Publications

Displaying 101 - 107 of 107
  • Van Ooijen, B., Cutler, A., & Berinetto, P. M. (1993). Click detection in Italian and English. In Eurospeech 93: Vol. 1 (pp. 681-684). Berlin: ESCA.

    Abstract

    We report four experiments in which English and Italian monolinguals detected clicks in continous speech in their native language. Two of the experiments used an off-line location task, and two used an on-line reaction time task. Despite there being large differences between English and Italian with respect to rhythmic characteristics, very similar response patterns were found for the two language groups. It is concluded that the process of click detection operates independently from language-specific differences in perceptual processing at the sublexical level.
  • Vernes, S. C. (2018). Vocal learning in bats: From genes to behaviour. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 516-518). Toruń, Poland: NCU Press. doi:10.12775/3991-1.128.
  • Von Holzen, K., & Bergmann, C. (2018). A Meta-Analysis of Infants’ Mispronunciation Sensitivity Development. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 1159-1164). Austin, TX: Cognitive Science Society.

    Abstract

    Before infants become mature speakers of their native language, they must acquire a robust word-recognition system which allows them to strike the balance between allowing some variation (mood, voice, accent) and recognizing variability that potentially changes meaning (e.g. cat vs hat). The current meta-analysis quantifies how the latter, termed mispronunciation sensitivity, changes over infants’ first three years, testing competing predictions of mainstream language acquisition theories. Our results show that infants were sensitive to mispronunciations, but accepted them as labels for target objects. Interestingly, and in contrast to predictions of mainstream theories, mispronunciation sensitivity was not modulated by infant age, suggesting that a sufficiently flexible understanding of native language phonology is in place at a young age.
  • Vosse, T., & Kempen, G. (1991). A hybrid model of human sentence processing: Parsing right-branching, center-embedded and cross-serial dependencies. In M. Tomita (Ed.), Proceedings of the Second International Workshop on Parsing Technologies.
  • Weber, A. (1998). Listening to nonnative language which violates native assimilation rules. In D. Duez (Ed.), Proceedings of the European Scientific Communication Association workshop: Sound patterns of Spontaneous Speech (pp. 101-104).

    Abstract

    Recent studies using phoneme detection tasks have shown that spoken-language processing is neither facilitated nor interfered with by optional assimilation, but is inhibited by violation of obligatory assimilation. Interpretation of these results depends on an assessment of their generality, specifically, whether they also obtain when listeners are processing nonnative language. Two separate experiments are presented in which native listeners of German and native listeners of Dutch had to detect a target fricative in legal monosyllabic Dutch nonwords. All of the nonwords were correct realisations in standard Dutch. For German listeners, however, half of the nonwords contained phoneme strings which violate the German fricative assimilation rule. Whereas the Dutch listeners showed no significant effects, German listeners detected the target fricative faster when the German fricative assimilation was violated than when no violation occurred. The results might suggest that violation of assimilation rules does not have to make processing more difficult per se.
  • Wittek, A. (1998). Learning verb meaning via adverbial modification: Change-of-state verbs in German and the adverb "wieder" again. In A. Greenhill, M. Hughes, H. Littlefield, & H. Walsh (Eds.), Proceedings of the 22nd Annual Boston University Conference on Language Development (pp. 779-790). Somerville, MA: Cascadilla Press.
  • Young, D., Altmann, G. T., Cutler, A., & Norris, D. (1993). Metrical structure and the perception of time-compressed speech. In Eurospeech 93: Vol. 2 (pp. 771-774).

    Abstract

    In the absence of explicitly marked cues to word boundaries, listeners tend to segment spoken English at the onset of strong syllables. This may suggest that under difficult listening conditions, speech should be easier to recognize where strong syllables are word-initial. We report two experiments in which listeners were presented with sentences which had been time-compressed to make listening difficult. The first study contrasted sentences in which all content words began with strong syllables with sentences in which all content words began with weak syllables. The intelligibility of the two groups of sentences did not differ significantly. Apparent rhythmic effects in the results prompted a second experiment; however, no significant effects of systematic rhythmic manipulation were observed. In both experiments, the strongest predictor of intelligibility was the rated plausibility of the sentences. We conclude that listeners' recognition responses to time-compressed speech may be strongly subject to experiential bias; effects of rhythmic structure are most likely to show up also as bias effects.

Share this page