Publications

Displaying 1001 - 1047 of 1047
  • De Vos, C., & Nyst, V.A.S (2018). Introduction: The time-depth and typology of rural sign languages. Sign Language Studies, 18(4), 477-487.
  • De Vos, J., Schriefers, H., & Lemhöfer, K. (2018). Noticing vocabulary holes aids incidental second language word learning: An experimental study. Bilingualism: Language and Cognition, 22(3), 500-515. doi:10.1017/S1366728918000019.

    Abstract

    Noticing the hole (NTH) occurs when speakers want to say something, but realise they do not know the right word(s). Such awareness of lacking knowledge supposedly facilitates the acquisition of the unknown word(s) from later input (Swain, 1993). We tested this claim by experimentally inducing NTH in a second language (L2) for some participants (experimental), but not others (control). Then, in a price comparison game, all participants were exposed to spoken L2 input containing the to-be-learned words. They were unaware of taking part in an L2 study. Post-tests showed that participants who had noticed holes in their vocabulary had indeed learned more words compared to participants who had not. This held both for the experimental group as well as those participants in the control group who later reported to have noticed holes. Thus, when we become aware of vocabulary holes, the first step to improve our vocabulary is already taken.
  • De Vries, C., Reijnierse, W. G., & Willems, R. M. (2018). Eye movements reveal readers’ sensitivity to deliberate metaphors during narrative reading. Scientific Study of Literature, 8(1), 135-164. doi:10.1075/ssol.18008.vri.

    Abstract

    Metaphors occur frequently in literary texts. Deliberate Metaphor Theory (DMT; e.g., Steen, 2017) proposes that metaphors that serve a communicative function as metaphor are radically different from metaphors that do not have this function. We investigated differences in processing between deliberate and non-deliberate metaphors, compared to non-metaphorical words in literary reading. Using the Deliberate Metaphor Identification Procedure (Reijnierse et al., 2018), we identified metaphors in two literary stories. Then, eye-tracking was used to investigate participants’ (N = 72) reading behavior. Deliberate metaphors were read slower than non-deliberate metaphors, and both metaphor types were read slower than non-metaphorical words. Differences were controlled for several psycholinguistic variables. Differences in reading behavior were related to individual differences in reading experience and absorption and appreciation of the story. These results are in line with predictions from DMT and underline the importance of distinguishing between metaphor types in the experimental study of literary reading.
  • De Vries, B., Eising, E., Broos, L. A. M., Koelewijn, S. C., Todorov, B., Frants, R. R., Boer, J. M., Ferraro, M. D., Thoen, P. A. C., & Van Den Maagdenberg, A. (2014). RNA expression profiling in brains of familial hemiplegic migraine type 1 knock-in mice. Cephalalgia, 34(3), 174-182. doi:10.1177/0333102413502736.

    Abstract

    Background Various CACNA1A missense mutations cause familial hemiplegic migraine type 1 (FHM1), a rare monogenic subtype of migraine with aura. FHM1 mutation R192Q is associated with pure hemiplegic migraine, whereas the S218L mutation causes hemiplegic migraine, cerebellar ataxia, seizures, and mild head trauma-induced brain edema. Transgenic knock-in (KI) migraine mouse models were generated that carried either the FHM1 R192Q or the S218L mutation and were shown to exhibit increased CaV2.1 channel activity. Here we investigated their cerebellar and caudal cortical transcriptome. Methods Caudal cortical and cerebellar RNA expression profiles from mutant and wild-type mice were studied using microarrays. Respective brain regions were selected based on their relevance to migraine aura and ataxia. Relevant expression changes were further investigated at RNA and protein level by quantitative polymerase chain reaction (qPCR) and/or immunohistochemistry, respectively. Results Expression differences in the cerebellum were most pronounced in S218L mice. Particularly, tyrosine hydroxylase, a marker of delayed cerebellar maturation, appeared strongly upregulated in S218L cerebella. In contrast, only minimal expression differences were observed in the caudal cortex of either mutant mice strain. Conclusion Despite pronounced consequences of migraine gene mutations at the neurobiological level, changes in cortical RNA expression in FHM1 migraine mice compared to wild-type are modest. In contrast, pronounced RNA expression changes are seen in the cerebellum of S218L mice and may explain their cerebellar ataxia phenotype
  • Vromans, R. D., & Jongman, S. R. (2018). The interplay between selective and nonselective inhibition during single word production. PLoS One, 13(5): e0197313. doi:10.1371/journal.pone.0197313.

    Abstract

    The present study investigated the interplay between selective inhibition (the ability to suppress specific competing responses) and nonselective inhibition (the ability to suppress any inappropriate response) during single word production. To this end, we combined two well-established research paradigms: the picture-word interference task and the stop-signal task. Selective inhibition was assessed by instructing participants to name target pictures (e.g., dog) in the presence of semantically related (e.g., cat) or unrelated (e.g., window) distractor words. Nonselective inhibition was tested by occasionally presenting a visual stop-signal, indicating that participants should withhold their verbal response. The stop-signal was presented early (250 ms) aimed at interrupting the lexical selection stage, and late (325 ms) to influence the word-encoding stage of the speech production process. We found longer naming latencies for pictures with semantically related distractors than with unrelated distractors (semantic interference effect). The results further showed that, at both delays, stopping latencies (i.e., stop-signal RTs) were prolonged for naming pictures with semantically related distractors compared to pictures with unrelated distractors. Taken together, our findings suggest that selective and nonselective inhibition, at least partly, share a common inhibitory mechanism during different stages of the speech production process.

    Additional information

    Data available (link to Figshare)
  • Waller, D., & Haun, D. B. M. (2003). Scaling techniques for modeling directional knowledge. Behavior Research Methods, Instruments, & Computers, 35(2), 285-293.

    Abstract

    A common way for researchers to model or graphically portray spatial knowledge of a large environment is by applying multidimensional scaling (MDS) to a set of pairwise distance estimations. We introduce two MDS-like techniques that incorporate people’s knowledge of directions instead of (or in addition to) their knowledge of distances. Maps of a familiar environment derived from these procedures were more accurate and were rated by participants as being more accurate than those derived from nonmetric MDS. By incorporating people’s relatively accurate knowledge of directions, these methods offer spatial cognition researchers and behavioral geographers a sharper analytical tool than MDS for studying cognitive maps.
  • Wang, L., Hagoort, P., & Jensen, O. (2018). Language prediction is reflected by coupling between frontal gamma and posterior alpha oscillations. Journal of Cognitive Neuroscience, 30(3), 432-447. doi:10.1162/jocn_a_01190.

