Publications

Displaying 101 - 200 of 451
  • Enfield, N. J. (2003). “Fish traps” task. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 31). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877616.

    Abstract

    This task is designed to elicit virtual 3D ‘models’ created in gesture space using iconic and other representational gestures. This task has been piloted with Lao speakers, where two speakers were asked to explain the meaning of terms referring to different kinds of fish trap mechanisms. The task elicited complex performances involving a range of iconic gestures, and with especially interesting use of (a) the ‘model/diagram’ in gesture space as a virtual object, (b) the non-dominant hand as a prosodic/semiotic anchor, (c) a range of different techniques (indexical and iconic) for evoking meaning with the hand, and (d) the use of nearby objects and parts of the body as semiotic ‘props’.
  • Enfield, N. J. (2004). Adjectives in Lao. In R. M. W. Dixon, & A. Y. Aikhenvald (Eds.), Adjective classes: A cross-linguistic typology (pp. 323-347). Oxford: Oxford University Press.
  • Enfield, N. J. (2003). Linguistic epidemiology: Semantics and grammar of language contact in mainland Southeast Asia. London: Routledge Curzon.
  • Enfield, N. J. (Ed.). (2003). Field research manual 2003, part I: Multimodal interaction, space, event representation. Nijmegen: Max Planck Institute for Psycholinguistics.
  • Enfield, N. J. (2014). Human agency and the infrastructure for requests. In P. Drew, & E. Couper-Kuhlen (Eds.), Requesting in social interaction (pp. 35-50). Amsterdam: John Benjamins.

    Abstract

    This chapter discusses some of the elements of human sociality that serve as the social and cognitive infrastructure or preconditions for the use of requests and other kinds of recruitments in interaction. The notion of an agent with goals is a canonical starting point, though importantly agency tends not to be wholly located in individuals, but rather is socially distributed. This is well illustrated in the case of requests, in which the person or group that has a certain goal is not necessarily the one who carries out the behavior towards that goal. The chapter focuses on the role of semiotic (mostly linguistic) resources in negotiating the distribution of agency with request-like actions, with examples from video-recorded interaction in Lao, a language spoken in Laos and nearby countries. The examples illustrate five hallmarks of requesting in human interaction, which show some ways in which our ‘manipulation’ of other people is quite unlike our manipulation of tools: (1) that even though B is being manipulated, B wants to help, (2) that while A is manipulating B now, A may be manipulated in return later; (3) that the goal of the behavior may be shared between A and B, (4) that B may not comply, or may comply differently than requested, due to actual or potential contingencies, and (5) that A and B are accountable to one another; reasons may be asked for, and/or given, for the request. These hallmarks of requesting are grounded in a prosocial framework of human agency.
  • Enfield, N., Kelly, A., & Sprenger, S. (2004). Max-Planck-Institute for Psycholinguistics: Annual Report 2004. Nijmegen: MPI for Psycholinguistics.
  • Enfield, N. J., De Ruiter, J. P., Levinson, S. C., & Stivers, T. (2003). Multimodal interaction in your field site: A preliminary investigation. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 10-16). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877638.

    Abstract

    Research on video- and audio-recordings of spontaneous naturally-occurring conversation in English has shown that conversation is a rule-guided, practice-oriented domain that can be investigated for its underlying mechanics or structure. Systematic study could yield something like a grammar for conversation. The goal of this task is to acquire a corpus of video-data, for investigating the underlying structure(s) of interaction cross-linguistically and cross-culturally
  • Enfield, N. J., & Sidnell, J. (2014). Language presupposes an enchronic infrastructure for social interaction. In D. Dor, C. Knight, & J. Lewis (Eds.), The social origins of language (pp. 92-104). Oxford: Oxford University Press.
  • Enfield, N. J., Kockelman, P., & Sidnell, J. (2014). Interdisciplinary perspectives. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 599-602). Cambridge: Cambridge University Press.
  • Enfield, N. J., & Levinson, S. C. (2003). Interview on kinship. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 64-65). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877629.

    Abstract

    We want to know how people think about their field of kin, on the supposition that it is quasi-spatial. To get some insights here, we need to video a discussion about kinship reckoning, the kinship system, marriage rules and so on, with a view to looking at both the linguistic expressions involved, and the gestures people use to indicate kinship groups and relations. Unlike the task in the 2001 manual, this task is a direct interview method.
  • Enfield, N. J. (2003). Introduction. In N. J. Enfield, Linguistic epidemiology: Semantics and grammar of language contact in mainland Southeast Asia (pp. 2-44). London: Routledge Curzon.
  • Enfield, N. J., Kockelman, P., & Sidnell, J. (2014). Introduction: Directions in the anthropology of language. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 1-24). Cambridge: Cambridge University Press.
  • Enfield, N. J. (2014). Natural causes of language: Frames, biases and cultural transmission. Berlin: Language Science Press. Retrieved from http://langsci-press.org/catalog/book/48.

