Gumperz, & S. C. Levinson (Eds.), Rethinking linguistic relativity (pp. 225-231). Cambridge: Cambridge University Press.
  • Gumperz, J. J., & Levinson, S. C. (1996). Introduction: Linguistic relativity re-examined. In J. J. Gumperz, & S. C. Levinson (Eds.), Rethinking linguistic relativity (pp. 1-20). Cambridge: Cambridge University Press.
  • Hagoort, P., & Ramsey, N. (2001). De gereedschapskist van de cognitieve neurowetenschap. In F. Wijnen, & F. Verstraten (Eds.), Het brein te kijk (pp. 39-67). Lisse: Swets & Zeitlinger.
  • Hagoort, P. (2001). De verbeelding aan de macht: Hoe het menselijk taalvermogen zichtbaar wordt in de (beeld) analyse van hersenactiviteit. In J. Joosse (Ed.), Biologie en psychologie: Naar vruchtbare kruisbestuivingen (pp. 41-60). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.
  • Hagoort, P., & Brown, C. M. (1995). Electrophysiological insights into language and speech processing. In K. Elenius, & P. Branderud (Eds.), Proceedings of the XIIIth International Congress of Phonetic Sciences: ICPhS 95: Stockholm, Sweden, 13-19 August, 1995 (pp. 172-178). Stockholm: Stockholm University.
  • Hagoort, P., & Kutas, M. (1995). Electrophysiological insights into language deficits. In F. Boller, & J. Grafman (Eds.), Handbook of neuropsychology: Vol. 10 (pp. 105-134). Amsterdam: Elsevier.
  • Hagoort, P., Brown, C. M., & Osterhout, L. (1999). The neurocognition of syntactic processing. In C. M. Brown, & P. Hagoort (Eds.), The neurocognition of language (pp. 273-317). Oxford: Oxford University Press.
  • Hagoort, P. (1998). The shadows of lexical meaning in patients with semantic impairments. In B. Stemmer, & H. Whitaker (Eds.), Handbook of neurolinguistics (pp. 235-248). New York: Academic Press.
  • Hagoort, P. (1995). Wat zijn woorden en waar vinden we ze in ons brein? In E. Marani, & J. Lanser (Eds.), Dyslexie: Foutloos spellen alleen weggelegd voor gestoorden? (pp. 37-46). Leiden: Boerhaave Commissie voor Postacademisch Onderwijs in de Geneeskunde, Rijksuniversiteit Leiden.
  • Hagoort, P. (1999). The uniquely human capacity for language communication: from 'pope' to [po:p] in half a second. In J. Russell, M. Murphy, T. Meyering, & M. Arbib (Eds.), Neuroscience and the person: Scientific perspectives on divine action (pp. 45-56). California: Berkeley.
  • Hamans, C., & Seuren, P. A. M. (2010). Chomsky in search of a pedigree. In D. A. Kibbee (Ed.), Chomskyan (R)evolutions (pp. 377-394). Amsterdam/Philadelphia: Benjamins.

    Abstract

    This paper follows the changing fortunes of Chomsky’s search for a pedigree in the history of Western thought during the late 1960s. Having achieved a unique position of supremacy in the theory of syntax and having exploited that position far beyond the narrow circles of professional syntacticians, he felt the need to shore up his theory with the authority of history. It is shown that this attempt, resulting mainly in his Cartesian Linguistics of 1966, was widely, and rightly, judged to be a radical failure, even though it led to a sudden revival of interest in the history of linguistics. Ironically, the very upswing in historical studies caused by Cartesian Linguistics ended up showing that the real pedigree belongs to Generative Semantics, developed by the same ‘angry young men’ Chomsky was so bent on destroying.
  • Hammarström, H. (2010). Rarities in numeral systems. In J. Wohlgemuth, & M. Cysouw (Eds.), Rethinking universals. How rarities affect linguistic theory (pp. 11-60). Berlin: De Gruyter.
  • Hanique, I., Schuppler, B., & Ernestus, M. (2010). Morphological and predictability effects on schwa reduction: The case of Dutch word-initial syllables. In Proceedings of the 11th Annual Conference of the International Speech Communication Association (Interspeech 2010), Makuhari, Japan (pp. 933-936).

