Publications

Displaying 101 - 200 of 398
  • Eisner, F., & McQueen, J. M. (2018). Speech perception. In S. Thompson-Schill (Ed.), Stevens’ handbook of experimental psychology and cognitive neuroscience (4th ed.). Volume 3: Language & thought (pp. 1-46). Hoboken: Wiley. doi:10.1002/9781119170174.epcn301.

    Abstract

    This chapter reviews the computational processes that are responsible for recognizing word forms in the speech stream. We outline the different stages in a processing hierarchy from the extraction of general acoustic features, through speech‐specific prelexical processes, to the retrieval and selection of lexical representations. We argue that two recurring properties of the system as a whole are abstraction and adaptability. We also present evidence for parallel processing of information on different timescales, more specifically that segmental material in the speech stream (its consonants and vowels) is processed in parallel with suprasegmental material (the prosodic structures of spoken words). We consider evidence from both psycholinguistics and neurobiology wherever possible, and discuss how the two fields are beginning to address common computational problems. The challenge for future research in speech perception will be to build an account that links these computational problems, through functional mechanisms that address them, to neurobiological implementation.
  • Embick, D., Creemers, A., & Goodwin Davies, A. J. (2022). Morphology and the mental lexicon: Three questions about decomposition. In A. Papafragou, J. C. Trueswell, & L. R. Gleitman (Eds.), The Oxford Handbook of the Mental Lexicon (pp. 77-97). Oxford: Oxford University Press.

    Abstract

    The most basic question for the study of morphology and the mental lexicon is whether or not words are _decomposed_: informally, this is the question of whether words are represented (and processed) in terms of some kind of smaller units; that is, broken down into constituent parts. Formally, what it means to represent or process a word as decomposed or not turns out to be quite complex. One of the basic lines of division in the field classifies approaches according to whether they decompose all “complex” words (“Full Decomposition”), or none (“Full Listing”), or some but not all, according to some criterion (typical of “Dual-Route” models). However, if we are correct, there are at least three senses in which an approach might be said to be decompositional or not, with the result that ongoing discussions of what appears to be a single large issue might not always be addressing the same distinction. Put slightly differently, there is no single question of decomposition. Instead, there are independent but related questions that define current research. Our goal here is to identify this finer-grained set of questions, as they are the ones that should assume a central place in the study of morphological and lexical representation.
  • Enfield, N. J. (2003). “Fish traps” task. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 31). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877616.

    Abstract

    This task is designed to elicit virtual 3D ‘models’ created in gesture space using iconic and other representational gestures. This task has been piloted with Lao speakers, where two speakers were asked to explain the meaning of terms referring to different kinds of fish trap mechanisms. The task elicited complex performances involving a range of iconic gestures, and with especially interesting use of (a) the ‘model/diagram’ in gesture space as a virtual object, (b) the non-dominant hand as a prosodic/semiotic anchor, (c) a range of different techniques (indexical and iconic) for evoking meaning with the hand, and (d) the use of nearby objects and parts of the body as semiotic ‘props’.
  • Enfield, N. J., De Ruiter, J. P., Levinson, S. C., & Stivers, T. (2003). Multimodal interaction in your field site: A preliminary investigation. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 10-16). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877638.

    Abstract

    Research on video- and audio-recordings of spontaneous naturally-occurring conversation in English has shown that conversation is a rule-guided, practice-oriented domain that can be investigated for its underlying mechanics or structure. Systematic study could yield something like a grammar for conversation. The goal of this task is to acquire a corpus of video-data, for investigating the underlying structure(s) of interaction cross-linguistically and cross-culturally
  • Enfield, N. J., & Levinson, S. C. (2003). Interview on kinship. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 64-65). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877629.

    Abstract

    We want to know how people think about their field of kin, on the supposition that it is quasi-spatial. To get some insights here, we need to video a discussion about kinship reckoning, the kinship system, marriage rules and so on, with a view to looking at both the linguistic expressions involved, and the gestures people use to indicate kinship groups and relations. Unlike the task in the 2001 manual, this task is a direct interview method.
  • Enfield, N. J. (2003). Introduction. In N. J. Enfield, Linguistic epidemiology: Semantics and grammar of language contact in mainland Southeast Asia (pp. 2-44). London: Routledge Curzon.
  • Enfield, N. J., & De Ruiter, J. P. (2003). The diff-task: A symmetrical dyadic multimodal interaction task. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 17-21). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877635.

    Abstract

    This task is a complement to the questionnaire ‘Multimodal interaction in your field site: a preliminary investigation’. The objective of the task is to obtain high quality video data on structured and symmetrical dyadic multimodal interaction. The features of interaction we are interested in include turn organization in speech and nonverbal behavior, eye-gaze behavior, use of composite signals (i.e. communicative units of speech-combined-with-gesture), and linguistic and other resources for ‘navigating’ interaction (e.g. words like okay, now, well, and um).