    Abstract

    What causes a language to be the way it is? Some features are universal, some are inherited, others are borrowed, and yet others are internally innovated. But no matter where a bit of language is from, it will only exist if it has been diffused and kept in circulation through social interaction in the history of a community. This book makes the case that a proper understanding of the ontology of language systems has to be grounded in the causal mechanisms by which linguistic items are socially transmitted, in communicative contexts. A biased transmission model provides a basis for understanding why certain things and not others are likely to develop, spread, and stick in languages. Because bits of language are always parts of systems, we also need to show how it is that items of knowledge and behavior become structured wholes. The book argues that to achieve this, we need to see how causal processes apply in multiple frames or 'time scales' simultaneously, and we need to understand and address each and all of these frames in our work on language. This forces us to confront implications that are not always comfortable: for example, that "a language" is not a real thing but a convenient fiction, that language-internal and language-external processes have a lot in common, and that tree diagrams are poor conceptual tools for understanding the history of languages. By exploring avenues for clear solutions to these problems, this book suggests a conceptual framework for ultimately explaining, in causal terms, what languages are like and why they are like that.
  • Enfield, N. J. (2004). Repair sequences in interaction. In A. Majid (Ed.), Field Manual Volume 9 (pp. 48-52). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492945.

    Abstract

    This Field Manual entry has been superceded by the 2007 version: https://doi.org/10.17617/2.468724

    Files private

    Request files
  • Enfield, N. J., Kockelman, P., & Sidnell, J. (Eds.). (2014). The Cambridge handbook of linguistic anthropology. Cambridge: Cambridge University Press.
  • Enfield, N. J., & De Ruiter, J. P. (2003). The diff-task: A symmetrical dyadic multimodal interaction task. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 17-21). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877635.

    Abstract

    This task is a complement to the questionnaire ‘Multimodal interaction in your field site: a preliminary investigation’. The objective of the task is to obtain high quality video data on structured and symmetrical dyadic multimodal interaction. The features of interaction we are interested in include turn organization in speech and nonverbal behavior, eye-gaze behavior, use of composite signals (i.e. communicative units of speech-combined-with-gesture), and linguistic and other resources for ‘navigating’ interaction (e.g. words like okay, now, well, and um).

    Additional information

    2003_1_The_diff_task_stimuli.zip
  • Enfield, N. J., Sidnell, J., & Kockelman, P. (2014). System and function. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 25-28). Cambridge: Cambridge University Press.
  • Enfield, N. J. (2003). Preface and priorities. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 3). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Enfield, N. J. (2014). The item/system problem. In N. J. Enfield, P. Kockelman, & J. Sidnell (Eds.), The Cambridge handbook of linguistic anthropology (pp. 48-77). Cambridge: Cambridge University Press.
  • Enfield, N. J. (2014). Transmission biases in the cultural evolution of language: Towards an explanatory framework. In D. Dor, C. Knight, & J. Lewis (Eds.), The social origins of language (pp. 325-335). Oxford: Oxford University Press.
  • Ernestus, M. (2003). The role of phonology and phonetics in Dutch voice assimilation. In J. v. d. Weijer, V. J. v. Heuven, & H. v. d. Hulst (Eds.), The phonological spectrum Volume 1: Segmental structure (pp. 119-144). Amsterdam: John Benjamins.
  • Ernestus, M., & Giezenaar, G. (2014). Een goed verstaander heeft maar een half woord nodig. In B. Bossers (Ed.), Vakwerk 9: Achtergronden van de NT2-lespraktijk: Lezingen conferentie Hoeven 2014 (pp. 81-92). Amsterdam: BV NT2.
  • Ernestus, M., & Smith, R. (2018). Qualitative and quantitative aspects of phonetic variation in Dutch eigenlijk. In F. Cangemi, M. Clayards, O. Niebuhr, B. Schuppler, & M. Zellers (Eds.), Rethinking reduction: Interdisciplinary perspectives on conditions, mechanisms, and domains for phonetic variation (pp. 129-163). Berlin/Boston: De Gruyter Mouton.
  • Evans, N., Levinson, S. C., Enfield, N. J., Gaby, A., & Majid, A. (2004). Reciprocal constructions and situation type. In A. Majid (Ed.), Field Manual Volume 9 (pp. 25-30). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.506955.
  • Fisher, S. E. (2003). The genetic basis of a severe speech and language disorder. In J. Mallet, & Y. Christen (Eds.), Neurosciences at the postgenomic era (pp. 125-134). Heidelberg: Springer.
  • Fitz, H. (2014). Computermodelle für Spracherwerb und Sprachproduktion. Forschungsbericht 2014 - Max-Planck-Institut für Psycholinguistik. In Max-Planck-Gesellschaft Jahrbuch 2014. München: Max Planck Society for the Advancement of Science. Retrieved from http://www.mpg.de/7850678/Psycholinguistik_JB_2014?c=8236817.