    Abstract

    This corpus-based study shows that the presence and duration of schwa in Dutch word-initial syllables are affected by a word’s predictability and its morphological structure. Schwa is less reduced in words that are more predictable given the following word. In addition, schwa may be longer if the syllable forms a prefix, and in prefixes the duration of schwa is positively correlated with the frequency of the word relative to its stem. Our results suggest that the conditions which favor reduced realizations are more complex than one would expect on the basis of the current literature.
  • Hanulikova, A., & Weber, A. (2010). Production of English interdental fricatives by Dutch, German, and English speakers. In K. Dziubalska-Kołaczyk, M. Wrembel, & M. Kul (Eds.), Proceedings of the 6th International Symposium on the Acquisition of Second Language Speech, New Sounds 2010, Poznań, Poland, 1-3 May 2010 (pp. 173-178). Poznan: Adam Mickiewicz University.

    Abstract

    Non-native (L2) speakers of English often experience difficulties in producing English interdental fricatives (e.g. the voiceless [θ]), and this leads to frequent substitutions of these fricatives (e.g. with [t], [s], and [f]). Differences in the choice of [θ]-substitutions across L2 speakers with different native (L1) language backgrounds have been extensively explored. However, even within one foreign accent, more than one substitution choice occurs, but this has been less systematically studied. Furthermore, little is known about whether the substitutions of voiceless [θ] are phonetically clear instances of [t], [s], and [f], as they are often labelled. In this study, we attempted a phonetic approach to examine language-specific preferences for [θ]-substitutions by carrying out acoustic measurements of L1 and L2 realizations of these sounds. To this end, we collected a corpus of spoken English with L1 speakers (UK-English), and Dutch and German L2 speakers. We show a) that the distribution of differential substitutions using identical materials differs between Dutch and German L2 speakers, b) that [t,s,f]-substitutes differ acoustically from intended [t,s,f], and c) that L2 productions of [θ] are acoustically comparable to L1 productions.
  • Hellwig, F. M., & Lüpke, F. (2001). Caused positions. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 126-128). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874644.

    Abstract

    What kinds of resources to languages have for describing location and position? For some languages, verbs have an important role to play in describing different kinds of situations (e.g., whether a bottle is standing or lying on the table). This task is designed to examine the use of positional verbs in locative constructions, with respect to the presence or absence of a human “positioner”. Participants are asked to describe video clips showing locative states that occur spontaneously, or because of active interference from a person. The task follows on from two earlier tools for the elicitation of static locative descriptions (BowPed and the Ameka picture book task). A number of additional variables (e.g. canonical v. non-canonical orientation of the figure) are also targeted in the stimuli set.

    Additional information

    2001_Caused_positions.zip
  • Hill, C. (2010). Emergency language documentation teams: The Cape York Peninsula experience. In J. Hobson, K. Lowe, S. Poetsch, & M. Walsh (Eds.), Re-awakening languages: Theory and practice in the revitalisation of Australia’s Indigenous languages (pp. 418-432). Sydney: Sydney University Press.
  • Holler, J. (2010). Speakers’ use of interactive gestures to mark common ground. In S. Kopp, & I. Wachsmuth (Eds.), Gesture in embodied communication and human-computer interaction. 8th International Gesture Workshop, Bielefeld, Germany, 2009; Selected Revised Papers (pp. 11-22). Heidelberg: Springer Verlag.
  • Hulten, A. (2010). Sanan tuottaminen [Word production]. In Kieli ja aivot [Language and the Brain - Textbook series] (pp. 106-116).
  • Indefrey, P., & Gullberg, M. (2010). The earliest stages of language learning: Introduction. In M. Gullberg, & P. Indefrey (Eds.), The earliest stages of language learning (pp. 1-4). Malden, MA: Wiley-Blackwell.
  • Janse, E. (2001). Comparing word-level intelligibility after linear vs. non-linear time-compression. In Proceedings of the VIIth European Conference on Speech Communication and Technology Eurospeech (pp. 1407-1410).
  • Janse, E., & Quené, H. (1999). On the suitability of the cross-modal semantic priming task. In Proceedings of the XIVth International Congress of Phonetic Sciences (pp. 1937-1940).
  • Järvikivi, J., & Pyykkönen, P. (2010). Lauseiden ymmärtäminen [Engl. Sentence comprehension]. In P. Korpilahti, O. Aaltonen, & M. Laine (Eds.), Kieli ja aivot: Kommunikaation perusteet, häiriöt ja kuntoutus (pp. 117-125). Turku: Turku yliopisto.