    Additional information

    2003_1_The_diff_task_stimuli.zip
  • Enfield, N. J. (2003). Preface and priorities. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 3). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Ergin, R., Senghas, A., Jackendoff, R., & Gleitman, L. (2018). Structural cues for symmetry, asymmetry, and non-symmetry in Central Taurus Sign Language. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 104-106). Toruń, Poland: NCU Press. doi:10.12775/3991-1.025.
  • Ernestus, M. (2003). The role of phonology and phonetics in Dutch voice assimilation. In J. v. d. Weijer, V. J. v. Heuven, & H. v. d. Hulst (Eds.), The phonological spectrum Volume 1: Segmental structure (pp. 119-144). Amsterdam: John Benjamins.
  • Ernestus, M., & Smith, R. (2018). Qualitative and quantitative aspects of phonetic variation in Dutch eigenlijk. In F. Cangemi, M. Clayards, O. Niebuhr, B. Schuppler, & M. Zellers (Eds.), Rethinking reduction: Interdisciplinary perspectives on conditions, mechanisms, and domains for phonetic variation (pp. 129-163). Berlin/Boston: De Gruyter Mouton.
  • Fisher, S. E. (2003). The genetic basis of a severe speech and language disorder. In J. Mallet, & Y. Christen (Eds.), Neurosciences at the postgenomic era (pp. 125-134). Heidelberg: Springer.
  • Fisher, V. J. (2022). Unpeeling meaning: An analogy and metaphor identification and analysis tool for modern and post-modern dance, and beyond. In C. Fernandes, V. Evola, & C. Ribeiro (Eds.), Dance data, cognition, and multimodal communication (pp. 297-319). Oxford: Routledge. doi:10.4324/9781003106401-24.
  • Flecken, M., & Von Stutterheim, C. (2018). Sprache und Kognition: Sprachvergleichende und lernersprachliche Untersuchungen zur Ereigniskonzeptualisierung. In S. Schimke, & H. Hopp (Eds.), Sprachverarbeitung im Zweitspracherwerb (pp. 325-356). Berlin: De Gruyter. doi:10.1515/9783110456356-014.
  • Fletcher, J., Kidd, E., Stoakes, H., & Nordlinger, R. (2022). Prosodic phrasing, pitch range, and word order variation in Murrinhpatha. In R. Billington (Ed.), Proceedings of the 18th Australasian International Conference on Speech Science and Technology (pp. 201-205). Canberra: Australasian Speech Science and Technology Association.

    Abstract

    Like many Indigenous Australian languages, Murrinhpatha has flexible word order with no apparent configurational syntax. We analyzed an experimental corpus of Murrinhpatha utterances for associations between different thematic role orders, intonational phrasing patterns and pitch downtrends. We found that initial constituents (Agents or Patients) tend to carry the highest pitch targets (HiF0), followed by patterns of downstep and declination. Sentence-final verbs always have lower Hif0 values than either initial or medial Agents or Patients. Thematic role order does not influence intonational
    patterns, with the results suggesting that Murrinhpatha has positional prosody, although final nominals can disrupt global
    pitch downtrends regardless of thematic role.
  • Floyd, S. (2018). Egophoricity and argument structure in Cha'palaa. In S. Floyd, E. Norcliffe, & L. San Roque (Eds.), Egophoricity (pp. 269-304). Amsterdam: Benjamins.

    Abstract

    The Cha’palaa language of Ecuador (Barbacoan) features verbal morphology for marking knowledge-based categories that, in usage, show a variant of the cross-linguistically recurrent pattern of ‘egophoric distribution': specific forms associate with speakers in contrast to others in statements and with addressees in contrast to others in questions. These are not person markers, but rather are used by speakers to portray their involvement in states of affairs as active, agentive participants (ego) versus other types of involvement (non-ego). They interact with person and argument structure, but through pragmatic ‘person sensitivities’ rather than through grammatical agreement. Not only does this pattern appear in verbal morphology, it also can be observed in alternations of predicate construction types and case alignment, helping to show how egophoric marking is a pervasive element of Cha'palaa's linguistic system. This chapter gives a first account of egophoricity in Cha’palaa, beginning with a discussion of person sensitivity, egophoric distribution, and issues of flexibility of marking with respect to degree of volition or control. It then focuses on a set of intransitive experiencer (or ‘endopathic') predicates that refer to internal states which mark egophoric values for the undergoer role, not the actor role, showing ‘quirky’ accusative marking instead of nominative case. It concludes with a summary of how egophoricity in Cha'palaa interacts with issues of argument structure in comparison to a language with person agreement, here represented by examples from Cha’palaa’s neighbor Ecuadorian Highland Quechua.
  • Forkel, S. J. (2022). Lesion-Symptom Mapping: From Single Cases to the Human Disconnectome. In S. Della Salla (Ed.), Encyclopedia of Behavioral Neuroscience (2nd edition, pp. 142-154). Elsevier. doi:10.1016/B978-0-12-819641-0.00056-6.

    Abstract

    Lesion symptom mapping has revolutionized our understanding of the functioning of the human brain. Associating damaged voxels in the brain with loss of function has created a map of the brain that identifies critical areas. While these methods have significantly advanced our understanding, recent improvements have identified the need for multivariate and multimodal methods to map hidden lesions and damage to white matter networks beyond the lesion voxels. This article reviews the evolution of lesion-symptom mapping from single case studies to the human disconnectome.
  • Forkel, S. J., & Catani, M. (2018). Structural Neuroimaging. In A. De Groot, & P. Hagoort (Eds.), Research Methods in Psycholinguistics and the Neurobiology of Language: A Practical Guide (pp. 288-308). Hoboken: Wiley. doi:10.1002/9781394259762.ch15.

    Abstract

    Structural imaging based on computerized tomography (CT) and magnetic resonance imaging (MRI) has progressively replaced traditional post‐mortem studies in the process of identifying the neuroanatomical basis of language. In the clinical setting, the information provided by structural imaging has been used to confirm the exact diagnosis and formulate an individualized treatment plan. In the research arena, neuroimaging has permitted to understand neuroanatomy at the individual and group level. The possibility to obtain quantitative measures of lesions has improved correlation analyses between severity of symptoms, lesion load, and lesion location. More recently, the development of structural imaging based on diffusion MRI has provided valid solutions to two major limitations of more conventional imaging. In stroke patients, diffusion can visualize early changes due to a stroke that are otherwise not detectable with more conventional structural imaging, with important implications for the clinical management of acute stroke patients. Beyond the sensitivity to early changes, diffusion imaging tractography presents the possibility of visualizing the trajectories of individual white matter pathways connecting distant regions. A pathway analysis based on tractography is offering a new perspective in neurolinguistics. First, it permits to formulate new anatomical models of language function in the healthy brain and allows to directly test these models in the human population without any reliance on animal models. Second, by defining the exact location of the damage to specific white matter connections we can understand the contribution of different mechanisms to the emergence of language deficits (e.g., cortical versus disconnection mechanisms). Finally, a better understanding of the anatomical variability of different language networks is helping to identify new anatomical predictors of language recovery. In this chapter we will focus on the principles of structural MRI and, in particular, diffusion imaging and tractography and present examples of how these methods have informed our understanding of variance in language performances in the healthy brain and language deficits in patient populations.
  • Frank, S. L., Koppen, M., Noordman, L. G. M., & Vonk, W. (2003). A model for knowledge-based pronoun resolution. In F. Detje, D. Dörner, & H. Schaub (Eds.), The logic of cognitive systems (pp. 245-246). Bamberg: Otto-Friedrich Universität.

