Publications

Displaying 101 - 110 of 110
  • Trilsbeek, P., Broeder, D., Elbers, W., & Moreira, A. (2015). A sustainable archiving software solution for The Language Archive. In Proceedings of the 4th International Conference on Language Documentation and Conservation (ICLDC).
  • Ünal, E., & Papafragou, A. (2013). Linguistic and conceptual representations of inference as a knowledge source. In S. Baiz, N. Goldman, & R. Hawkes (Eds.), Proceedings of the 37th Annual Boston University Conference on Language Development (BUCLD 37) (pp. 433-443). Boston: Cascadilla Press.
  • Van Ooijen, B., Cutler, A., & Norris, D. (1991). Detection times for vowels versus consonants. In Eurospeech 91: Vol. 3 (pp. 1451-1454). Genova: Istituto Internazionale delle Comunicazioni.

    Abstract

    This paper reports two experiments with vowels and consonants as phoneme detection targets in real words. In the first experiment, two relatively distinct vowels were compared with two confusible stop consonants. Response times to the vowels were longer than to the consonants. Response times correlated negatively with target phoneme length. In the second, two relatively distinct vowels were compared with their corresponding semivowels. This time, the vowels were detected faster than the semivowels. We conclude that response time differences between vowels and stop consonants in this task may reflect differences between phoneme categories in the variability of tokens, both in the acoustic realisation of targets and in the' representation of targets by subjects.
  • Van Putten, S. (2013). The meaning of the Avatime additive particle tsye. In M. Balbach, L. Benz, S. Genzel, M. Grubic, A. Renans, S. Schalowski, M. Stegenwallner, & A. Zeldes (Eds.), Information structure: Empirical perspectives on theory (pp. 55-74). Potsdam: Universitätsverlag Potsdam. Retrieved from http://nbn-resolving.de/urn/resolver.pl?urn=urn:nbn:de:kobv:517-opus-64804.
  • Verhoef, T., Roberts, S. G., & Dingemanse, M. (2015). Emergence of systematic iconicity: Transmission, interaction and analogy. In D. Noelle, R. Dale, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (Eds.), Proceedings of the 37th Annual Meeting of the Cognitive Science Society (CogSci 2015) (pp. 2481-2486). Austin, Tx: Cognitive Science Society.

    Abstract

    Languages combine arbitrary and iconic signals. How do iconic signals emerge and when do they persist? We present an experimental study of the role of iconicity in the emergence of structure in an artificial language. Using an iterated communication game in which we control the signalling medium as well as the meaning space, we study the evolution of communicative signals in transmission chains. This sheds light on how affordances of the communication medium shape and constrain the mappability and transmissibility of form-meaning pairs. We find that iconic signals can form the building blocks for wider compositional patterns
  • Vosse, T., & Kempen, G. (1991). A hybrid model of human sentence processing: Parsing right-branching, center-embedded and cross-serial dependencies. In M. Tomita (Ed.), Proceedings of the Second International Workshop on Parsing Technologies.
  • Wanrooij, K., De Vos, J., & Boersma, P. (2015). Distributional vowel training may not be effective for Dutch adults. In Scottish consortium for ICPhS 2015, M. Wolters, J. Livingstone, B. Beattie, R. Smith, M. MacMahon, J. Stuart-Smith, & J. Scobbie (Eds.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015). Glasgow: University of Glasgow.

    Abstract

    Distributional vowel training for adults has been reported as “effective” for Spanish and Bulgarian learners of Dutch vowels, in studies using a behavioural task. A recent study did not yield a similar clear learning effect for Dutch learners of the English vowel contrast /æ/~/ε/, as measured with event-related potentials (ERPs). The present study aimed to examine the possibility that the latter result was related to the method. As in the ERP study, we tested whether distributional training improved Dutch adult learners’ perception of English /æ/~/ε/. However, we measured behaviour instead of ERPs, in a design identical to that used in the previous studies with Spanish learners. The results do not support an effect of distributional training and thus “replicate” the ERP study. We conclude that it remains unclear whether distributional vowel training is effective for Dutch adults.
  • Weber, A. (1998). Listening to nonnative language which violates native assimilation rules. In D. Duez (Ed.), Proceedings of the European Scientific Communication Association workshop: Sound patterns of Spontaneous Speech (pp. 101-104).

    Abstract

    Recent studies using phoneme detection tasks have shown that spoken-language processing is neither facilitated nor interfered with by optional assimilation, but is inhibited by violation of obligatory assimilation. Interpretation of these results depends on an assessment of their generality, specifically, whether they also obtain when listeners are processing nonnative language. Two separate experiments are presented in which native listeners of German and native listeners of Dutch had to detect a target fricative in legal monosyllabic Dutch nonwords. All of the nonwords were correct realisations in standard Dutch. For German listeners, however, half of the nonwords contained phoneme strings which violate the German fricative assimilation rule. Whereas the Dutch listeners showed no significant effects, German listeners detected the target fricative faster when the German fricative assimilation was violated than when no violation occurred. The results might suggest that violation of assimilation rules does not have to make processing more difficult per se.
  • Wittek, A. (1998). Learning verb meaning via adverbial modification: Change-of-state verbs in German and the adverb "wieder" again. In A. Greenhill, M. Hughes, H. Littlefield, & H. Walsh (Eds.), Proceedings of the 22nd Annual Boston University Conference on Language Development (pp. 779-790). Somerville, MA: Cascadilla Press.
  • Zhang, Y., Yurovsky, D., & Yu, C. (2015). Statistical word learning is a continuous process: Evidence from the human simulation paradigm. In D. Noelle, R. Dale, A. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (Eds.), Proceedings of the 37th Annual Meeting of the Cognitive Science Society (CogSci 2015) (pp. 2422-2427). Austin: Cognitive Science Society.

    Abstract

    In the word-learning domain, both adults and young children are able to find the correct referent of a word from highly ambiguous contexts that involve many words and objects by computing distributional statistics across the co-occurrences of words and referents at multiple naming moments (Yu & Smith, 2007; Smith & Yu, 2008). However, there is still debate regarding how learners accumulate distributional information to learn object labels in natural learning environments, and what underlying learning mechanism learners are most likely to adopt. Using the Human Simulation Paradigm (Gillette, Gleitman, Gleitman & Lederer, 1999), we found that participants’ learning performance gradually improved and that their ability to remember and carry over partial knowledge from past learning instances facilitated subsequent learning. These results support the statistical learning model that word learning is a continuous process.

Share this page