    Abstract

    Readers and listeners actively predict upcoming words during language processing. These predictions might serve to support the unification of incoming words into sentence context and thus rely on interactions between areas in the language network. In the current magnetoencephalography study, participants read sentences that varied in contextual constraints so that the predictability of the sentence-final words was either high or low. Before the sentence-final words, we observed stronger alpha power suppression for the highly compared with low constraining sentences in the left inferior frontal cortex, left posterior temporal region, and visual word form area. Importantly, the temporal and visual word form area alpha power correlated negatively with left frontal gamma power for the highly constraining sentences. We suggest that the correlation between alpha power decrease in temporal language areas and left prefrontal gamma power reflects the initiation of an anticipatory unification process in the language network.
  • Wang, L., Hagoort, P., & Jensen, O. (2018). Gamma oscillatory activity related to language prediction. Journal of Cognitive Neuroscience, 30(8), 1075-1085. doi:10.1162/jocn_a_01275.

    Abstract

    Using magnetoencephalography, the current study examined gamma activity associated with language prediction. Participants read high- and low-constraining sentences in which the final word of the sentence was either expected or unexpected. Although no consistent gamma power difference induced by the sentence-final words was found between the expected and unexpected conditions, the correlation of gamma power during the prediction and activation intervals of the sentence-final words was larger when the presented words matched with the prediction compared with when the prediction was violated or when no prediction was available. This suggests that gamma magnitude relates to the match between predicted and perceived words. Moreover, the expected words induced activity with a slower gamma frequency compared with that induced by unexpected words. Overall, the current study establishes that prediction is related to gamma power correlations and a slowing of the gamma frequency.
  • Wang, M., Shao, Z., Chen, Y., & Schiller, N. O. (2018). Neural correlates of spoken word production in semantic and phonological blocked cyclic naming. Language, Cognition and Neuroscience, 33(5), 575-586. doi:10.1080/23273798.2017.1395467.

    Abstract

    The blocked cyclic naming paradigm has been increasingly employed to investigate the mechanisms underlying spoken word production. Semantic homogeneity typically elicits longer naming latencies than heterogeneity; however, it is debated whether competitive lexical selection or incremental learning underlies this effect. The current study manipulated both semantic and phonological homogeneity and used behavioural and electrophysiological measurements to provide evidence that can distinguish between the two accounts. Results show that naming latencies are longer in semantically homogeneous blocks, but shorter in phonologically homogeneous blocks, relative to heterogeneity. The semantic factor significantly modulates electrophysiological waveforms from 200 ms and the phonological factor from 350 ms after picture presentation. A positive component was demonstrated in both manipulations, possibly reflecting a task-related top-down bias in performing blocked cyclic naming. These results provide novel insights into the neural correlates of blocked cyclic naming and further contribute to the understanding of spoken word production.
  • Wanke, K., Devanna, P., & Vernes, S. C. (2018). Understanding neurodevelopmental disorders: The promise of regulatory variation in the 3’UTRome. Biological Psychiatry, 83(7), 548-557. doi:10.1016/j.biopsych.2017.11.006.

    Abstract

    Neurodevelopmental disorders have a strong genetic component, but despite widespread efforts, the specific genetic factors underlying these disorders remain undefined for a large proportion of affected individuals. Given the accessibility of exome-sequencing, this problem has thus far been addressed from a protein-centric standpoint; however, protein-coding regions only make up ∼1-2% of the human genome. With the advent of whole-genome sequencing we are in the midst of a paradigm shift as it is now possible to interrogate the entire sequence of the human genome (coding and non-coding) to fill in the missing heritability of complex disorders. These new technologies bring new challenges, as the number of non-coding variants identified per individual can be overwhelming, making it prudent to focus on non-coding regions of known function, for which the effects of variation can be predicted and directly tested to assess pathogenicity. The 3’UTRome is a region of the non-coding genome that perfectly fulfils these criteria and is of high interest when searching for pathogenic variation related to complex neurodevelopmental disorders. Herein, we review the regulatory roles of the 3’UTRome as binding sites for microRNAs, RNA binding proteins or during alternative polyadenylation. We detail existing evidence that these regions contribute to neurodevelopmental disorders and outline strategies for identification and validation of novel putatively pathogenic variation in these regions. This evidence suggests that studying the 3’UTRome will lead to the identification of new risk factors, new candidate disease genes and a better understanding of the molecular mechanisms contributing to NDDs.

    Additional information

    1-s2.0-S0006322317321911-mmc1.pdf
  • Ward, M. E., McMahon, G., St Pourcain, B., Evans, D. M., Rietveld, C. A., Benjamin, D. J., Koellinger, P. D., Cesarini, D., Smith, G. D., Timpson, N. J., & Consortium}, {. S. G. A. (2014). Genetic variation associated with differential educational attainment in adults has anticipated associations with school performance in children. PLoS ONE, 9(7): e100248. doi:10.1371/journal.pone.0100248.

    Abstract

    Genome-wide association study results have yielded evidence for the association of common genetic variants with crude measures of completed educational attainment in adults. Whilst informative, these results do not inform as to the mechanism of these effects or their presence at earlier ages and where educational performance is more routinely and more precisely assessed. Single nucleotide polymorphisms exhibiting genome-wide significant associations with adult educational attainment were combined to derive an unweighted allele score in 5,979 and 6,145 young participants from the Avon Longitudinal Study of Parents and Children with key stage 3 national curriculum test results (SATS results) available at age 13 to 14 years in English and mathematics respectively. Standardised (z-scored) results for English and mathematics showed an expected relationship with sex, with girls exhibiting an advantage over boys in English (0.433 SD (95%CI 0.395, 0.470), p<10-10) with more similar results (though in the opposite direction) in mathematics (0.042 SD (95%CI 0.004, 0.080), p = 0.030). Each additional adult educational attainment increasing allele was associated with 0.041 SD (95%CI 0.020, 0.063), p = 1.79×10-04 and 0.028 SD (95%CI 0.007, 0.050), p = 0.01 increases in standardised SATS score for English and mathematics respectively. Educational attainment is a complex multifactorial behavioural trait which has not had heritable contributions to it fully characterised. We were able to apply the results from a large study of adult educational attainment to a study of child exam performance marking events in the process of learning rather than realised adult end product. Our results support evidence for common, small genetic contributions to educational attainment, but also emphasise the likely lifecourse nature of this genetic effect. Results here also, by an alternative route, suggest that existing methods for child examination are able to recognise early life variation likely to be related to ultimate educational attainment.
  • Warner, N., & Cutler, A. (2017). Stress effects in vowel perception as a function of language-specific vocabulary patterns. Phonetica, 74, 81-106. doi:10.1159/000447428.