    Abstract

    Several sources of information are used in choosing the intended referent of an ambiguous pronoun. The two sources considered in this paper are foregrounding and context. The first refers to the accessibility of discourse entities. An entity that is foregrounded is more likely to become the pronoun’s referent than an entity that is not. Context information affects pronoun resolution when world knowledge is needed to find the referent. The model presented here simulates how world knowledge invoked by context, together with foregrounding, influences pronoun resolution. It was developed as an extension to the Distributed Situation Space (DSS) model of knowledge-based inferencing in story comprehension (Frank, Koppen, Noordman, & Vonk, 2003), which shall be introduced first.
  • Gaby, A., & Faller, M. (2003). Reciprocity questionnaire. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 77-80). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877641.

    Abstract

    This project is part of a collaborative project with the research group “Reciprocals across languages” led by Nick Evans. One goal of this project is to develop a typology of reciprocals. This questionnaire is designed to help field workers get an overview over the type of markers used in the expression of reciprocity in the language studied.
  • Galke, L., Gerstenkorn, G., & Scherp, A. (2018). A case study of closed-domain response suggestion with limited training data. In M. Elloumi, M. Granitzer, A. Hameurlain, C. Seifert, B. Stein, A. Min Tjoa, & R. Wagner (Eds.), Database and Expert Systems Applications: DEXA 2018 International Workshops, BDMICS, BIOKDD, and TIR, Regensburg, Germany, September 3–6, 2018, Proceedings (pp. 218-229). Cham, Switzerland: Springer.

    Abstract

    We analyze the problem of response suggestion in a closed domain along a real-world scenario of a digital library. We present a text-processing pipeline to generate question-answer pairs from chat transcripts. On this limited amount of training data, we compare retrieval-based, conditioned-generation, and dedicated representation learning approaches for response suggestion. Our results show that retrieval-based methods that strive to find similar, known contexts are preferable over parametric approaches from the conditioned-generation family, when the training data is limited. We, however, identify a specific representation learning approach that is competitive to the retrieval-based approaches despite the training data limitation.
  • Galke, L., Mai, F., & Vagliano, I. (2018). Multi-modal adversarial autoencoders for recommendations of citations and subject labels. In T. Mitrovic, J. Zhang, L. Chen, & D. Chin (Eds.), UMAP '18: Proceedings of the 26th Conference on User Modeling, Adaptation and Personalization (pp. 197-205). New York: ACM. doi:10.1145/3209219.3209236.

    Abstract

    We present multi-modal adversarial autoencoders for recommendation and evaluate them on two different tasks: citation recommendation and subject label recommendation. We analyze the effects of adversarial regularization, sparsity, and different input modalities. By conducting 408 experiments, we show that adversarial regularization consistently improves the performance of autoencoders for recommendation. We demonstrate, however, that the two tasks differ in the semantics of item co-occurrence in the sense that item co-occurrence resembles relatedness in case of citations, yet implies diversity in case of subject labels. Our results reveal that supplying the partial item set as input is only helpful, when item co-occurrence resembles relatedness. When facing a new recommendation task it is therefore crucial to consider the semantics of item co-occurrence for the choice of an appropriate model.
  • Galke, L., & Scherp, A. (2022). Bag-of-words vs. graph vs. sequence in text classification: Questioning the necessity of text-graphs and the surprising strength of a wide MLP. In S. Muresan, P. Nakov, & A. Villavicencio (Eds.), Proceedings of the 60th Annual Meeting of the Association for Computational Linguistics (pp. 4038-4051). Dublin: Association for Computational Linguistics. doi:10.18653/v1/2022.acl-long.279.
  • Galke, L., Cuber, I., Meyer, C., Nölscher, H. F., Sonderecker, A., & Scherp, A. (2022). General cross-architecture distillation of pretrained language models into matrix embedding. In Proceedings of the IEEE Joint Conference on Neural Networks (IJCNN 2022), part of the IEEE World Congress on Computational Intelligence (WCCI 2022). doi:10.1109/IJCNN55064.2022.9892144.