    Abstract

    Relative clauses are a syntactic device to create complex sentences and they make language structurally productive. Despite a considerable number of experimental studies, it is still largely unclear how children learn relative clauses and how these are processed in the language system. Researchers at the MPI for Psycholinguistics used a computational learning model to gain novel insights into these issues. The model explains the differential development of relative clauses in English as well as cross-linguistic differences
  • Flecken, M., & Von Stutterheim, C. (2018). Sprache und Kognition: Sprachvergleichende und lernersprachliche Untersuchungen zur Ereigniskonzeptualisierung. In S. Schimke, & H. Hopp (Eds.), Sprachverarbeitung im Zweitspracherwerb (pp. 325-356). Berlin: De Gruyter. doi:10.1515/9783110456356-014.
  • Floccia, C., Sambrook, T. D., Delle Luche, C., Kwok, R., Goslin, J., White, L., Cattani, A., Sullivan, E., Abbot-Smith, K., Krott, A., Mills, D., Rowland, C. F., Gervain, J., & Plunkett, K. (2018). Vocabulary of 2-year-olds learning learning English and an additional language: Norms and effects of linguistic distance. Hoboken: Wiley. doi:10.1111/mono.12348.
  • Flores d'Arcais, G., & Lahiri, A. (1987). Max-Planck-Institute for Psycholinguistics: Annual Report Nr.8 1987. Nijmegen: MPI for Psycholinguistics.
  • Floyd, S., Norcliffe, E., & San Roque, L. (Eds.). (2018). Egophoricity. Amsterdam: Benjamins.
  • Floyd, S. (2018). Egophoricity and argument structure in Cha'palaa. In S. Floyd, E. Norcliffe, & L. San Roque (Eds.), Egophoricity (pp. 269-304). Amsterdam: Benjamins.

    Abstract

    The Cha’palaa language of Ecuador (Barbacoan) features verbal morphology for marking knowledge-based categories that, in usage, show a variant of the cross-linguistically recurrent pattern of ‘egophoric distribution': specific forms associate with speakers in contrast to others in statements and with addressees in contrast to others in questions. These are not person markers, but rather are used by speakers to portray their involvement in states of affairs as active, agentive participants (ego) versus other types of involvement (non-ego). They interact with person and argument structure, but through pragmatic ‘person sensitivities’ rather than through grammatical agreement. Not only does this pattern appear in verbal morphology, it also can be observed in alternations of predicate construction types and case alignment, helping to show how egophoric marking is a pervasive element of Cha'palaa's linguistic system. This chapter gives a first account of egophoricity in Cha’palaa, beginning with a discussion of person sensitivity, egophoric distribution, and issues of flexibility of marking with respect to degree of volition or control. It then focuses on a set of intransitive experiencer (or ‘endopathic') predicates that refer to internal states which mark egophoric values for the undergoer role, not the actor role, showing ‘quirky’ accusative marking instead of nominative case. It concludes with a summary of how egophoricity in Cha'palaa interacts with issues of argument structure in comparison to a language with person agreement, here represented by examples from Cha’palaa’s neighbor Ecuadorian Highland Quechua.
  • Floyd, S. (2014). 'We’ as social categorization in Cha’palaa: A language of Ecuador. In T.-S. Pavlidou (Ed.), Constructing collectivity: 'We' across languages and contexts (pp. 135-158). Amsterdam: Benjamins.

    Abstract

    This chapter connects the grammar of the first person collective pronoun in the Cha’palaa language of Ecuador with its use in interaction for collective reference and social category membership attribution, addressing the problem posed by the fact that non-singular pronouns do not have distributional semantics (“speakers”) but are rather associational (“speaker and relevant associates”). It advocates a cross-disciplinary approach that jointly considers elements of linguistic form, situated usages of those forms in instances of interaction, and the broader ethnographic context of those instances. Focusing on large-scale and relatively stable categories such as racial and ethnic groups, it argues that looking at how speakers categorize themselves and others in the speech situation by using pronouns provides empirical data on the status of macro-social categories for members of a society

    Files private

    Request files
  • Floyd, S. (2014). Four types of reduplication in the Cha'palaa language of Ecuador. In H. van der Voort, & G. Goodwin Gómez (Eds.), Reduplication in Indigenous Languages of South America (pp. 77-114). Leiden: Brill.
  • Forkel, S. J., & Catani, M. (2018). Structural Neuroimaging. In A. De Groot, & P. Hagoort (Eds.), Research Methods in Psycholinguistics and the Neurobiology of Language: A Practical Guide (pp. 288-308). Hoboken: Wiley. doi:10.1002/9781394259762.ch15.

    Abstract

    Structural imaging based on computerized tomography (CT) and magnetic resonance imaging (MRI) has progressively replaced traditional post‐mortem studies in the process of identifying the neuroanatomical basis of language. In the clinical setting, the information provided by structural imaging has been used to confirm the exact diagnosis and formulate an individualized treatment plan. In the research arena, neuroimaging has permitted to understand neuroanatomy at the individual and group level. The possibility to obtain quantitative measures of lesions has improved correlation analyses between severity of symptoms, lesion load, and lesion location. More recently, the development of structural imaging based on diffusion MRI has provided valid solutions to two major limitations of more conventional imaging. In stroke patients, diffusion can visualize early changes due to a stroke that are otherwise not detectable with more conventional structural imaging, with important implications for the clinical management of acute stroke patients. Beyond the sensitivity to early changes, diffusion imaging tractography presents the possibility of visualizing the trajectories of individual white matter pathways connecting distant regions. A pathway analysis based on tractography is offering a new perspective in neurolinguistics. First, it permits to formulate new anatomical models of language function in the healthy brain and allows to directly test these models in the human population without any reliance on animal models. Second, by defining the exact location of the damage to specific white matter connections we can understand the contribution of different mechanisms to the emergence of language deficits (e.g., cortical versus disconnection mechanisms). Finally, a better understanding of the anatomical variability of different language networks is helping to identify new anatomical predictors of language recovery. In this chapter we will focus on the principles of structural MRI and, in particular, diffusion imaging and tractography and present examples of how these methods have informed our understanding of variance in language performances in the healthy brain and language deficits in patient populations.
  • Fradera, A., & Sauter, D. (2004). Make yourself happy. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 325-327). Sebastopol, CA: O'Reilly.