    Abstract

    Background/Aims: Evidence from spoken word recognition suggests that for English listeners, distinguishing full versus reduced vowels is important, but discerning stress differences involving the same full vowel (as in mu- from music or museum) is not. In Dutch, in contrast, the latter distinction is important. This difference arises from the relative frequency of unstressed full vowels in the two vocabularies. The goal of this paper is to determine how this difference in the lexicon influences the perception of stressed versus unstressed vowels. Methods: All possible sequences of two segments (diphones) in Dutch and in English were presented to native listeners in gated fragments. We recorded identification performance over time throughout the speech signal. The data were here analysed specifically for patterns in perception of stressed versus unstressed vowels. Results: The data reveal significantly larger stress effects (whereby unstressed vowels are harder to identify than stressed vowels) in English than in Dutch. Both language-specific and shared patterns appear regarding which vowels show stress effects. Conclusion: We explain the larger stress effect in English as reflecting the processing demands caused by the difference in use of unstressed vowels in the lexicon. The larger stress effect in English is due to relative inexperience with processing unstressed full vowels
  • Warner, N., McQueen, J. M., & Cutler, A. (2014). Tracking perception of the sounds of English. The Journal of the Acoustical Society of America, 135, 2295-3006. doi:10.1121/1.4870486.

    Abstract

    Twenty American English listeners identified gated fragments of all 2288 possible English within-word and cross-word diphones, providing a total of 538 560 phoneme categorizations. The results show orderly uptake of acoustic information in the signal and provide a view of where information about segments occurs in time. Information locus depends on each speech sound’s identity and phonological features. Affricates and diphthongs have highly localized information so that listeners’ perceptual accuracy rises during a confined time range. Stops and sonorants have more distributed and gradually appearing information. The identity and phonological features (e.g., vowel vs consonant) of the neighboring segment also influences when acoustic information about a segment is available. Stressed vowels are perceived significantly more accurately than unstressed vowels, but this effect is greater for lax vowels than for tense vowels or diphthongs. The dataset charts the availability of perceptual cues to segment identity across time for the full phoneme repertoire of English in all attested phonetic contexts.
  • Watson, L. M., Wong, M. M. K., Vowles, J., Cowley, S. A., & Becker, E. B. E. (2018). A simplified method for generating purkinje cells from human-induced pluripotent stem cells. The Cerebellum, 17(4), 419-427. doi:10.1007/s12311-017-0913-2.

    Abstract

    The establishment of a reliable model for the study of Purkinje cells in vitro is of particular importance, given their central role in cerebellar function and pathology. Recent advances in induced pluripotent stem cell (iPSC) technology offer the opportunity to generate multiple neuronal subtypes for study in vitro. However, to date, only a handful of studies have generated Purkinje cells from human pluripotent stem cells, with most of these protocols proving challenging to reproduce. Here, we describe a simplified method for the reproducible generation of Purkinje cells from human iPSCs. After 21 days of treatment with factors selected to mimic the self-inductive properties of the isthmic organiser—insulin, fibroblast growth factor 2 (FGF2), and the transforming growth factor β (TGFβ)-receptor blocker SB431542—hiPSCs could be induced to form En1-positive cerebellar progenitors at efficiencies of up to 90%. By day 35 of differentiation, subpopulations of cells representative of the two cerebellar germinal zones, the rhombic lip (Atoh1-positive) and ventricular zone (Ptf1a-positive), could be identified, with the latter giving rise to cells positive for Purkinje cell progenitor-specific markers, including Lhx5, Kirrel2, Olig2 and Skor2. Further maturation was observed following dissociation and co-culture of these cerebellar progenitors with mouse cerebellar cells, with 10% of human cells staining positive for the Purkinje cell marker calbindin by day 70 of differentiation. This protocol, which incorporates modifications designed to enhance cell survival and maturation and improve the ease of handling, should serve to make existing models more accessible, in order to enable future advances in the field.

    Additional information

    12311_2017_913_MOESM1_ESM.docx
  • Weber, A., & Cutler, A. (2003). Perceptual similarity co-existing with lexical dissimilarity [Abstract]. Abstracts of the 146th Meeting of the Acoustical Society of America. Journal of the Acoustical Society of America, 114(4 Pt. 2), 2422. doi:10.1121/1.1601094.

    Abstract

    The extreme case of perceptual similarity is indiscriminability, as when two second‐language phonemes map to a single native category. An example is the English had‐head vowel contrast for Dutch listeners; Dutch has just one such central vowel, transcribed [E]. We examine whether the failure to discriminate in phonetic categorization implies indiscriminability in other—e.g., lexical—processing. Eyetracking experiments show that Dutch‐native listeners instructed in English to ‘‘click on the panda’’ look (significantly more than native listeners) at a pictured pencil, suggesting that pan‐ activates their lexical representation of pencil. The reverse, however, is not the case: ‘‘click on the pencil’’ does not induce looks to a panda, suggesting that pen‐ does not activate panda in the lexicon. Thus prelexically undiscriminated second‐language distinctions can nevertheless be maintained in stored lexical representations. The problem of mapping a resulting unitary input to two distinct categories in lexical representations is solved by allowing input to activate only one second‐language category. For Dutch listeners to English, this is English [E], as a result of which no vowels in the signal ever map to words containing [ae]. We suggest that the choice of category is here motivated by a more abstract, phonemic, metric of similarity.
  • Weber, A., Di Betta, A. M., & McQueen, J. M. (2014). Treack or trit: Adaptation to genuine and arbitrary foreign accents by monolingual and bilingual listeners. Journal of phonetics, 46, 34-51. doi:10.1016/j.wocn.2014.05.002.

    Abstract

    Two cross-modal priming experiments examined two questions about word recognition in foreign-accented speech: Does accent adaptation occur only for genuine accents markers, and does adaptation depend on language experience? We compared recognition of words spoken with canonical, genuinely-accented and arbitrarily-accented vowels. In Experiment 1, an Italian speaker pronounced vowels in English prime words canonically, or by lengthening /ɪ/ as in a genuine Italian accent (*/tri:k/ for trick), or by arbitrarily shortening /i:/ (*/trɪt/ for treat). Lexical-decision times to subsequent visual target words showed different priming effects in three listener groups. Monolingual native English listeners recognized variants with lengthened but not shortened vowels. Bilingual nonnative Italian-English listeners, who could not reliably distinguish vowel length, recognized both variants. Bilingual nonnative Dutch-English listeners also recognized both variants. In Experiment 2, bilingual Dutch-English listeners recognized Dutch words with genuinely- and arbitrarily-accented vowels (spoken by a native Italian with lengthened and shortened vowels respectively), but recognized words with canonical vowels more easily than words with accented vowels. These results suggest that adaptation to genuine accent markers arises for monolingual and bilingual listeners alike and can occur in native and nonnative languages, but that bilinguals can adapt to arbitrary accent markers better than monolinguals.
  • Weekes, B. S., Abutalebi, J., Mak, H.-K.-F., Borsa, V., Soares, S. M. P., Chiu, P. W., & Zhang, L. (2018). Effect of monolingualism and bilingualism in the anterior cingulate cortex: a proton magnetic resonance spectroscopy study in two centers. Letras de Hoje, 53(1), 5-12. doi:10.15448/1984-7726.2018.1.30954.