    Abstract

    Large pretrained language models (PreLMs) are rev-olutionizing natural language processing across all benchmarks. However, their sheer size is prohibitive for small laboratories or for deployment on mobile devices. Approaches like pruning and distillation reduce the model size but typically retain the same model architecture. In contrast, we explore distilling PreLMs into a different, more efficient architecture, Continual Multiplication of Words (CMOW), which embeds each word as a matrix and uses matrix multiplication to encode sequences. We extend the CMOW architecture and its CMOW/CBOW-Hybrid variant with a bidirectional component for more expressive power, per-token representations for a general (task-agnostic) distillation during pretraining, and a two-sequence encoding scheme that facilitates downstream tasks on sentence pairs, such as sentence similarity and natural language inference. Our matrix-based bidirectional CMOW/CBOW-Hybrid model is competitive to DistilBERT on question similarity and recognizing textual entailment, but uses only half of the number of parameters and is three times faster in terms of inference speed. We match or exceed the scores of ELMo for all tasks of the GLUE benchmark except for the sentiment analysis task SST-2 and the linguistic acceptability task CoLA. However, compared to previous cross-architecture distillation approaches, we demonstrate a doubling of the scores on detecting linguistic acceptability. This shows that matrix-based embeddings can be used to distill large PreLM into competitive models and motivates further research in this direction.
  • Gamba, M., De Gregorio, C., Valente, D., Raimondi, T., Torti, V., Miaretsoa, L., Carugati, F., Friard, O., Giacoma, C., & Ravignani, A. (2022). Primate rhythmic categories analyzed on an individual basis. In A. Ravignani, R. Asano, D. Valente, F. Ferretti, S. Hartmann, M. Hayashi, Y. Jadoul, M. Martins, Y. Oseki, E. D. Rodrigues, O. Vasileva, & S. Wacewicz (Eds.), The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE) (pp. 229-236). Nijmegen: Joint Conference on Language Evolution (JCoLE).

    Abstract

    Rhythm is a fundamental feature characterizing communicative displays, and recent studies showed that primate songs encompass categorical rhythms falling on small integer ratios observed in humans. We individually assessed the presence and sexual dimorphism of rhythmic categories, analyzing songs emitted by 39 wild indris. Considering the intervals between the units given during each song, we extracted 13556 interval ratios and found three peaks (at around 0.33, 0.47, and 0.70). Two peaks indicated rhythmic categories corresponding to small integer ratios (1:1, 2:1). All individuals showed a peak at 0.70, and
    most showed those at 0.47 and 0.33. In addition, we found sex differences in the peak at 0.47 only, with males showing lower values than females. This work investigates the presence of individual rhythmic categories in a non-human species; further research may highlight the significance of rhythmicity and untie selective pressures that guided its evolution across species, including humans.
  • Gingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2018). Defining the biological bases of individual differences in musicality. In H. Honing (Ed.), The origins of musicality (pp. 221-250). Cambridge, MA: MIT Press.
  • Gretsch, P. (2003). Omission impossible?: Topic and Focus in Focal Ellipsis. In K. Schwabe, & S. Winkler (Eds.), The Interfaces: Deriving and interpreting omitted structures (pp. 341-365). Amsterdam: John Benjamins.
  • Gullberg, M. (2003). Eye movements and gestures in human face-to-face interaction. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind's eyes: Cognitive and applied aspects of eye movements (pp. 685-703). Oxford: Elsevier.

    Abstract

    Gestures are visuospatial events, meaning carriers, and social interactional phenomena. As such they constitute a particularly favourable area for investigating visual attention in a complex everyday situation under conditions of competitive processing. This chapter discusses visual attention to spontaneous gestures in human face-to-face interaction as explored with eye-tracking. Some basic fixation patterns are described, live and video-based settings are compared, and preliminary results on the relationship between fixations and information processing are outlined.
  • Gullberg, M., & Kita, S. (2003). Das Beachten von Gesten: Eine Studie zu Blickverhalten und Integration gestisch ausgedrückter Informationen. In Max-Planck-Gesellschaft (Ed.), Jahrbuch der Max Planck Gesellschaft 2003 (pp. 949-953). Göttingen: Vandenhoeck & Ruprecht.
  • Gullberg, M. (2003). Gestures, referents, and anaphoric linkage in learner varieties. In C. Dimroth, & M. Starren (Eds.), Information structure, linguistic structure and the dynamics of language acquisition. (pp. 311-328). Amsterdam: Benjamins.

    Abstract

    This paper discusses how the gestural modality can contribute to our understanding of anaphoric linkage in learner varieties, focusing on gestural anaphoric linkage marking the introduction, maintenance, and shift of reference in story retellings by learners of French and Swedish. The comparison of gestural anaphoric linkage in native and non-native varieties reveals what appears to be a particular learner variety of gestural cohesion, which closely reflects the characteristics of anaphoric linkage in learners' speech. Specifically, particular forms co-occur with anaphoric gestures depending on the information organisation in discourse. The typical nominal over-marking of maintained referents or topic elements in speech is mirrored by gestural (over-)marking of the same items. The paper discusses two ways in which this finding may further the understanding of anaphoric over-explicitness of learner varieties. An addressee-based communicative perspective on anaphoric linkage highlights how over-marking in gesture and speech may be related to issues of hyper-clarity and ambiguity. An alternative speaker-based perspective is also explored in which anaphoric over-marking is seen as related to L2 speech planning.
  • Hagoort, P. (2022). Reasoning and the brain. In M. Stokhof, & K. Stenning (Eds.), Rules, regularities, randomness. Festschrift for Michiel van Lambalgen (pp. 83-85). Amsterdam: Institute for Logic, Language and Computation.
  • Hagoort, P., & Brown, C. M. (1994). Brain responses to lexical ambiguity resolution and parsing. In C. Clifton Jr, L. Frazier, & K. Rayner (Eds.), Perspectives on sentence processing (pp. 45-81). Hilsdale NY: Lawrence Erlbaum Associates.
  • Hagoort, P. (2003). De verloving tussen neurowetenschap en psychologie. In K. Hilberdink (Ed.), Interdisciplinariteit in de geesteswetenschappen (pp. 73-81). Amsterdam: KNAW.
  • Hagoort, P. (2003). Die einzigartige, grösstenteils aber unbewusste Fähigkeit der Menschen zu sprachlicher Kommunikation. In G. Kaiser (Ed.), Jahrbuch 2002-2003 / Wissenschaftszentrum Nordrhein-Westfalen (pp. 33-46). Düsseldorf: Wissenschaftszentrum Nordrhein-Westfalen.
  • Hagoort, P. (2003). Functional brain imaging. In W. J. Frawley (Ed.), International encyclopedia of linguistics (pp. 142-145). New York: Oxford University Press.
  • Hagoort, P. (1998). The shadows of lexical meaning in patients with semantic impairments. In B. Stemmer, & H. Whitaker (Eds.), Handbook of neurolinguistics (pp. 235-248). New York: Academic Press.
  • Hammarström, H. (2018). Language isolates in the New Guinea region. In L. Campbell (Ed.), Language Isolates (pp. 287-322). London: Routledge.
  • Haun, D. B. M., & Waller, D. (2003). Alignment task. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 39-48). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Haun, D. B. M. (2003). Path integration. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 33-38). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877644.
  • Haun, D. B. M. (2003). Spatial updating. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 49-56). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Hintz, F., Voeten, C. C., McQueen, J. M., & Meyer, A. S. (2022). Quantifying the relationships between linguistic experience, general cognitive skills and linguistic processing skills. In J. Culbertson, A. Perfors, H. Rabagliati, & V. Ramenzoni (Eds.), Proceedings of the 44th Annual Conference of the Cognitive Science Society (CogSci 2022) (pp. 2491-2496). Toronto, Canada: Cognitive Science Society.