    Abstract

    Kun kuuntelemme puhetta tai luemme tekstiä, alamme välittömästi rakentaa koherenttia tulkintaa. Toisin kuin lukemisessa, puheen havaitsemisessa kuulija voi harvoin kontrolloida nopeutta, jolla hänelle puhutaan. Huolimatta hyvin nopeasta syötteestä - noin 4-7 tavua sekunnissa - ihmiset kykenevät tulkitsemaan puhetta hyvin vaivattomasti. Lauseen ymmärtämisen tutkimuksessa selvitetäänkin, miten tällainen nopea ja useimmiten vaivaton tulkintaprosessi tapahtuu, mitkä kognitiiviset prosessit osallistuvat reaaliaikaiseen tulkintaan ja millaista informaatiota missäkin vaiheessa prosessointia ihminen käyttää hyväkseen johdonmukaisen tulkinnan muodostamiseksi. Tämä kappale on katsaus lauseen ymmärtämisen prosesseihin ja niiden tutkimukseen. Käsittelemme lyhyesti prosessointimalleja, aikuisten ja lasten kielen suhdetta, lauseen sisäisten ja välisten viittaussuhteiden tulkintaa ja sensorisen ympäristön sekä motorisen toiminnan roolia lauseiden tulkintaprosessissa.
  • Jasmin, K., & Casasanto, D. (2010). Stereotyping: How the QWERTY keyboard shapes the mental lexicon [Abstract]. In Proceedings of the 16th Annual Conference on Architectures and Mechanisms for Language Processing [AMLaP 2010] (pp. 159). York: University of York.
  • Jesse, A., Reinisch, E., & Nygaard, L. C. (2010). Learning of adjectival word meaning through tone of voice [Abstract]. Journal of the Acoustical Society of America, 128, 2475.

    Abstract

    Speakers express word meaning through systematic but non-canonical acoustic variation of tone of voice (ToV), i.e., variation of speaking rate, pitch, vocal effort, or loudness. Words are, for example, pronounced at a higher pitch when referring to small than to big referents. In the present study, we examined whether listeners can use ToV to learn the meaning of novel adjectives (e.g., “blicket”). During training, participants heard sentences such as “Can you find the blicket one?” spoken with ToV representing hot-cold, strong-weak, and big-small. Participants’ eye movements to two simultaneously shown objects with properties representing the relevant two endpoints (e.g., an elephant and an ant for big-small) were monitored. Assignment of novel adjectives to endpoints was counterbalanced across participants. During test, participants heard the sentences spoken with a neutral ToV, while seeing old or novel picture pairs varying along the same dimensions (e.g., a truck and a car for big-small). Participants had to click on the adjective’s referent. As evident from eye movements, participants did not infer the intended meaning during first exposure, but learned the meaning with the help of ToV during training. At test listeners applied this knowledge to old and novel items even in the absence of informative ToV.
  • Jordens, P. (1998). Defaultformen des Präteritums. Zum Erwerb der Vergangenheitsmorphologie im Niederlänidischen. In H. Wegener (Ed.), Eine zweite Sprache lernen (pp. 61-88). Tübingen, Germany: Verlag Gunter Narr.
  • Junge, C., Hagoort, P., Kooijman, V., & Cutler, A. (2010). Brain potentials for word segmentation at seven months predict later language development. In K. Franich, K. M. Iserman, & L. L. Keil (Eds.), Proceedings of the 34th Annual Boston University Conference on Language Development. Volume 1 (pp. 209-220). Somerville, MA: Cascadilla Press.
  • Junge, C., Cutler, A., & Hagoort, P. (2010). Ability to segment words from speech as a precursor of later language development: Insights from electrophysiological responses in the infant brain. In M. Burgess, J. Davey, C. Don, & T. McMinn (Eds.), Proceedings of 20th International Congress on Acoustics, ICA 2010. Incorporating Proceedings of the 2010 annual conference of the Australian Acoustical Society (pp. 3727-3732). Australian Acoustical Society, NSW Division.
  • Keating, E. (1995). Pilot questionnaire to investigate social uses of space, especially as related to 1) linguistic practices and 2) social organization. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 17-21). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3004227.