    Abstract

    Reports of an advantage of bilingualism on brain structure in young adult participants
    are inconsistent. Abutalebi et al. (2012) reported more efficient monitoring of conflict during the
    Flanker task in young bilinguals compared to young monolingual speakers. The present study
    compared young adult (mean age = 24) Cantonese-English bilinguals in Hong Kong and young
    adult monolingual speakers. We expected (a) differences in metabolites in neural tissue to result
    from bilingual experience, as measured by 1H-MRS at 3T, (b) correlations between metabolic
    levels and Flanker conflict and interference effects (c) different associations in bilingual and
    monolingual speakers. We found evidence of metabolic differences in the ACC due to bilingualism,
    specifically in metabolites Cho, Cr, Glx and NAA. However, we found no significant correlations
    between metabolic levels and conflict and interference effects and no significant evidence of
    differential relationships between bilingual and monolingual speakers. Furthermore, we found no
    evidence of significant differences in the mean size of conflict and interference effects between
    groups i.e. no bilingual advantage. Lower levels of Cho, Cr, Glx and NAA in bilingual adults
    compared to monolingual adults suggest that the brains of bilinguals develop greater adaptive
    control during conflict monitoring because of their extensive bilingual experience.
  • Wegman, J., Fonteijn, H. M., van Ekert, J., Tyborowska, A., Jansen, C., & Janzen, G. (2014). Gray and white matter correlates of navigational ability in humans. Human Brain Mapping, 35(6), 2561-2572. doi:10.1002/hbm.22349.

    Abstract

    Humans differ widely in their navigational abilities. Studies have shown that self-reports on navigational abilities are good predictors of performance on navigation tasks in real and virtual environments. The caudate nucleus and medial temporal lobe regions have been suggested to subserve different navigational strategies. The ability to use different strategies might underlie navigational ability differences. This study examines the anatomical correlates of self-reported navigational ability in both gray and white matter. Local gray matter volume was compared between a group (N = 134) of good and bad navigators using voxel-based morphometry (VBM), as well as regional volumes. To compare between good and bad navigators, we also measured white matter anatomy using diffusion tensor imaging (DTI) and looked at fractional anisotropy (FA) values. We observed a trend toward higher local GM volume in right anterior parahippocampal/rhinal cortex for good versus bad navigators. Good male navigators showed significantly higher local GM volume in right hippocampus than bad male navigators. Conversely, bad navigators showed increased FA values in the internal capsule, the white matter bundle closest to the caudate nucleus and a trend toward higher local GM volume in the caudate nucleus. Furthermore, caudate nucleus regional volume correlated negatively with navigational ability. These convergent findings across imaging modalities are in line with findings showing that the caudate nucleus and the medial temporal lobes are involved in different wayfinding strategies. Our study is the first to show a link between self-reported large-scale navigational abilities and different measures of brain anatomy.
  • Wegman, J., Tyborowska, A., Hoogman, M., Vasquez, A. A., & Janzen, G. (2017). The brain-derived neurotrophic factor Val66Met polymorphism affects encoding of object locations during active navigation. European Journal of Neuroscience, 45(12), 1501-1511. doi:10.1111/ejn.13416.

    Abstract

    The brain-derived neurotrophic factor (BDNF) was shown to be involved in spatial memory and spatial strategy preference. A naturally occurring single nucleotide polymorphism of the BDNF gene (Val66Met) affects activity-dependent secretion of BDNF. The current event-related fMRI study on preselected groups of ‘Met’ carriers and homozygotes of the ‘Val’ allele investigated the role of this polymorphism on encoding and retrieval in a virtual navigation task in 37 healthy volunteers. In each trial, participants navigated toward a target object. During encoding, three positional cues (columns) with directional cues (shadows) were available. During retrieval, the invisible target had to be replaced while either two objects without shadows (objects trial) or one object with a shadow (shadow trial) were available. The experiment consisted of blocks, informing participants of which trial type would be most likely to occur during retrieval. We observed no differences between genetic groups in task performance or time to complete the navigation tasks. The imaging results show that Met carriers compared to Val homozygotes activate the left hippocampus more during successful object location memory encoding. The observed effects were independent of non-significant performance differences or volumetric differences in the hippocampus. These results indicate that variations of the BDNF gene affect memory encoding during spatial navigation, suggesting that lower levels of BDNF in the hippocampus results in less efficient spatial memory processing
  • Wheeldon, L. (2003). Inhibitory from priming of spoken word production. Language and Cognitive Processes, 18(1), 81-109. doi:10.1080/01690960143000470.

    Abstract

    Three experiments were designed to examine the effect on picture naming of the prior production of a word related in phonological form. In Experiment 1, the latency to produce Dutch words in response to pictures (e.g., hoed , hat) was longer following the production of a form-related word (e.g., hond , dog) in response to a definition on a preceding trial, than when the preceding definition elicited an unrelated word (e.g., kerk , church). Experiment 2 demonstrated that the inhibitory effect disappears when one unrelated word is produced intervening prime and target productions (e.g., hond-kerk-hoed ). The size of the inhibitory effect was not significantly affected by the frequency of the prime words or the target picture names. In Experiment 3, facilitation was observed for word pairs that shared offset segments (e.g., kurk-jurk , cork-dress), whereas inhibition was observed for shared onset segments (e.g., bloed-bloem , blood-flower). However, no priming was observed for prime and target words with shared phonemes but no mismatching segments (e.g., oom-boom , uncle-tree; hex-hexs , fence-witch). These findings are consistent with a process of phoneme competition during phonological encoding.
  • Whitmarsh, S., Barendregt, H., Schoffelen, J.-M., & Jensen, O. (2014). Metacognitive awareness of covert somatosensory attention corresponds to contralateral alpha power. NeuroImage, 85(2), 803-809. doi:10.1016/j.neuroimage.2013.07.031.