    Abstract

    Turn on your affective system by tweaking your face muscles - or getting an eyeful of someone else doing the same.
  • Fradera, A., & Sauter, D. (2004). Reminisce hot and cold. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 327-331). Sebastopol, CA: O'Reilly.

    Abstract

    Find the fire that's cooking your memory systems.
  • Fradera, A., & Sauter, D. (2004). Signal emotion. In T. Stafford, & M. Webb (Eds.), Mind hacks: tips & tools for using your brain (pp. 320-324). Sebastopol, CA: O'Reilly.

    Abstract

    Emotions are powerful on the inside but often displayed in subtle ways on the outside. Are these displays culturally dependent or universal?
  • Frank, S. L., Koppen, M., Noordman, L. G. M., & Vonk, W. (2003). A model for knowledge-based pronoun resolution. In F. Detje, D. Dörner, & H. Schaub (Eds.), The logic of cognitive systems (pp. 245-246). Bamberg: Otto-Friedrich Universität.

    Abstract

    Several sources of information are used in choosing the intended referent of an ambiguous pronoun. The two sources considered in this paper are foregrounding and context. The first refers to the accessibility of discourse entities. An entity that is foregrounded is more likely to become the pronoun’s referent than an entity that is not. Context information affects pronoun resolution when world knowledge is needed to find the referent. The model presented here simulates how world knowledge invoked by context, together with foregrounding, influences pronoun resolution. It was developed as an extension to the Distributed Situation Space (DSS) model of knowledge-based inferencing in story comprehension (Frank, Koppen, Noordman, & Vonk, 2003), which shall be introduced first.
  • Friederici, A., & Levelt, W. J. M. (1987). Sprache. In K. Immelmann, K. Scherer, & C. Vogel (Eds.), Funkkolleg Psychobiologie (pp. 58-87). Weinheim: Beltz.
  • Gaby, A., & Faller, M. (2003). Reciprocity questionnaire. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 77-80). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877641.

    Abstract

    This project is part of a collaborative project with the research group “Reciprocals across languages” led by Nick Evans. One goal of this project is to develop a typology of reciprocals. This questionnaire is designed to help field workers get an overview over the type of markers used in the expression of reciprocity in the language studied.
  • Ganushchak, L. Y., & Acheson, D. J. (Eds.). (2014). What's to be learned from speaking aloud? - Advances in the neurophysiological measurement of overt language production. [Research topic] [Special Issue]. Frontiers in Language Sciences. Retrieved from http://www.frontiersin.org/Language_Sciences/researchtopics/What_s_to_be_Learned_from_Spea/1671.

    Abstract

    Researchers have long avoided neurophysiological experiments of overt speech production due to the suspicion that artifacts caused by muscle activity may lead to a bad signal-to-noise ratio in the measurements. However, the need to actually produce speech may influence earlier processing and qualitatively change speech production processes and what we can infer from neurophysiological measures thereof. Recently, however, overt speech has been successfully investigated using EEG, MEG, and fMRI. The aim of this Research Topic is to draw together recent research on the neurophysiological basis of language production, with the aim of developing and extending theoretical accounts of the language production process. In this Research Topic of Frontiers in Language Sciences, we invite both experimental and review papers, as well as those about the latest methods in acquisition and analysis of overt language production data. All aspects of language production are welcome: i.e., from conceptualization to articulation during native as well as multilingual language production. Focus should be placed on using the neurophysiological data to inform questions about the processing stages of language production. In addition, emphasis should be placed on the extent to which the identified components of the electrophysiological signal (e.g., ERP/ERF, neuronal oscillations, etc.), brain areas or networks are related to language comprehension and other cognitive domains. By bringing together electrophysiological and neuroimaging evidence on language production mechanisms, a more complete picture of the locus of language production processes and their temporal and neurophysiological signatures will emerge.
  • Gast, V., & Levshina, N. (2014). Motivating w(h)-Clefts in English and German: A hypothesis-driven parallel corpus study. In A.-M. De Cesare (Ed.), Frequency, Forms and Functions of Cleft Constructions in Romance and Germanic: Contrastive, Corpus-Based Studies (pp. 377-414). Berlin: De Gruyter.
  • Gingras, B., Honing, H., Peretz, I., Trainor, L. J., & Fisher, S. E. (2018). Defining the biological bases of individual differences in musicality. In H. Honing (Ed.), The origins of musicality (pp. 221-250). Cambridge, MA: MIT Press.
  • Gretsch, P. (2003). Omission impossible?: Topic and Focus in Focal Ellipsis. In K. Schwabe, & S. Winkler (Eds.), The Interfaces: Deriving and interpreting omitted structures (pp. 341-365). Amsterdam: John Benjamins.
  • De Groot, A. M. B., & Hagoort, P. (Eds.). (2018). Research methods in psycholinguistics and the neurobiology of language: A practical guide. Oxford: Wiley.
  • Gullberg, M. (2003). Eye movements and gestures in human face-to-face interaction. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind's eyes: Cognitive and applied aspects of eye movements (pp. 685-703). Oxford: Elsevier.