    Abstract

    Day-to-day interpretations of “space” are enmeshed in specific cultural and linguistic practices. For example, many cultures have an association between vertical height and social standing; more powerful people may be placed literally higher than others at social gatherings, and be spoken of as having higher status. This questionnaire is a guide for exploring relationships between space, language, and social structure. The goal is to better understand how space is organised in the focus community, and to investigate the extent to which space is used as a model for reproducing social forms.
  • Kempen, G. (1996). Computational models of syntactic processing in human language comprehension. In T. Dijkstra, & K. De Smedt (Eds.), Computational psycholinguistics: Symbolic and subsymbolic models of language processing (pp. 192-220). London: Taylor & Francis.
  • Kempen, G. (1996). "De zwoele groei van den zinsbouw": De wonderlijke levende grammatica van Jac. van Ginneken uit De Roman van een Kleuter (1917). Bezorgd en van een nawoord voorzien door Gerard Kempen. In A. Foolen, & J. Noordegraaf (Eds.), De taal is kennis van de ziel: Opstellen over Jac. van Ginneken (1877-1945) (pp. 173-216). Münster: Nodus Publikationen.
  • Kempen, G., & Harbusch, K. (1998). A 'tree adjoining' grammar without adjoining: The case of scrambling in German. In Fourth International Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+4).
  • Kempen, G. (1996). Human language technology can modernize writing and grammar instruction. In COLING '96 Proceedings of the 16th conference on Computational linguistics - Volume 2 (pp. 1005-1006). Stroudsburg, PA: Association for Computational Linguistics.
  • Kempen, G., & Janssen, S. (1996). Omspellen: Reuze(n)karwei of peule(n)schil? In H. Croll, & J. Creutzberg (Eds.), Proceedings of the 5e Dag van het Document (pp. 143-146). Projectbureau Croll en Creutzberg.
  • Kempen, G. (1998). Sentence parsing. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 213-228). Berlin: Springer.
  • Kempen, G. (1999). Visual Grammar: Multimedia for grammar and spelling instruction in primary education. In K. Cameron (Ed.), CALL: Media, design, and applications (pp. 223-238). Lisse: Swets & Zeitlinger.
  • Kemps-Snijders, M., Koller, T., Sloetjes, H., & Verweij, H. (2010). LAT bridge: Bridging tools for annotation and exploration of rich linguistic data. In N. Calzolari, B. Maegaard, J. Mariani, J. Odjik, K. Choukri, S. Piperidis, M. Rosner, & D. Tapias (Eds.), Proceedings of the Seventh conference on International Language Resources and Evaluation (LREC'10) (pp. 2648-2651). European Language Resources Association (ELRA).

    Abstract

    We present a software module, the LAT Bridge, which enables bidirectionalcommunication between the annotation and exploration tools developed at the MaxPlanck Institute for Psycholinguistics as part of our Language ArchivingTechnology (LAT) tool suite. These existing annotation and exploration toolsenable the annotation, enrichment, exploration and archive management oflinguistic resources. The user community has expressed the desire to usedifferent combinations of LAT tools in conjunction with each other. The LATBridge is designed to cater for a number of basic data interaction scenariosbetween the LAT annotation and exploration tools. These interaction scenarios(e.g. bootstrapping a wordlist, searching for annotation examples or lexicalentries) have been identified in collaboration with researchers at ourinstitute.We had to take into account that the LAT tools for annotation and explorationrepresent a heterogeneous application scenario with desktop-installed andweb-based tools. Additionally, the LAT Bridge has to work in situations wherethe Internet is not available or only in an unreliable manner (i.e. with a slowconnection or with frequent interruptions). As a result, the LAT Bridge’sarchitecture supports both online and offline communication between the LATannotation and exploration tools.
  • Khetarpal, N., Majid, A., Malt, B. C., Sloman, S., & Regier, T. (2010). Similarity judgments reflect both language and cross-language tendencies: Evidence from two semantic domains. In S. Ohlsson, & R. Catrambone (Eds.), Proceedings of the 32nd Annual Conference of the Cognitive Science Society (pp. 358-363). Austin, TX: Cognitive Science Society.