    Abstract

    Humans differ greatly in their ability to use language. Contemporary psycholinguistic theories assume that individual differences in language skills arise from variability in linguistic experience and in general cognitive skills. While much previous research has tested the involvement of select verbal and non-verbal variables in select domains of linguistic processing, comprehensive characterizations of the relationships among the skills underlying language use are rare. We contribute to such a research program by re-analyzing a publicly available set of data from 112 young adults tested on 35 behavioral tests. The tests assessed nine key constructs reflecting linguistic processing skills, linguistic experience and general cognitive skills. Correlation and hierarchical clustering analyses of the test scores showed that most of the tests assumed to measure the same construct correlated moderately to strongly and largely clustered together. Furthermore, the results suggest important roles of processing speed in comprehension, and of linguistic experience in production.
  • Hoeksema, N., Hagoort, P., & Vernes, S. C. (2022). Piecing together the building blocks of the vocal learning bat brain. In A. Ravignani, R. Asano, D. Valente, F. Ferretti, S. Hartmann, M. Hayashi, Y. Jadoul, M. Martins, Y. Oseki, E. D. Rodrigues, O. Vasileva, & S. Wacewicz (Eds.), The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE) (pp. 294-296). Nijmegen: Joint Conference on Language Evolution (JCoLE).
  • Hoey, E., & Kendrick, K. H. (2018). Conversation analysis. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 151-173). Hoboken: Wiley.

    Abstract

    Conversation Analysis (CA) is an inductive, micro-analytic, and predominantly qualitative
    method for studying human social interactions. This chapter describes and illustrates the basic
    methods of CA. We first situate the method by describing its sociological foundations, key areas
    of analysis, and particular approach in using naturally occurring data. The bulk of the chapter is
    devoted to practical explanations of the typical conversation analytic process for collecting data
    and producing an analysis. We analyze a candidate interactional practice – the assessmentimplicative
    interrogative – using real data extracts as a demonstration of the method, explicitly
    laying out the relevant questions and considerations for every stage of an analysis. The chapter
    concludes with some discussion of quantitative approaches to conversational interaction, and
    links between CA and psycholinguistic concerns
  • Hopman, E., Thompson, B., Austerweil, J., & Lupyan, G. (2018). Predictors of L2 word learning accuracy: A big data investigation. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 513-518). Austin, TX: Cognitive Science Society.

    Abstract

    What makes some words harder to learn than others in a second language? Although some robust factors have been identified based on small scale experimental studies, many relevant factors are difficult to study in such experiments due to the amount of data necessary to test them. Here, we investigate what factors affect the ease of learning of a word in a second language using a large data set of users learning English as a second language through the Duolingo mobile app. In a regression analysis, we test and confirm the well-studied effect of cognate status on word learning accuracy. Furthermore, we find significant effects for both cross-linguistic semantic alignment and English semantic density, two novel predictors derived from large scale distributional models of lexical semantics. Finally, we provide data on several other psycholinguistically plausible word level predictors. We conclude with a discussion of the limits, benefits and future research potential of using big data for investigating second language learning.
  • Huettig, F., Kolinsky, R., & Lachmann, T. (Eds.). (2018). The effects of literacy on cognition and brain functioning [Special Issue]. Language, Cognition and Neuroscience, 33(3).
  • Indefrey, P. (2018). The relationship between syntactic production and comprehension. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 486-505). Oxford: Oxford University Press.

    Abstract

    This chapter deals with the question of whether there is one syntactic system that is shared by language production and comprehension or whether there are two separate systems. It first discusses arguments in favor of one or the other option and then presents the current evidence on the brain structures involved in sentence processing. The results of meta-analyses of numerous neuroimaging studies suggest that there is one system consisting of functionally distinct cortical regions: the dorsal part of Broca’s area subserving compositional syntactic processing; the ventral part of Broca’s area subserving compositional semantic processing; and the left posterior temporal cortex (Wernicke’s area) subserving the retrieval of lexical syntactic and semantic information. Sentence production, the comprehension of simple and complex sentences, and the parsing of sentences containing grammatical violations differ with respect to the recruitment of these functional components.
  • Isbilen, E., Frost, R. L. A., Monaghan, P., & Christiansen, M. (2018). Bridging artificial and natural language learning: Comparing processing- and reflection-based measures of learning. In C. Kalish, M. Rau, J. Zhu, & T. T. Rogers (Eds.), Proceedings of the 40th Annual Conference of the Cognitive Science Society (CogSci 2018) (pp. 1856-1861). Austin, TX: Cognitive Science Society.