    Abstract

    Studies on metacognition have shown that participants can report on their performance on a wide range of perceptual, memory and behavioral tasks. We know little, however, about the ability to report on one's attentional focus. The degree and direction of somatosensory attention can, however, be readily discerned through suppression of alpha band frequencies in EEG/MEG produced by the somatosensory cortex. Such top-down attentional modulations of cortical excitability have been shown to result in better discrimination performance and decreased response times. In this study we asked whether the degree of attentional focus is also accessible for subjective report, and whether such evaluations correspond to the amount of somatosensory alpha activity. In response to auditory cues participants maintained somatosensory attention to either their left or right hand for intervals varying randomly between 5 and 32seconds, while their brain activity was recorded with MEG. Trials were terminated by a probe sound, to which they reported their level of attention on the cued hand right before probe-onset. Using a beamformer approach, we quantified the alpha activity in left and right somatosensory regions, one second before the probe. Alpha activity from contra- and ipsilateral somatosensory cortices for high versus low attention trials were compared. As predicted, the contralateral somatosensory alpha depression correlated with higher reported attentional focus. Finally, alpha activity two to three seconds before the probe-onset was correlated with attentional focus. We conclude that somatosensory attention is indeed accessible to metacognitive awareness.
  • Widlok, T., & Burenhult, N. (2014). Sehen, riechen, orientieren. Spektrum der Wissenschaft, June 2014, 76-81.
  • Wiese, R., Orzechowska, P., Alday, P. M., & Ulbrich, C. (2017). Structural Principles or Frequency of Use? An ERP Experiment on the Learnability of Consonant Clusters. Frontiers in Psychology, 7: 2005. doi:10.3389/fpsyg.2016.02005.

    Abstract

    Phonological knowledge of a language involves knowledge about which segments can be combined under what conditions. Languages vary in the quantity and quality of licensed combinations, in particular sequences of consonants, with Polish being a language with a large inventory of such combinations. The present paper reports on a two-session experiment in which Polish-speaking adult participants learned nonce words with final consonant clusters. The aim was to study the role of two factors which potentially play a role in the learning of phonotactic structures: the phonological principle of sonority (ordering sound segments within the syllable according to their inherent loudness) and the (non-) existence as a usage-based phenomenon. EEG responses in two different time windows (adversely to behavioral responses) show linguistic processing by native speakers of Polish to be sensitive to both distinctions, in spite of the fact that Polish is rich in sonority-violating clusters. In particular, a general learning effect in terms of an N400 effect was found which was demonstrated to be different for sonority-obeying clusters than for sonority-violating clusters. Furthermore, significant interactions of formedness and session, and of existence and session, demonstrate that both factors, the sonority principle and the frequency pattern, play a role in the learning process.
  • Willems, R. M., Van der Haegen, L., Fisher, S. E., & Francks, C. (2014). On the other hand: Including left-handers in cognitive neuroscience and neurogenetics. Nature Reviews Neuroscience, 15, 193-201. doi:10.1038/nrn3679.

    Abstract

    Left-handers are often excluded from study cohorts in neuroscience and neurogenetics in order to reduce variance in the data. However, recent investigations have shown that the inclusion or targeted recruitment of left-handers can be informative in studies on a range of topics, such as cerebral lateralization and the genetic underpinning of asymmetrical brain development. Left-handed individuals represent a substantial portion of the human population and therefore left-handedness falls within the normal range of human diversity; thus, it is important to account for this variation in our understanding of brain functioning. We call for neuroscientists and neurogeneticists to recognize the potential of studying this often-discarded group of research subjects.
  • Willems, R. M., & Francks, C. (2014). Your left-handed brain. Frontiers for Young Minds, 2: 13. doi:10.3389/frym.2014.00013.

    Abstract

    While most people prefer to use their right hand to brush their teeth, throw a ball, or hold a tennis racket, left-handers prefer to use their left hand. This is the case for around 10 per cent of all people. There was a time (not so long ago) when left-handers were stigmatized in Western (and other) communities: it was considered a bad sign if you were left-handed, and left-handed children were often forced to write with their right hand. This is nonsensical: there is nothing wrong with being left-handed, and trying to write with the non-preferred hand is frustrating for almost everybody. As a matter of fact, science can learn from left-handers, and in this paper, we discuss how this may be the case. We review why some people are left-handed and others are not, how left-handers' brains differ from right-handers’, and why scientists study left-handedness in the first place
  • Winsvold, B. S., Palta, P., Eising, E., Page, C. M., The International Headache Genetics Consortium, Van den Maagdenberg, A. M. J. M., Palotie, A., & Zwart, J.-A. (2018). Epigenetic DNA methylation changes associated with headache chronification: A retrospective case-control study. Cephalalgia, 38(2), 312-322. doi:10.1177/0333102417690111.

    Abstract

    Background

    The biological mechanisms of headache chronification are poorly understood. We aimed to identify changes in DNA methylation associated with the transformation from episodic to chronic headache.
    Methods

    Participants were recruited from the population-based Norwegian HUNT Study. Thirty-six female headache patients who transformed from episodic to chronic headache between baseline and follow-up 11 years later were matched against 35 controls with episodic headache. DNA methylation was quantified at 485,000 CpG sites, and changes in methylation level at these sites were compared between cases and controls by linear regression analysis. Data were analyzed in two stages (Stages 1 and 2) and in a combined meta-analysis.
    Results

    None of the top 20 CpG sites identified in Stage 1 replicated in Stage 2 after multiple testing correction. In the combined meta-analysis the strongest associated CpG sites were related to SH2D5 and NPTX2, two brain-expressed genes involved in the regulation of synaptic plasticity. Functional enrichment analysis pointed to processes including calcium ion binding and estrogen receptor pathways.
    Conclusion

    In this first genome-wide study of DNA methylation in headache chronification several potentially implicated loci and processes were identified. The study exemplifies the use of prospectively collected population cohorts to search for epigenetic mechanisms of disease
  • Winter, B., Perlman, M., & Majid, A. (2018). Vision dominates in perceptual language: English sensory vocabulary is optimized for usage. Cognition, 179, 213-220. doi:10.1016/j.cognition.2018.05.008.

    Abstract

    Researchers have suggested that the vocabularies of languages are oriented towards the communicative needs of language users. Here, we provide evidence demonstrating that the higher frequency of visual words in a large variety of English corpora is reflected in greater lexical differentiation—a greater number of unique words—for the visual domain in the English lexicon. In comparison, sensory modalities that are less frequently talked about, particularly taste and smell, show less lexical differentiation. In addition, we show that even though sensory language can be expected to change across historical time and between contexts of use (e.g., spoken language versus fiction), the pattern of visual dominance is a stable property of the English language. Thus, we show that across the board, precisely those semantic domains that are more frequently talked about are also more lexically differentiated, for perceptual experiences. This correlation between type and token frequencies suggests that the sensory lexicon of English is geared towards communicative efficiency.
  • Witteman, M. J., Weber, A., & McQueen, J. M. (2014). Tolerance for inconsistency in foreign-accented speech. Psychonomic Bulletin & Review, 21, 512-519. doi:10.3758/s13423-013-0519-8.