    Abstract

    Many theories hold that semantic variation in the world’s languages can be explained in terms of a universal conceptual space that is partitioned differently by different languages. Recent work has supported this view in the semantic domain of containers (Malt et al., 1999), and assumed it in the domain of spatial relations (Khetarpal et al., 2009), based in both cases on similarity judgments derived from pile-sorting of stimuli. Here, we reanalyze data from these two studies and find a more complex picture than these earlier studies suggested. In both cases we find that sorting is similar across speakers of different languages (in line with the earlier studies), but nonetheless reflects the sorter’s native language (in contrast with the earlier studies). We conclude that there are cross-culturally shared conceptual tendencies that can be revealed by pile-sorting, but that these tendencies may be modulated to some extent by language. We discuss the implications of these findings for accounts of semantic variation.
  • Kidd, E., Bavin, E. L., & Rhodes, B. (2001). Two-year-olds' knowledge of verbs and argument structures. In M. Almgren, A. Barreña, M.-J. Ezeuzabarrena, I. Idiazabal, & B. MacWhinney (Eds.), Research on child language acquisition: Proceedings of the 8th Conference of the International Association for the Study of Child language (pp. 1368-1382). Sommerville: Cascadilla Press.
  • Kita, S., Danziger, E., & Stolz, C. (2001). Cultural specificity of spatial schemas, as manifested in spontaneous gestures. In M. Gattis (Ed.), Spatial Schemas and Abstract Thought (pp. 115-146). Cambridge, MA, USA: MIT Press.
  • Kita, S., Ozyurek, A., Allen, S., & Ishizuka, T. (2010). Early links between iconic gestures and sound symbolic words: Evidence for multimodal protolanguage. In A. D. Smith, M. Schouwstra, B. de Boer, & K. Smith (Eds.), Proceedings of the 8th International conference on the Evolution of Language (EVOLANG 8) (pp. 429-430). Singapore: World Scientific.
  • Kita, S. (1995). Enter/exit animation for linguistic elicitation. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 13). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003394.

    Abstract

    This task investigates the expression of “enter” and “exit” events, and is a supplement to the Motion Elicitation task (https://doi.org/10.17617/2.3003391). Consultants are asked to describe a series of animated clips where a man moves into or out of a house. The clips focus on contrasts to do with perspective (e.g., whether the man appears to move away or towards the viewer) and transitional movement (e.g., whether the man walks or “teleports” into his new location).

    Additional information

    1995_Enter_exit_animation_stimuli.zip
  • Kita, S., van Gijn, I., & van der Hulst, H. (1998). Movement phases in signs and co-speech gestures, and their transcription by human coders. In Gesture and Sign-Language in Human-Computer Interaction (Lecture Notes in Artificial Intelligence - LNCS Subseries, Vol. 1371) (pp. 23-35). Berlin, Germany: Springer-Verlag.

    Abstract

    The previous literature has suggested that the hand movement in co-speech gestures and signs consists of a series of phases with qualitatively different dynamic characteristics. In this paper, we propose a syntagmatic rule system for movement phases that applies to both co-speech gestures and signs. Descriptive criteria for the rule system were developed for the analysis video-recorded continuous production of signs and gesture. It involves segmenting a stream of body movement into phases and identifying different phase types. Two human coders used the criteria to analyze signs and cospeech gestures that are produced in natural discourse. It was found that the criteria yielded good inter-coder reliability. These criteria can be used for the technology of automatic recognition of signs and co-speech gestures in order to segment continuous production and identify the potentially meaningbearing phase.
  • Kita, S. (2001). Locally-anchored spatial gestures, version 2: Historical description of the local environment as a gesture elicitation task. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 132-135). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874647.