    Abstract

    Gestures are visuospatial events, meaning carriers, and social interactional phenomena. As such they constitute a particularly favourable area for investigating visual attention in a complex everyday situation under conditions of competitive processing. This chapter discusses visual attention to spontaneous gestures in human face-to-face interaction as explored with eye-tracking. Some basic fixation patterns are described, live and video-based settings are compared, and preliminary results on the relationship between fixations and information processing are outlined.
  • Gullberg, M., & Kita, S. (2003). Das Beachten von Gesten: Eine Studie zu Blickverhalten und Integration gestisch ausgedrückter Informationen. In Max-Planck-Gesellschaft (Ed.), Jahrbuch der Max Planck Gesellschaft 2003 (pp. 949-953). Göttingen: Vandenhoeck & Ruprecht.
  • Gullberg, M. (2003). Gestures, referents, and anaphoric linkage in learner varieties. In C. Dimroth, & M. Starren (Eds.), Information structure, linguistic structure and the dynamics of language acquisition. (pp. 311-328). Amsterdam: Benjamins.

    Abstract

    This paper discusses how the gestural modality can contribute to our understanding of anaphoric linkage in learner varieties, focusing on gestural anaphoric linkage marking the introduction, maintenance, and shift of reference in story retellings by learners of French and Swedish. The comparison of gestural anaphoric linkage in native and non-native varieties reveals what appears to be a particular learner variety of gestural cohesion, which closely reflects the characteristics of anaphoric linkage in learners' speech. Specifically, particular forms co-occur with anaphoric gestures depending on the information organisation in discourse. The typical nominal over-marking of maintained referents or topic elements in speech is mirrored by gestural (over-)marking of the same items. The paper discusses two ways in which this finding may further the understanding of anaphoric over-explicitness of learner varieties. An addressee-based communicative perspective on anaphoric linkage highlights how over-marking in gesture and speech may be related to issues of hyper-clarity and ambiguity. An alternative speaker-based perspective is also explored in which anaphoric over-marking is seen as related to L2 speech planning.
  • Gullberg, M. (1998). Gesture as a communication strategy in second language discourse: A study of learners of French and Swedish. Lund: Lund University Press.

    Abstract

    Gestures are often regarded as the most typical compensatory device used by language learners in communicative trouble. Yet gestural solutions to communicative problems have rarely been studied within any theory of second language use. The work pre­sented in this volume aims to account for second language learners’ strategic use of speech-associated gestures by combining a process-oriented framework for communi­cation strategies with a cognitive theory of gesture. Two empirical studies are presented. The production study investigates Swedish lear­ners of French and French learners of Swedish and their use of strategic gestures. The results, which are based on analyses of both individual and group behaviour, contradict popular opinion as well as theoretical assumptions from both fields. Gestures are not primarily used to replace speech, nor are they chiefly mimetic. Instead, learners use gestures with speech, and although they do exploit mimetic gestures to solve lexical problems, they also use more abstract gestures to handle discourse-related difficulties and metalinguistic commentary. The influence of factors such as proficiency, task, culture, and strategic competence on gesture use is discussed, and the oral and gestural strategic modes are compared. In the evaluation study, native speakers’ assessments of learners’ gestures, and the potential effect of gestures on evaluations of proficiency are analysed and discussed in terms of individual communicative style. Compensatory gestures function at multiple communicative levels. This has implica­tions for theories of communication strategies, and an expansion of the existing frameworks is discussed taking both cognitive and interactive aspects into account.
  • De Haan, E., & Hagoort, P. (2004). Het brein in beeld. In B. Deelman, P. Eling, E. De Haan, & E. Van Zomeren (Eds.), Klinische neuropsychologie (pp. 82-98). Amsterdam: Boom.
  • Hagoort, P., & Brown, C. M. (1994). Brain responses to lexical ambiguity resolution and parsing. In C. Clifton Jr, L. Frazier, & K. Rayner (Eds.), Perspectives on sentence processing (pp. 45-81). Hilsdale NY: Lawrence Erlbaum Associates.
  • Hagoort, P. (2003). De verloving tussen neurowetenschap en psychologie. In K. Hilberdink (Ed.), Interdisciplinariteit in de geesteswetenschappen (pp. 73-81). Amsterdam: KNAW.
  • Hagoort, P. (2003). Die einzigartige, grösstenteils aber unbewusste Fähigkeit der Menschen zu sprachlicher Kommunikation. In G. Kaiser (Ed.), Jahrbuch 2002-2003 / Wissenschaftszentrum Nordrhein-Westfalen (pp. 33-46). Düsseldorf: Wissenschaftszentrum Nordrhein-Westfalen.
  • Hagoort, P. (2004). Er is geen behoefte aan trompetten als gordijnen. In H. Procee, H. Meijer, P. Timmerman, & R. Tuinsma (Eds.), Bij die wereld wil ik horen! Zesendertig columns en drie essays over de vorming tot academicus (pp. 78-80). Amsterdam: Boom.
  • Hagoort, P. (2003). Functional brain imaging. In W. J. Frawley (Ed.), International encyclopedia of linguistics (pp. 142-145). New York: Oxford University Press.
  • Hagoort, P. (2004). Het zwarte gat tussen brein en bewustzijn. In N. Korteweg (Ed.), De oorsprong: Over het ontstaan van het leven en alles eromheen (pp. 107-124). Amsterdam: Boom.
  • Hagoort, P. (2014). Introduction to section on language and abstract thought. In M. S. Gazzaniga, & G. R. Mangun (Eds.), The cognitive neurosciences (5th ed., pp. 615-618). Cambridge, Mass: MIT Press.
  • Hagoort, P., & Levinson, S. C. (2014). Neuropragmatics. In M. S. Gazzaniga, & G. R. Mangun (Eds.), The cognitive neurosciences (5th ed., pp. 667-674). Cambridge, Mass: MIT Press.
  • Hagoort, P. (1998). The shadows of lexical meaning in patients with semantic impairments. In B. Stemmer, & H. Whitaker (Eds.), Handbook of neurolinguistics (pp. 235-248). New York: Academic Press.
  • Hammarström, H. (2014). Basic vocabulary comparison in South American languages. In P. Muysken, & L. O'Connor (Eds.), Language contact in South America (pp. 56-72). Cambridge: Cambridge University Press.
  • Hammarström, H. (2018). Language isolates in the New Guinea region. In L. Campbell (Ed.), Language Isolates (pp. 287-322). London: Routledge.
  • Hammarström, H. (2014). Papuan languages. In M. Aronoff (Ed.), Oxford bibliographies in linguistics. New York: Oxford University Press. doi:10.1093/OBO/9780199772810-0165.
  • Hammond, J. (2014). Switch-reference antecedence and subordination in Whitesands (Oceanic). In R. van Gijn, J. Hammond, D. Matić, S. van Putten, & A. V. Galucio (Eds.), Information structure and reference tracking in complex sentences. (pp. 263-290). Amsterdam: Benjamins.