    Abstract

    Are listeners able to adapt to a foreign-accented speaker who has, as is often the case, an inconsistent accent? Two groups of native Dutch listeners participated in a cross-modal priming experiment, either in a consistent-accent condition (German-accented items only) or in an inconsistent-accent condition (German-accented and nativelike pronunciations intermixed). The experimental words were identical for both groups (words with vowel substitutions characteristic of German-accented speech); additional contextual words differed in accentedness (German-accented or nativelike words). All items were spoken by the same speaker: a German native who could produce the accented forms but could also pass for a Dutch native speaker. Listeners in the consistent-accent group were able to adapt quickly to the speaker (i.e., showed facilitatory priming for words with vocalic substitutions). Listeners in the inconsistent-accent condition showed adaptation to words with vocalic substitutions only in the second half of the experiment. These results indicate that adaptation to foreign-accented speech is rapid. Accent inconsistency slows listeners down initially, but a short period of additional exposure is enough for them to adapt to the speaker. Listeners can therefore tolerate inconsistency in foreign-accented speech.
  • Wittenburg, P. (2003). The DOBES model of language documentation. Language Documentation and Description, 1, 122-139.
  • Wnuk, E., & Burenhult, N. (2014). Contact and isolation in hunter-gatherer language dynamics: Evidence from Maniq phonology (Aslian, Malay Peninsula). Studies in Language, 38(4), 956-981. doi:10.1075/sl.38.4.06wnu.
  • Wnuk, E., De Valk, J. M., Huisman, J. L. A., & Majid, A. (2017). Hot and cold smells: Odor-temperature associations across cultures. Frontiers in Psychology, 8: 1373. doi:10.3389/fpsyg.2017.01373.

    Abstract

    It is often assumed odors are associated with hot and cold temperature, since odor processing may trigger thermal sensations, such as coolness in the case of mint. It is unknown, however, whether people make consistent temperature associations for a variety of everyday odors, and, if so, what determines them. Previous work investigating the bases of cross-modal associations suggests a number of possibilities, including universal forces (e.g., perception), as well as culture-specific forces (e.g., language and cultural beliefs). In this study, we examined odor-temperature associations in three cultures—Maniq (N = 11), Thai (N = 24), and Dutch (N = 24)—who differ with respect to their cultural preoccupation with odors, their odor lexicons, and their beliefs about the relationship of odors (and odor objects) to temperature. Participants matched 15 odors to temperature by touching cups filled with hot or cold water, and described the odors in their native language. The results showed no consistent associations among the Maniq, and only a handful of consistent associations between odor and temperature among the Thai and Dutch. The consistent associations differed across the two groups, arguing against their universality. Further analysis revealed cross-modal associations could not be explained by language, but could be the result of cultural beliefs
  • Wnuk, E., & Majid, A. (2014). Revisiting the limits of language: The odor lexicon of Maniq. Cognition, 131, 125-138. doi:10.1016/j.cognition.2013.12.008.

    Abstract

    It is widely believed that human languages cannot encode odors. While this is true for English,
    and other related languages, data from some non-Western languages challenge this
    view. Maniq, a language spoken by a small population of nomadic hunter–gatherers in
    southern Thailand, is such a language. It has a lexicon of over a dozen terms dedicated
    to smell. We examined the semantics of these smell terms in 3 experiments (exemplar
    listing, similarity judgment and off-line rating). The exemplar listing task confirmed that
    Maniq smell terms have complex meanings encoding smell qualities. Analyses of the
    similarity data revealed that the odor lexicon is coherently structured by two dimensions.
    The underlying dimensions are pleasantness and dangerousness, as verified by the off-line
    rating study. Ethnographic data illustrate that smell terms have detailed semantics tapping
    into broader cultural constructs. Contrary to the widespread view that languages cannot
    encode odors, the Maniq data show odor can be a coherent semantic domain, thus shedding
    new light on the limits of language.
  • Wong, M. M. K., Hoekstra, S. D., Vowles, J., Watson, L. M., Fuller, G., Németh, A. H., Cowley, S. A., Ansorge, O., Talbot, K., & Becker, E. B. E. (2018). Neurodegeneration in SCA14 is associated with increased PKCγ kinase activity, mislocalization and aggregation. Acta Neuropathologica Communications, 6: 99. doi:10.1186/s40478-018-0600-7.

    Abstract

    Spinocerebellar ataxia type 14 (SCA14) is a subtype of the autosomal dominant cerebellar ataxias that is characterized by slowly progressive cerebellar dysfunction and neurodegeneration. SCA14 is caused by mutations in the PRKCG gene, encoding protein kinase C gamma (PKCγ). Despite the identification of 40 distinct disease-causing mutations in PRKCG, the pathological mechanisms underlying SCA14 remain poorly understood. Here we report the molecular neuropathology of SCA14 in post-mortem cerebellum and in human patient-derived induced pluripotent stem cells (iPSCs) carrying two distinct SCA14 mutations in the C1 domain of PKCγ, H36R and H101Q. We show that endogenous expression of these mutations results in the cytoplasmic mislocalization and aggregation of PKCγ in both patient iPSCs and cerebellum. PKCγ aggregates were not efficiently targeted for degradation. Moreover, mutant PKCγ was found to be hyper-activated, resulting in increased substrate phosphorylation. Together, our findings demonstrate that a combination of both, loss-of-function and gain-of-function mechanisms are likely to underlie the pathogenesis of SCA14, caused by mutations in the C1 domain of PKCγ. Importantly, SCA14 patient iPSCs were found to accurately recapitulate pathological features observed in post-mortem SCA14 cerebellum, underscoring their potential as relevant disease models and their promise as future drug discovery tools.

    Additional information

    additional file
  • Wong, M. M. K., Watson, L. M., & Becker, E. B. E. (2017). Recent advances in modelling of cerebellar ataxia using induced pluripotent stem cells. Journal of Neurology & Neuromedicine, 2(7), 11-15. doi:10.29245/2572.942X/2017/7.1134.

    Abstract

    The cerebellar ataxias are a group of incurable brain disorders that are caused primarily by the progressive dysfunction and degeneration of cerebellar Purkinje cells. The lack of reliable disease models for the heterogeneous ataxias has hindered the understanding of the underlying pathogenic mechanisms as well as the development of effective therapies for these devastating diseases. Recent advances in the field of induced pluripotent stem cell (iPSC) technology offer new possibilities to better understand and potentially reverse disease pathology. Given the neurodevelopmental phenotypes observed in several types of ataxias, iPSC-based models have the potential to provide significant insights into disease progression, as well as opportunities for the development of early intervention therapies. To date, however, very few studies have successfully used iPSC-derived cells to cerebellar ataxias. In this review, we focus on recent breakthroughs in generating human iPSC-derived Purkinje cells. We also highlight the future challenges that will need to be addressed in order to fully exploit these models for the modelling of the molecular mechanisms underlying cerebellar ataxias and the development of effective therapeutics.
  • Yager, J., & Burenhult, N. (2017). Jedek: a newly discovered Aslian variety of Malaysia. Linguistic Typology, 21(3), 493-545. doi:10.1515/lingty-2017-0012.