    Abstract

    Gesture is an integral part of face-to-face communication, and provides a rich area for cross-cultural comparison. “Locally-anchored spatial gestures” are gestures that are roughly oriented to the actual geographical direction of referents. For example, such gestures may point to a location or a thing, trace the shape of a path, or indicate the direction of a particular area. The goal of this task is to elicit locally-anchored spatial gestures across different cultures. The task follows an interview format, where one participant prompts another to talk in detail about a specific area that the main speaker knows well. The data can be used for additional purposes such as the investigation of demonstratives.
  • Kita, S. (1995). Recommendations for data collection for gesture studies. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 35-45). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3004287.

    Abstract

    Do our hands 'speak the same language' across cultures? Gesture is the silent partner of spoken languages in face-to-face interaction, but we still have a lot to learn about gesture practices in different speech communities. The primary purpose of this task is to collect data in naturalistic settings that can be used to investigate the linguistic and cultural relativity of gesture performance, especially spatially indicative gestures. It involves video-recording pairs of speakers in both free conversation and more structured communication tasks (e.g., describing film plots).

    Please note: the stimuli mentioned in this entry are available elsewhere: 'The Pear Story', a short film made at the University of California at Berkeley; "Frog, where are you?" from the original Mayer (1969) book, as published in the Appendix of Berman & Slobin (1994).
  • Kita, S. (2001). Recording recommendations for gesture studies. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 130-131). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Kita, S., & Ozyurek, A. (1999). Semantische Koordination zwischen Sprache und spontanen ikonischen Gesten: Eine sprachvergleichende Untersuchung. In Max-Planck-Gesellschaft (Ed.), Jahrbuch 1998 (pp. 388-391). Göttingen: Vandenhoeck & Ruprecht.
  • Klein, W. (1995). A simplest analysis of the English tense-aspect system. In W. Riehle, & H. Keiper (Eds.), Proceedings of the Anglistentag 1994 (pp. 139-151). Tübingen: Niemeyer.
  • Klein, W., Dietrich, R., & Noyau, C. (1995). Conclusions. In R. Dietrich, W. Klein, & C. Noyau (Eds.), The acquisition of temporality in a second language (pp. 261-280). Amsterdam: Benjamins.
  • Klein, W., & Geyken, A. (2010). Das Digitale Wörterbuch der Deutschen Sprache (DWDS). In U. Heid, S. Schierholz, W. Schweickard, H. E. Wiegand, R. H. Gouws, & W. Wolski (Eds.), Lexicographica: International annual for lexicography (pp. 79-96). Berlin, New York: De Gruyter.