    Abstract

    Whitesands is an Oceanic language of the southern Vanuatu subgroup. Like the related languages of southern Vanuatu, Whitesands has developed a clause-linkage system which monitors referent continuity on new clauses – typically contrasting with the previous clause. In this chapter I address how the construction interacts with topic continuity in discourse. I outline the morphosyntactic form of this anaphoric co-reference device. From a functionalist perspective, I show how the system is used in natural discourse and discuss its restrictions with respect to relative and complement clauses. I conclude with a discussion on its interactions with theoretical notions of information structure – in particular the nature of presupposed versus asserted clauses, information back- and foregrounding and how these affect the use of the switch-reference system
  • Haun, D. B. M., & Waller, D. (2003). Alignment task. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 39-48). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Haun, D. B. M. (2003). Path integration. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 33-38). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877644.
  • Haun, D. B. M. (2003). Spatial updating. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 49-56). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Heeschen, V., Eibl-Eibesfeldt, I., Grammer, K., Schiefenhövel, W., & Senft, G. (1986). Sprachliches Verhalten. In Generalverwaltung der MPG (Ed.), Max-Planck-Gesellschaft Jahrbuch 1986 (pp. 394-396). Göttingen: Vandenhoeck and Ruprecht.
  • Hoey, E., & Kendrick, K. H. (2018). Conversation analysis. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 151-173). Hoboken: Wiley.

    Abstract

    Conversation Analysis (CA) is an inductive, micro-analytic, and predominantly qualitative
    method for studying human social interactions. This chapter describes and illustrates the basic
    methods of CA. We first situate the method by describing its sociological foundations, key areas
    of analysis, and particular approach in using naturally occurring data. The bulk of the chapter is
    devoted to practical explanations of the typical conversation analytic process for collecting data
    and producing an analysis. We analyze a candidate interactional practice – the assessmentimplicative
    interrogative – using real data extracts as a demonstration of the method, explicitly
    laying out the relevant questions and considerations for every stage of an analysis. The chapter
    concludes with some discussion of quantitative approaches to conversational interaction, and
    links between CA and psycholinguistic concerns
  • Holler, J. (2014). Experimental methods in co-speech gesture research. In C. Mueller, A. Cienki, D. McNeill, & E. Fricke (Eds.), Body -language – communication: An international handbook on multimodality in human interaction. Volume 1 (pp. 837-856). Berlin: De Gruyter.
  • Holler, J., & Beattie, G. (2004). The interaction of iconic gesture and speech. In A. Cammurri, & G. Volpe (Eds.), Lecture Notes in Computer Science, 5th International Gesture Workshop, Genova, Italy, 2003; Selected Revised Papers (pp. 63-69). Heidelberg: Springer Verlag.
  • Huettig, F. (2014). Role of prediction in language learning. In P. J. Brooks, & V. Kempe (Eds.), Encyclopedia of language development (pp. 479-481). London: Sage Publications.
  • Huettig, F., & Altmann, G. T. M. (2004). The online processing of ambiguous and unambiguous words in context: Evidence from head-mounted eye-tracking. In M. Carreiras, & C. Clifton (Eds.), The on-line study of sentence comprehension: Eyetracking, ERP and beyond (pp. 187-207). New York: Psychology Press.
  • Huettig, F., Kolinsky, R., & Lachmann, T. (Eds.). (2018). The effects of literacy on cognition and brain functioning [Special Issue]. Language, Cognition and Neuroscience, 33(3).
  • Indefrey, P., & Cutler, A. (2004). Prelexical and lexical processing in listening. In M. Gazzaniga (Ed.), The cognitive neurosciences III. (pp. 759-774). Cambridge, MA: MIT Press.