    Abstract

    Jedek is a previously unrecognized variety of the Northern Aslian subgroup of the Aslian branch of the Austroasiatic language family. It is spoken by c. 280 individuals in the resettlement area of Sungai Rual, near Jeli in Kelantan state, Peninsular Malaysia. The community originally consisted of several bands of foragers along the middle reaches of the Pergau river. Jedek’s distinct status first became known during a linguistic survey carried out in the DOBES project Tongues of the Semang (2005-2011). This paper describes the process leading up to its discovery and provides an overview of its typological characteristics.
  • Yang, J., Zhu, H., & Tian, X. (2018). Group-level multivariate analysis in EasyEEG toolbox: Examining the temporal dynamics using topographic responses. Frontiers in Neuroscience, 12: 468. doi:10.3389/fnins.2018.00468.

    Abstract

    Electroencephalography (EEG) provides high temporal resolution cognitive information from non-invasive recordings. However, one of the common practices-using a subset of sensors in ERP analysis is hard to provide a holistic and precise dynamic results. Selecting or grouping subsets of sensors may also be subject to selection bias, multiple comparison, and further complicated by individual differences in the group-level analysis. More importantly, changes in neural generators and variations in response magnitude from the same neural sources are difficult to separate, which limit the capacity of testing different aspects of cognitive hypotheses. We introduce EasyEEG, a toolbox that includes several multivariate analysis methods to directly test cognitive hypotheses based on topographic responses that include data from all sensors. These multivariate methods can investigate effects in the dimensions of response magnitude and topographic patterns separately using data in the sensor space, therefore enable assessing neural response dynamics. The concise workflow and the modular design provide user-friendly and programmer-friendly features. Users of all levels can benefit from the open-sourced, free EasyEEG to obtain a straightforward solution for efficient processing of EEG data and a complete pipeline from raw data to final results for publication.
  • Yang, Y., Dai, B., Howell, P., Wang, X., Li, K., & Lu, C. (2014). White and Grey Matter Changes in the Language Network during Healthy Aging. PLoS One, 9(9): e108077. doi: 10.1371/journal.pone.0108077.

    Abstract

    Neural structures change with age but there is no consensus on the exact processes involved. This study tested the hypothesis that white and grey matter in the language network changes during aging according to a “last in, first out” process. The fractional anisotropy (FA) of white matter and cortical thickness of grey matter were measured in 36 participants whose ages ranged from 55 to 79 years. Within the language network, the dorsal pathway connecting the mid-to-posterior superior temporal cortex (STC) and the inferior frontal cortex (IFC) was affected more by aging in both FA and thickness than the other dorsal pathway connecting the STC with the premotor cortex and the ventral pathway connecting the mid-to-anterior STC with the ventral IFC. These results were independently validated in a second group of 20 participants whose ages ranged from 50 to 73 years. The pathway that is most affected during aging matures later than the other two pathways (which are present at birth). The results are interpreted as showing that the neural structures which mature later are affected more than those that mature earlier, supporting the “last in, first out” theory.
  • Yoshihara, M., Nakayama, M., Verdonschot, R. G., & Hino, Y. (2017). The phonological unit of Japanese Kanji compounds: A masked priming investigation. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1303-1328. doi:10.1037/xhp0000374.

    Abstract

    Using the masked priming paradigm, we examined which phonological unit is used when naming Kanji compounds. Although the phonological unit in the Japanese language has been suggested to be the mora, Experiment 1 found no priming for mora-related Kanji prime-target pairs. In Experiment 2, significant priming was only found when Kanji pairs shared the whole sound of their initial Kanji characters. Nevertheless, when the same Kanji pairs used in Experiment 2 were transcribed into Kana, significant mora priming was observed in Experiment 3. In Experiment 4, matching the syllable structure and pitch-accent of the initial Kanji characters did not lead to mora priming, ruling out potential alternative explanations for the earlier absence of the effect. A significant mora priming effect was observed, however, when the shared initial mora constituted the whole sound of their initial Kanji characters in Experiments 5. Lastly, these results were replicated in Experiment 6. Overall, these results indicate that the phonological unit involved when naming Kanji compounds is not the mora but the whole sound of each Kanji character. We discuss how different phonological units may be involved when processing Kanji and Kana words as well as the implications for theories dealing with language production processes.
  • Zeshan, U. (2003). Aspects of Türk Işaret Dili (Turkish Sign Language). Sign Language and Linguistics, 6(1), 43-75. doi:10.1075/sll.6.1.04zes.

    Abstract

    This article provides a first overview of some striking grammatical structures in Türk Idotscedilaret Dili (Turkish Sign Language, TID), the sign language used by the Deaf community in Turkey. The data are described with a typological perspective in mind, focusing on aspects of TID grammar that are typologically unusual across sign languages. After giving an overview of the historical, sociolinguistic and educational background of TID and the language community using this sign language, five domains of TID grammar are investigated in detail. These include a movement derivation signalling completive aspect, three types of nonmanual negation — headshake, backward head tilt, and puffed cheeks — and their distribution, cliticization of the negator NOT to a preceding predicate host sign, an honorific whole-entity classifier used to refer to humans, and a question particle, its history and current status in the language. A final evaluation points out the significance of these data for sign language research and looks at perspectives for a deeper understanding of the language and its history.
  • Zhen, Z., Kong, X., Huang, L., Yang, Z., Wang, X., Hao, X., Huang, T., Song, Y., & Liu, J. (2017). Quantifying the variability of scene-selective regions: Interindividual, interhemispheric, and sex differences. Human Brain Mapping, 38(4), 2260-2275. doi:10.1002/hbm.23519.