    Abstract

    A common assumption in the cognitive sciences is that artificial and natural language learning rely on shared mechanisms. However, attempts to bridge the two have yielded ambiguous results. We suggest that an empirical disconnect between the computations employed during learning and the methods employed at test may explain these mixed results. Further, we propose statistically-based chunking as a potential computational link between artificial and natural language learning. We compare the acquisition of non-adjacent dependencies to that of natural language structure using two types of tasks: reflection-based 2AFC measures, and processing-based recall measures, the latter being more computationally analogous to the processes used during language acquisition. Our results demonstrate that task-type significantly influences the correlations observed between artificial and natural language acquisition, with reflection-based and processing-based measures correlating within – but not across – task-type. These findings have fundamental implications for artificial-to-natural language comparisons, both methodologically and theoretically.
  • Janse, E. (2003). Word perception in natural-fast and artificially time-compressed speech. In M. SolÉ, D. Recasens, & J. Romero (Eds.), Proceedings of the 15th International Congress of the Phonetic Sciences (pp. 3001-3004).
  • Janssen, R., Moisik, S. R., & Dediu, D. (2018). Agent model reveals the influence of vocal tract anatomy on speech during ontogeny and glossogeny. In C. Cuskley, M. Flaherty, H. Little, L. McCrohon, A. Ravignani, & T. Verhoef (Eds.), Proceedings of the 12th International Conference on the Evolution of Language (EVOLANG XII) (pp. 171-174). Toruń, Poland: NCU Press. doi:10.12775/3991-1.042.
  • Janssen, R., & Dediu, D. (2018). Genetic biases affecting language: What do computer models and experimental approaches suggest? In T. Poibeau, & A. Villavicencio (Eds.), Language, Cognition and Computational Models (pp. 256-288). Cambridge: Cambridge University Press.

    Abstract

    Computer models of cultural evolution have shown language properties emerging on interacting agents with a brain that lacks dedicated, nativist language modules. Notably, models using Bayesian agents provide a precise specification of (extra-)liguististic factors (e.g., genetic) that shape language through iterated learning (biases on language), and demonstrate that weak biases get expressed more strongly over time (bias amplification). Other models attempt to lessen assumption on agents’ innate predispositions even more, and emphasize self-organization within agents, highlighting glossogenesis (the development of language from a nonlinguistic state). Ultimately however, one also has to recognize that biology and culture are strongly interacting, forming a coevolving system. As such, computer models show that agents might (biologically) evolve to a state predisposed to language adaptability, where (culturally) stable language features might get assimilated into the genome via Baldwinian niche construction. In summary, while many questions about language evolution remain unanswered, it is clear that it is not to be completely understood from a purely biological, cognitivist perspective. Language should be regarded as (partially) emerging on the social interactions between large populations of speakers. In this context, agent models provide a sound approach to investigate the complex dynamics of genetic biasing on language and speech
  • Johnson, E. K. (2003). Speaker intent influences infants' segmentation of potentially ambiguous utterances. In Proceedings of the 15th International Congress of Phonetic Sciences (PCPhS 2003) (pp. 1995-1998). Adelaide: Causal Productions.
  • De Jong, N. H., Schreuder, R., & Baayen, R. H. (2003). Morphological resonance in the mental lexicon. In R. Baayen, & R. Schreuder (Eds.), Morphological structure in language processing (pp. 65-88). Berlin: Mouton de Gruyter.
  • Jordens, P. (1998). Defaultformen des Präteritums. Zum Erwerb der Vergangenheitsmorphologie im Niederlänidischen. In H. Wegener (Ed.), Eine zweite Sprache lernen (pp. 61-88). Tübingen, Germany: Verlag Gunter Narr.
  • Jordens, P. (2003). Constraints on the shape of second language learner varieties. In G. Rickheit, T. Herrmann, & W. Deutsch (Eds.), Psycholinguistik/Psycholinguistics: Ein internationales Handbuch. [An International Handbook] (pp. 819-833). Berlin: Mouton de Gruyter.
  • Kan, U., Gökgöz, K., Sumer, B., Tamyürek, E., & Özyürek, A. (2022). Emergence of negation in a Turkish homesign system: Insights from the family context. In A. Ravignani, R. Asano, D. Valente, F. Ferretti, S. Hartmann, M. Hayashi, Y. Jadoul, M. Martins, Y. Oseki, E. D. Rodrigues, O. Vasileva, & S. Wacewicz (Eds.), The evolution of language: Proceedings of the Joint Conference on Language Evolution (JCoLE) (pp. 387-389). Nijmegen: Joint Conference on Language Evolution (JCoLE).
  • Kanero, J., Franko, I., Oranç, C., Uluşahin, O., Koskulu, S., Adigüzel, Z., Küntay, A. C., & Göksun, T. (2018). Who can benefit from robots? Effects of individual differences in robot-assisted language learning. In Proceedings of the 8th International Conference on Development and Learning and Epigenetic Robotics (ICDL-EpiRob) (pp. 212-217). Piscataway, NJ, USA: IEEE.

    Abstract

    It has been suggested that some individuals may benefit more from social robots than do others. Using second
    language (L2) as an example, the present study examined how individual differences in attitudes toward robots and personality
    traits may be related to learning outcomes. Preliminary results with 24 Turkish-speaking adults suggest that negative attitudes
    toward robots, more specifically thoughts and anxiety about the negative social impact that robots may have on the society,
    predicted how well adults learned L2 words from a social robot. The possible implications of the findings as well as future directions are also discussed
  • Keating, P., Cho, T., Fougeron, C., & Hsu, C.-S. (2003). Domain-initial strengthening in four languages. In J. Local, R. Ogden, & R. Temple (Eds.), Laboratory phonology VI: Phonetic interpretation (pp. 145-163). Cambridge: Cambridge University Press.
  • Kempen, G., & Harbusch, K. (2003). A corpus study into word order variation in German subordinate clauses: Animacy affects linearization independently of function assignment. In Proceedings of AMLaP 2003 (pp. 153-154). Glasgow: Glasgow University.
  • Kempen, G., & Vosse, T. (1992). A language-sensitive text editor for Dutch. In P. O’Brian Holt, & N. Williams (Eds.), Computers and writing: State of the art (pp. 68-77). Dordrecht: Kluwer Academic Publishers.