    Abstract

    This paper presents a meta-analysis of hemodynamic studies on passive auditory language processing. We assess the overlap of hemodynamic activation areas and activation maxima reported in experiments involving the presentation of sentences, words, pseudowords, or sublexical or non-linguistic auditory stimuli. Areas that have been reliably replicated are identified. The results of the meta-analysis are compared to electrophysiological, magnetencephalic (MEG), and clinical findings. It is concluded that auditory language input is processed in a left posterior frontal and bilateral temporal cortical network. Within this network, no processing leve l is related to a single cortical area. The temporal lobes seem to differ with respect to their involvement in post-lexical processing, in that the left temporal lobe has greater involvement than the right, and also in the degree of anatomical specialization for phonological, lexical, and sentence -level processing, with greater overlap on the right contrasting with a higher degree of differentiation on the left.
  • Indefrey, P. (2004). Hirnaktivierungen bei syntaktischer Sprachverarbeitung: Eine Meta-Analyse. In H. Müller, & G. Rickheit (Eds.), Neurokognition der Sprache (pp. 31-50). Tübingen: Stauffenburg.
  • Indefrey, P. (2018). The relationship between syntactic production and comprehension. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), The Oxford Handbook of Psycholinguistics (2nd ed., pp. 486-505). Oxford: Oxford University Press.

    Abstract

    This chapter deals with the question of whether there is one syntactic system that is shared by language production and comprehension or whether there are two separate systems. It first discusses arguments in favor of one or the other option and then presents the current evidence on the brain structures involved in sentence processing. The results of meta-analyses of numerous neuroimaging studies suggest that there is one system consisting of functionally distinct cortical regions: the dorsal part of Broca’s area subserving compositional syntactic processing; the ventral part of Broca’s area subserving compositional semantic processing; and the left posterior temporal cortex (Wernicke’s area) subserving the retrieval of lexical syntactic and semantic information. Sentence production, the comprehension of simple and complex sentences, and the parsing of sentences containing grammatical violations differ with respect to the recruitment of these functional components.
  • Janssen, R., & Dediu, D. (2018). Genetic biases affecting language: What do computer models and experimental approaches suggest? In T. Poibeau, & A. Villavicencio (Eds.), Language, Cognition and Computational Models (pp. 256-288). Cambridge: Cambridge University Press.

    Abstract

    Computer models of cultural evolution have shown language properties emerging on interacting agents with a brain that lacks dedicated, nativist language modules. Notably, models using Bayesian agents provide a precise specification of (extra-)liguististic factors (e.g., genetic) that shape language through iterated learning (biases on language), and demonstrate that weak biases get expressed more strongly over time (bias amplification). Other models attempt to lessen assumption on agents’ innate predispositions even more, and emphasize self-organization within agents, highlighting glossogenesis (the development of language from a nonlinguistic state). Ultimately however, one also has to recognize that biology and culture are strongly interacting, forming a coevolving system. As such, computer models show that agents might (biologically) evolve to a state predisposed to language adaptability, where (culturally) stable language features might get assimilated into the genome via Baldwinian niche construction. In summary, while many questions about language evolution remain unanswered, it is clear that it is not to be completely understood from a purely biological, cognitivist perspective. Language should be regarded as (partially) emerging on the social interactions between large populations of speakers. In this context, agent models provide a sound approach to investigate the complex dynamics of genetic biasing on language and speech
  • Johnson, E., & Matsuo, A. (2003). Max-Planck-Institute for Psycholinguistics: Annual Report 2003. Nijmegen: MPI for Psycholinguistics.
  • De Jong, N. H., Schreuder, R., & Baayen, R. H. (2003). Morphological resonance in the mental lexicon. In R. Baayen, & R. Schreuder (Eds.), Morphological structure in language processing (pp. 65-88). Berlin: Mouton de Gruyter.
  • Jordens, P. (1998). Defaultformen des Präteritums. Zum Erwerb der Vergangenheitsmorphologie im Niederlänidischen. In H. Wegener (Ed.), Eine zweite Sprache lernen (pp. 61-88). Tübingen, Germany: Verlag Gunter Narr.
  • Jordens, P. (2003). Constraints on the shape of second language learner varieties. In G. Rickheit, T. Herrmann, & W. Deutsch (Eds.), Psycholinguistik/Psycholinguistics: Ein internationales Handbuch. [An International Handbook] (pp. 819-833). Berlin: Mouton de Gruyter.
  • Jordens, P. (2004). Morphology in Second Language Acquisition. In G. Booij (Ed.), Morphologie: Ein internationales Handbuch zur Flexion und Wortbildung (pp. 1806-1816). Berlin: Walter de Gruyter.
  • Kashima, Y., Kashima, E. S., & Kidd, E. (2014). Language and culture. In T. M. Holtgraves (Ed.), The Oxford Handbook of Language and Social Psychology (pp. 46-61). Oxford: Oxford University Press.
  • Keating, P., Cho, T., Fougeron, C., & Hsu, C.-S. (2003). Domain-initial strengthening in four languages. In J. Local, R. Ogden, & R. Temple (Eds.), Laboratory phonology VI: Phonetic interpretation (pp. 145-163). Cambridge: Cambridge University Press.
  • Kempen, G. (2004). Terug naar Wundt: Pleidooi voor integraal onderzoek van taal, taalkennis en taalgedrag. In Koninklijke Nederlandse Akademie van Wetenschappen (Ed.), Gij letterdames en gij letterheren': Nieuwe mogelijkheden voor taalkundig en letterkundig onderzoek in Nederland. (pp. 174-188). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.
  • Kempen, G., Anbeek, G., Desain, P., Konst, L., & De Semdt, K. (1987). Author environments: Fifth generation text processors. In Commission of the European Communities. Directorate-General for Telecommunications, Information Industries, and Innovation (Ed.), Esprit'86: Results and achievements (pp. 365-372). Amsterdam: Elsevier Science Publishers.
  • Kempen, G., Anbeek, G., Desain, P., Konst, L., & De Smedt, K. (1987). Author environments: Fifth generation text processors. In Commission of the European Communities. Directorate-General for Telecommunications, Information Industries, and Innovation (Ed.), Esprit'86: Results and achievements (pp. 365-372). Amsterdam: Elsevier Science Publishers.
  • Kempen, G. (1986). Beyond word processing. In E. Cluff, & G. Bunting (Eds.), Information management yearbook 1986 (pp. 178-181). London: IDPM Publications.
  • Kempen, G., & Vosse, T. (1992). A language-sensitive text editor for Dutch. In P. O’Brian Holt, & N. Williams (Eds.), Computers and writing: State of the art (pp. 68-77). Dordrecht: Kluwer Academic Publishers.