    Abstract

    No area in the study of human languages has a longer history and a higher practical signifi cance than lexicography. The advent of the computer has dramaticually changed this discipline in ways which go far beyond the digitisation of materials in combination with effi cient search tools, or the transfer of an existing dictionary onto the computer. They allow the stepwise elaboration of what is called here Digital Lexical Systems, i.e., computerized systems in which the underlying data - in form of an extendable corpus - and description of lexical properties on various levels can be effi ciently combined. This paper discusses the range of these possibilities and describes the present form of the German „Digital Lexical System of the Academy“, a project of the Berlin-Brandenburg Academy of Sciences (www.dwds.de).
  • Klein, W. (2001). Das Ende vor Augen: Deutsch als Wissenschaftssprache. In F. Debus, F. Kollmann, & U. Pörken (Eds.), Deutsch als Wissenschaftssprache im 20. Jahrhundert (pp. 289-293). Mainz: Akademie der Wissenschaften und der Literatur.
  • Klein, W. (2001). Deiktische Orientierung. In M. Haspelmath, E. König, W. Oesterreicher, & W. Raible (Eds.), Sprachtypologie und sprachliche Universalien: Vol. 1/1 (pp. 575-590). Berlin: de Gruyter.
  • Klein, W. (2010). Der mühselige Weg zur Erforschung des Schönen. In S. Walther, G. Staupe, & T. Macho (Eds.), Was ist schön? Begleitbuch zur Ausstellung (pp. 124-131). Göttingen: Wallstein.
  • Klein, W. (1998). Ein Blick zurück auf die Varietätengrammatik. In U. Ammon, K. Mattheier, & P. Nelde (Eds.), Sociolinguistica: Internationales Jahrbuch für europäische Soziolinguistik (pp. 22-38). Tübingen: Niemeyer.
  • Klein, W. (2001). Elementary forms of linguistic organisation. In S. Ward, & J. Trabant (Eds.), The origins of language (pp. 81-102). Berlin: Mouton de Gruyter.
  • Klein, W. (1996). Essentially social: On the origin of linguistic knowledge in the individual. In P. Baltes, & U. Staudinger (Eds.), Interactive minds (pp. 88-107). Cambridge: Cambridge University Press.
  • Klein, W. (1999). Die Lehren des Zweitspracherwerbs. In N. Dittmar, & A. Ramat (Eds.), Grammatik und Diskurs: Studien zum Erwerb des Deutschen und des Italienischen (pp. 279-290). Tübingen: Stauffenberg.
  • Klein, W. (2001). Die Linguistik ist anders geworden. In S. Anschütz, S. Kanngießer, & G. Rickheit (Eds.), A Festschrift for Manfred Briegel: Spektren der Linguistik (pp. 51-72). Wiesbaden: Deutscher Universitätsverlag.
  • Klein, W. (1998). Assertion and finiteness. In N. Dittmar, & Z. Penner (Eds.), Issues in the theory of language acquisition: Essays in honor of Jürgen Weissenborn (pp. 225-245). Bern: Peter Lang.
  • Klein, W. (1995). Frame of analysis. In R. Dietrich, W. Klein, & C. Noyau (Eds.), The acquisition of temporality in a second language (pp. 17-29). Amsterdam: Benjamins.
  • Klein, W. (1996). Language acquisition at different ages. In D. Magnusson (Ed.), Individual development over the lifespan: Biological and psychosocial perspectives (pp. 88-108). Cambridge: Cambridge University Press.
  • Klein, W. (2001). Lexicology and lexicography. In N. Smelser, & P. Baltes (Eds.), International encyclopedia of the social & behavioral sciences: Vol. 13 (pp. 8764-8768). Amsterdam: Elsevier Science.
  • Klein, W., Coenen, J., Van Helvert, K., & Hendriks, H. (1995). The acquisition of Dutch. In R. Dietrich, W. Klein, & C. Noyau (Eds.), The acquisition of temporality in a second language (pp. 117-143). Amsterdam: Benjamins.
  • Klein, W. (1995). The acquisition of English. In R. Dietrich, W. Klein, & C. Noyau (Eds.), The acquisition of temporality in a second language (pp. 31-70). Amsterdam: Benjamins.
  • Klein, W. (1995). Sprachverhalten. In M. Amelang, & Pawlik (Eds.), Enzyklopädie der Psychologie (pp. 469-505). Göttingen: Hogrefe.
  • Klein, W. (2001). Second language acquisition. In N. Smelser, & P. Baltes (Eds.), International encyclopedia of the social & behavioral sciences: Vol. 20 (pp. 13768-13771). Amsterdam: Elsevier science.
  • Klein, W., & Vater, H. (1998). The perfect in English and German. In L. Kulikov, & H. Vater (Eds.), Typology of verbal categories: Papers presented to Vladimir Nedjalkov on the occasion of his 70th birthday (pp. 215-235). Tübingen: Niemeyer.
  • Klein, W. (2001). Time and again. In C. Féry, & W. Sternefeld (Eds.), Audiatur vox sapientiae: A festschrift for Arnim von Stechow (pp. 267-286). Berlin: Akademie Verlag.
  • Klein, W. (2001). Typen und Konzepte des Spracherwerbs. In L. Götze, G. Helbig, G. Henrici, & H. Krumm (Eds.), Deutsch als Fremdsprache (pp. 604-616). Berlin: de Gruyter.

Share this page