    Abstract

    Modern word processors begin to offer a range of facilities for spelling, grammar and style checking in English. For the Dutch language hardly anything is available as yet. Many commercial word processing packages do include a hyphenation routine and a lexicon-based spelling checker but the practical usefulness of these tools is limited due to certain properties of Dutch orthography, as we will explain below. In this chapter we describe a text editor which incorporates a great deal of lexical, morphological and syntactic knowledge of Dutch and monitors the orthographical quality of Dutch texts. Section 1 deals with those aspects of Dutch orthography which pose problems to human authors as well as to computational language sensitive text editing tools. In section 2 we describe the design and the implementation of the text editor we have built. Section 3 is mainly devoted to a provisional evaluation of the system.
  • Kempen, G., & Harbusch, K. (1998). A 'tree adjoining' grammar without adjoining: The case of scrambling in German. In Fourth International Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+4).
  • Kempen, G., & Harbusch, K. (2003). Dutch and German verb clusters in performance grammar. In P. A. Seuren, & G. Kempen (Eds.), Verb constructions in German and Dutch (pp. 185-221). Amsterdam: Benjamins.
  • Kempen, G. (2003). Language generation. In W. Frawley (Ed.), International encyclopedia of linguistics (pp. 362-364). New York: Oxford University Press.
  • Kempen, G. (1992). Generation. In W. Bright (Ed.), International encyclopedia of linguistics (pp. 59-61). New York: Oxford University Press.
  • Kempen, G., & Hoenkamp, E. (1982). Incremental sentence generation: Implications for the structure of a syntactic processor. In J. Horecký (Ed.), COLING 82. Proceedings of the Ninth International Conference on Computational Linguistics, Prague, July 5-10, 1982 (pp. 151-156). Amsterdam: North-Holland.

    Abstract

    Human speakers often produce sentences incrementally. They can start speaking having in mind only a fragmentary idea of what they want to say, and while saying this they refine the contents underlying subsequent parts of the utterance. This capability imposes a number of constraints on the design of a syntactic processor. This paper explores these constraints and evaluates some recent computational sentence generators from the perspective of incremental production.
  • Kempen, G. (1989). Informatiegedragskunde: Pijler van de moderne informatieverzorging. In A. F. Marks (Ed.), Sociaal-wetenschappelijke informatie en kennisvorming in onderzoek, onderzoeksbeleid en beroep (pp. 31-35). Amsterdam: SWIDOC.
  • Kempen, G. (1994). Innovative language checking software for Dutch. In J. Van Gent, & E. Peeters (Eds.), Proceedings of the 2e Dag van het Document (pp. 99-100). Delft: TNO Technisch Physische Dienst.
  • Kempen, G. (1989). Language generation systems. In I. S. Bátori, W. Lenders, & W. Putschke (Eds.), Computational linguistics: An international handbook on computer oriented language research and applications (pp. 471-480). Berlin/New York: Walter de Gruyter.
  • Kempen, G. (1992). Language technology and language instruction: Computational diagnosis of word level errors. In M. Swartz, & M. Yazdani (Eds.), Intelligent tutoring systems for foreign language learning: The bridge to international communication (pp. 191-198). Berlin: Springer.
  • Kempen, G. (1998). Sentence parsing. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 213-228). Berlin: Springer.
  • Kempen, G. (1992). Second language acquisition as a hybrid learning process. In F. Engel, D. Bouwhuis, T. Bösser, & G. d'Ydewalle (Eds.), Cognitive modelling and interactive environments in language learning (pp. 139-144). Berlin: Springer.
  • Kempen, G. (1994). The unification space: A hybrid model of human syntactic processing [Abstract]. In Cuny 1994 - The 7th Annual CUNY Conference on Human Sentence Processing. March 17-19, 1994. CUNY Graduate Center, New York.
  • Kempen, G., & Harbusch, K. (2003). Word order scrambling as a consequence of incremental sentence production. In H. Härtl, & H. Tappe (Eds.), Mediating between concepts and grammar (pp. 141-164). Berlin: Mouton de Gruyter.
  • Kempen, G., & Dijkstra, A. (1994). Toward an integrated system for grammar, writing and spelling instruction. In L. Appelo, & F. De Jong (Eds.), Computer-Assisted Language Learning: Proceedings of the Seventh Twente Workshop on Language Technology (pp. 41-46). Enschede: University of Twente.
  • Kita, S. (2003). Pointing: A foundational building block in human communication. In S. Kita (Ed.), Pointing: Where language, culture, and cognition meet (pp. 1-8). Mahwah, NJ: Erlbaum.
  • Kita, S. (2003). Interplay of gaze, hand, torso orientation and language in pointing. In S. Kita (Ed.), Pointing: Where language, culture, and cognition meet (pp. 307-328). Mahwah, NJ: Erlbaum.
  • Kita, S., & Essegbey, J. (2003). Left-hand taboo on direction-indicating gestures in Ghana: When and why people still use left-hand gestures. In M. Rector, I. Poggi, & N. Trigo (Eds.), Gesture: Meaning and use (pp. 301-306). Oporto: Edições Universidade Fernando Pessoa, Fundação Fernado Pessoa.
  • Kita, S., van Gijn, I., & van der Hulst, H. (1998). Movement phases in signs and co-speech gestures, and their transcription by human coders. In Gesture and Sign-Language in Human-Computer Interaction (Lecture Notes in Artificial Intelligence - LNCS Subseries, Vol. 1371) (pp. 23-35). Berlin, Germany: Springer-Verlag.