    Abstract

    Modern word processors begin to offer a range of facilities for spelling, grammar and style checking in English. For the Dutch language hardly anything is available as yet. Many commercial word processing packages do include a hyphenation routine and a lexicon-based spelling checker but the practical usefulness of these tools is limited due to certain properties of Dutch orthography, as we will explain below. In this chapter we describe a text editor which incorporates a great deal of lexical, morphological and syntactic knowledge of Dutch and monitors the orthographical quality of Dutch texts. Section 1 deals with those aspects of Dutch orthography which pose problems to human authors as well as to computational language sensitive text editing tools. In section 2 we describe the design and the implementation of the text editor we have built. Section 3 is mainly devoted to a provisional evaluation of the system.
  • Kempen, G., & Harbusch, K. (2003). Dutch and German verb clusters in performance grammar. In P. A. Seuren, & G. Kempen (Eds.), Verb constructions in German and Dutch (pp. 185-221). Amsterdam: Benjamins.
  • Kempen, G., & Harbusch, K. (2004). A corpus study into word order variation in German subordinate clauses: Animacy affects linearization independently of grammatical function assignment. In T. Pechmann, & C. Habel (Eds.), Multidisciplinary approaches to language production (pp. 173-181). Berlin: Mouton de Gruyter.
  • Kempen, G., & Harbusch, K. (2004). Generating natural word orders in a semi-free word order language: Treebank-based linearization preferences for German. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing (pp. 350-354). Berlin: Springer.

    Abstract

    We outline an algorithm capable of generating varied but natural sounding sequences of argument NPs in subordinate clauses of German, a semi-free word order language. In order to attain the right level of output flexibility, the algorithm considers (1) the relevant lexical properties of the head verb (not only transitivity type but also reflexivity, thematic relations expressed by the NPs, etc.), and (2) the animacy and definiteness values of the arguments, and their length. The relevant statistical data were extracted from the NEGRA–II treebank and from hand-coded features for animacy and definiteness. The algorithm maps the relevant properties onto “primary” versus “secondary” placement options in the generator. The algorithm is restricted in that it does not take into account linear order determinants related to the sentence’s information structure and its discourse context (e.g. contrastiveness). These factors may modulate the above preferences or license “tertiary” linear orders beyond the primary and secondary options considered here.
  • Kempen, G. (2003). Language generation. In W. Frawley (Ed.), International encyclopedia of linguistics (pp. 362-364). New York: Oxford University Press.
  • Kempen, G. (1992). Generation. In W. Bright (Ed.), International encyclopedia of linguistics (pp. 59-61). New York: Oxford University Press.
  • Kempen, G. (1986). Kunstmatige intelligentie en gezond verstand. In P. Hagoort, & R. Maessen (Eds.), Geest, computer, kunst (pp. 118-123). Utrecht: Stichting Grafiet.
  • Kempen, G. (1992). Language technology and language instruction: Computational diagnosis of word level errors. In M. Swartz, & M. Yazdani (Eds.), Intelligent tutoring systems for foreign language learning: The bridge to international communication (pp. 191-198). Berlin: Springer.
  • Kempen, G. (Ed.). (1987). Natural language generation: New results in artificial intelligence, psychology and linguistics. Dordrecht: Nijhoff.
  • Kempen, G. (Ed.). (1987). Natuurlijke taal en kunstmatige intelligentie: Taal tussen mens en machine. Groningen: Wolters-Noordhoff.
  • Kempen, G., & Takens, R. (Eds.). (1986). Psychologie, informatica en informatisering. Lisse: Swets & Zeitlinger.
  • Kempen, G. (1998). Sentence parsing. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 213-228). Berlin: Springer.

Share this page