    Abstract

    Scene-selective regions (SSRs), including the parahippocampal place area (PPA), retrosplenial cortex (RSC), and transverse occipital sulcus (TOS), are among the most widely characterized functional regions in the human brain. However, previous studies have mostly focused on the commonality within each SSR, providing little information on different aspects of their variability. In a large group of healthy adults (N = 202), we used functional magnetic resonance imaging to investigate different aspects of topographical and functional variability within SSRs, including interindividual, interhemispheric, and sex differences. First, the PPA, RSC, and TOS were delineated manually for each individual. We then demonstrated that SSRs showed substantial interindividual variability in both spatial topography and functional selectivity. We further identified consistent interhemispheric differences in the spatial topography of all three SSRs, but distinct interhemispheric differences in scene selectivity. Moreover, we found that all three SSRs showed stronger scene selectivity in men than in women. In summary, our work thoroughly characterized the interindividual, interhemispheric, and sex variability of the SSRs and invites future work on the origin and functional significance of these variabilities. Additionally, we constructed the first probabilistic atlases for the SSRs, which provide the detailed anatomical reference for further investigations of the scene network.
  • Zheng, X., Roelofs, A., Farquhar, J., & Lemhöfer, K. (2018). Monitoring of language selection errors in switching: Not all about conflict. PLoS One, 13(11): e0200397. doi:10.1371/journal.pone.0200397.

    Abstract

    Although bilingual speakers are very good at selectively using one language rather than another, sometimes language selection errors occur. To investigate how bilinguals monitor their speech errors and control their languages in use, we recorded event-related potentials (ERPs) in unbalanced Dutch-English bilingual speakers in a cued language-switching task. We tested the conflict-based monitoring model of Nozari and colleagues by investigating the error-related negativity (ERN) and comparing the effects of the two switching directions (i.e., to the first language, L1 vs. to the second language, L2). Results show that the speakers made more language selection errors when switching from their L2 to the L1 than vice versa. In the EEG, we observed a robust ERN effect following language selection errors compared to correct responses, reflecting monitoring of speech errors. Most interestingly, the ERN effect was enlarged when the speakers were switching to their L2 (less conflict) compared to switching to the L1 (more conflict). Our findings do not support the conflict-based monitoring model. We discuss an alternative account in terms of error prediction and reinforcement learning.
  • Zheng, X., Roelofs, A., & Lemhöfer, K. (2018). Language selection errors in switching: language priming or cognitive control? Language, Cognition and Neuroscience, 33(2), 139-147. doi:10.1080/23273798.2017.1363401.

    Abstract

    Although bilingual speakers are very good at selectively using one language rather than another, sometimes language selection errors occur. We examined the relative contribution of top-down cognitive control and bottom-up language priming to these errors. Unbalanced Dutch-English bilinguals named pictures and were cued to switch between languages under time pressure. We also manipulated the number of same-language trials before a switch (long vs. short runs). Results show that speakers made more language selection errors when switching from their second language (L2) to the first language (L1) than vice versa. Furthermore, they made more errors when switching to the L1 after a short compared to a long run of L2 trials. In the reverse switching direction (L1 to L2), run length had no effect. These findings are most compatible with an account of language selection errors that assigns a strong role to top-down processes of cognitive control.

    Additional information

    plcp_a_1363401_sm2537.docx
  • Zoefel, B., Ten Oever, S., & Sack, A. T. (2018). The involvement of endogenous neural oscillations in the processing of rhythmic input: More than a regular repetition of evoked neural responses. Frontiers in Neuroscience, 12: 95. doi:10.3389/fnins.2018.00095.

    Abstract

    It is undisputed that presenting a rhythmic stimulus leads to a measurable brain response that follows the rhythmic structure of this stimulus. What is still debated, however, is the question whether this brain response exclusively reflects a regular repetition of evoked responses, or whether it also includes entrained oscillatory activity. Here we systematically present evidence in favor of an involvement of entrained neural oscillations in the processing of rhythmic input while critically pointing out which questions still need to be addressed before this evidence could be considered conclusive. In this context, we also explicitly discuss the potential functional role of such entrained oscillations, suggesting that these stimulus-aligned oscillations reflect, and serve as, predictive processes, an idea often only implicitly assumed in the literature.
  • De Zubicaray, G., & Fisher, S. E. (Eds.). (2017). Genes, brain and language [Special Issue]. Brain and Language, 172.
  • De Zubicaray, G., & Fisher, S. E. (2017). Genes, Brain, and Language: A brief introduction to the Special Issue. Brain and Language, 172, 1-2. doi:10.1016/j.bandl.2017.08.003.
  • De Zubicaray, G. I., Hartsuiker, R. J., & Acheson, D. J. (2014). Mind what you say—general and specific mechanisms for monitoring in speech production. Frontiers in Human Neuroscience, 8: 514. doi:10.3389%2Ffnhum.2014.00514.

    Abstract

    For most people, speech production is relatively effortless and error-free. Yet it has long been recognized that we need some type of control over what we are currently saying and what we plan to say. Precisely how we monitor our internal and external speech has been a topic of research interest for several decades. The predominant approach in psycholinguistics has assumed monitoring of both is accomplished via systems responsible for comprehending others' speech.

    This special topic aimed to broaden the field, firstly by examining proposals that speech production might also engage more general systems, such as those involved in action monitoring. A second aim was to examine proposals for a production-specific, internal monitor. Both aims require that we also specify the nature of the representations subject to monitoring.
  • Zumer, J. M., Scheeringa, R., Schoffelen, J.-M., Norris, D. G., & Jensen, O. (2014). Occipital alpha activity during stimulus processing gates the information flow to object-selective cortex. PLoS Biology, 12(10): e1001965. doi:10.1371/journal.pbio.1001965.

    Abstract

    Given the limited processing capabilities of the sensory system, it is essential that attended information is gated to downstream areas, whereas unattended information is blocked. While it has been proposed that alpha band (8–13 Hz) activity serves to route information to downstream regions by inhibiting neuronal processing in task-irrelevant regions, this hypothesis remains untested. Here we investigate how neuronal oscillations detected by electroencephalography in visual areas during working memory encoding serve to gate information reflected in the simultaneously recorded blood-oxygenation-level-dependent (BOLD) signals recorded by functional magnetic resonance imaging in downstream ventral regions. We used a paradigm in which 16 participants were presented with faces and landscapes in the right and left hemifields; one hemifield was attended and the other unattended. We observed that decreased alpha power contralateral to the attended object predicted the BOLD signal representing the attended object in ventral object-selective regions. Furthermore, increased alpha power ipsilateral to the attended object predicted a decrease in the BOLD signal representing the unattended object. We also found that the BOLD signal in the dorsal attention network inversely correlated with visual alpha power. This is the first demonstration, to our knowledge, that oscillations in the alpha band are implicated in the gating of information from the visual cortex to the ventral stream, as reflected in the representationally specific BOLD signal. This link of sensory alpha to downstream activity provides a neurophysiological substrate for the mechanism of selective attention during stimulus processing, which not only boosts the attended information but also suppresses distraction. Although previous studies have shown a relation between the BOLD signal from the dorsal attention network and the alpha band at rest, we demonstrate such a relation during a visuospatial task, indicating that the dorsal attention network exercises top-down control of visual alpha activity.

Share this page