    Abstract

    The previous literature has suggested that the hand movement in co-speech gestures and signs consists of a series of phases with qualitatively different dynamic characteristics. In this paper, we propose a syntagmatic rule system for movement phases that applies to both co-speech gestures and signs. Descriptive criteria for the rule system were developed for the analysis video-recorded continuous production of signs and gesture. It involves segmenting a stream of body movement into phases and identifying different phase types. Two human coders used the criteria to analyze signs and cospeech gestures that are produced in natural discourse. It was found that the criteria yielded good inter-coder reliability. These criteria can be used for the technology of automatic recognition of signs and co-speech gestures in order to segment continuous production and identify the potentially meaningbearing phase.
  • Kita, S., & Enfield, N. J. (2003). Recording recommendations for video research. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 8-9). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Klein, W. (1992). Der Fall Horten gegen Delius, oder: Der Laie, der Fachmann und das Recht. In G. Grewendorf (Ed.), Rechtskultur als Sprachkultur: Zur forensischen Funktion der Sprachanalyse (pp. 284-313). Frankfurt am Main: Suhrkamp.
  • Klein, W. (1998). Ein Blick zurück auf die Varietätengrammatik. In U. Ammon, K. Mattheier, & P. Nelde (Eds.), Sociolinguistica: Internationales Jahrbuch für europäische Soziolinguistik (pp. 22-38). Tübingen: Niemeyer.
  • Klein, W. (1998). Assertion and finiteness. In N. Dittmar, & Z. Penner (Eds.), Issues in the theory of language acquisition: Essays in honor of Jürgen Weissenborn (pp. 225-245). Bern: Peter Lang.
  • Klein, W., & Dimroth, C. (2003). Der ungesteuerte Zweitspracherwerb Erwachsener: Ein Überblick über den Forschungsstand. In U. Maas, & U. Mehlem (Eds.), Qualitätsanforderungen für die Sprachförderung im Rahmen der Integration von Zuwanderern (Heft 21) (pp. 127-161). Osnabrück: IMIS.
  • Klein, W., & Franceschini, R. (Eds.). (2003). Einfache Sprache [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, 131.
  • Klein, W., & Perdue, C. (1992). Framework. In W. Klein, & C. Perdue (Eds.), Utterance structure: Developing grammars again (pp. 11-59). Amsterdam: Benjamins.
  • Klein, W. (1994). Für eine rein zeitliche Deutung von Tempus und Aspekt. In R. Baum (Ed.), Lingua et Traditio: Festschrift für Hans Helmut Christmann zum 65. Geburtstag (pp. 409-422). Tübingen: Narr.
  • Klein, W. (1994). Keine Känguruhs zur Linken: Über die Variabilität von Raumvorstellungen und ihren Ausdruck in der Sprache. In H.-J. Kornadt, J. Grabowski, & R. Mangold-Allwinn (Eds.), Sprache und Kognition (pp. 163-182). Heidelberg, Berlin, Oxford: Spektrum.
  • Klein, W. (Ed.). (1989). Kindersprache [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (73).
  • Klein, W. (1989). La variation linguistique. In P. Cadiot, & N. Dittmar (Eds.), La sociolinguistique en pays de langue allemande (pp. 101-124). Lille: Presses Universitaires de Lille.
  • Klein, W. (1994). Learning how to express temporality in a second language. In A. G. Ramat, & M. Vedovelli (Eds.), Società di linguistica Italiana, SLI 34: Italiano - lingua seconda/lingua straniera: Atti del XXVI Congresso (pp. 227-248). Roma: Bulzoni.
  • Klein, W. (1982). Local deixis in route directions. In R. Jarvella, & W. Klein (Eds.), Speech, place, and action: Studies in deixis and related topics (pp. 161-182). New York: Wiley.
  • Klein, W., & Dittmar, N. (Eds.). (1994). Interkulturelle Kommunikation [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (93).
  • Klein, W. (Ed.). (1998). Kaleidoskop [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (112).
  • Klein, W. (Ed.). (1992). Textlinguistik [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (86).
  • Klein, W., & Carroll, M. (1992). The acquisition of German. In W. Klein, & C. Perdue (Eds.), Utterance structure: Developing grammars again (pp. 123-188). Amsterdam: Benjamins.
  • Klein, W., & Extra, G. (1982). Second language acquisition by adult immigrants: A European Science Foundation project. In R. E. V. Stuip, & W. Zwanenburg (Eds.), Handelingen van het zevenendertigste Nederlandse Filologencongres (pp. 127-136). Amsterdam: APA-Holland Universiteitspers.
  • Klein, W., & Vater, H. (1998). The perfect in English and German. In L. Kulikov, & H. Vater (Eds.), Typology of verbal categories: Papers presented to Vladimir Nedjalkov on the occasion of his 70th birthday (pp. 215-235). Tübingen: Niemeyer.
  • Klein, W., & Perdue, C. (1989). The learner's problem of arranging words. In B. MacWhinney, & E. Bates (Eds.), The crosslinguistic study of sentence processing (pp. 292-327). Cambridge: Cambridge University Press.
  • Klein, W. (Ed.). (1982). Zweitspracherwerb [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, (45).
  • Kohatsu, T., Akamine, S., Sato, M., & Niikuni, K. (2022). Individual differences in empathy affect perspective adoption in language comprehension. In Proceedings of the 39th Annual Meeting of Japanese Cognitive Science Society (pp. 652-656). Tokyo: Japanese Cognitive Science Society.
  • De Kovel, C. G. F., & Fisher, S. E. (2018). Molecular genetic methods. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 330-353). Hoboken: Wiley.

Share this page