Publications

Displaying 1101 - 1173 of 1173
  • De Vos, J., Schriefers, H., & Lemhöfer, K. (2018). Noticing vocabulary holes aids incidental second language word learning: An experimental study. Bilingualism: Language and Cognition, 22(3), 500-515. doi:10.1017/S1366728918000019.

    Abstract

    Noticing the hole (NTH) occurs when speakers want to say something, but realise they do not know the right word(s). Such awareness of lacking knowledge supposedly facilitates the acquisition of the unknown word(s) from later input (Swain, 1993). We tested this claim by experimentally inducing NTH in a second language (L2) for some participants (experimental), but not others (control). Then, in a price comparison game, all participants were exposed to spoken L2 input containing the to-be-learned words. They were unaware of taking part in an L2 study. Post-tests showed that participants who had noticed holes in their vocabulary had indeed learned more words compared to participants who had not. This held both for the experimental group as well as those participants in the control group who later reported to have noticed holes. Thus, when we become aware of vocabulary holes, the first step to improve our vocabulary is already taken.
  • De Vos, C. (2004). Over de biologische functie van taal: Pinker vs. Chomsky. Honours Review, 2(1), 20-25.

    Abstract

    Hoe is de complexe taal van de mens ontstaan? Geleidelijk door natuurlijke selectie, omdat groeiende grammaticale vermogens voor de mens een evolutionair voordeel opleverden? Of plotseling, als onbedoeld bijproduct of neveneffect van een genetische mutatie, zonder dat er sprake is van een adaptief proces? In dit artikel zet ik de argumenten van Pinker en Bloom voor de eerste stelling tegenover argumenten van Chomsky en Gould voor de tweede stelling. Vervolgens laat ik zien dat deze twee extreme standpunten ruimte bieden voor andere opties, die nader onderzoek waard zijn. Zo kan genetisch onderzoek in de komende decennia informatie opleveren, die nuancering van beide standpunten noodzakelijk maakt.
  • De Vos, C. (2016). Sampling shared sign languages. Sign Language Studies, 16(2), 204-226. doi:10.1353/sls.2016.0002.

    Abstract

    This article addresses some of the theoretical questions, ethical considerations, and methodological decisions that guided the creation of the Kata Kolok corpus as well as the Kata Kolok child signing corpus. This discussion is relevant to the formation of prospective sign corpora that aim to portray the various sociolinguistic landscapes in which sign languages, whether rural or urban, emerge and evolve.
  • De Vries, C., Reijnierse, W. G., & Willems, R. M. (2018). Eye movements reveal readers’ sensitivity to deliberate metaphors during narrative reading. Scientific Study of Literature, 8(1), 135-164. doi:10.1075/ssol.18008.vri.

    Abstract

    Metaphors occur frequently in literary texts. Deliberate Metaphor Theory (DMT; e.g., Steen, 2017) proposes that metaphors that serve a communicative function as metaphor are radically different from metaphors that do not have this function. We investigated differences in processing between deliberate and non-deliberate metaphors, compared to non-metaphorical words in literary reading. Using the Deliberate Metaphor Identification Procedure (Reijnierse et al., 2018), we identified metaphors in two literary stories. Then, eye-tracking was used to investigate participants’ (N = 72) reading behavior. Deliberate metaphors were read slower than non-deliberate metaphors, and both metaphor types were read slower than non-metaphorical words. Differences were controlled for several psycholinguistic variables. Differences in reading behavior were related to individual differences in reading experience and absorption and appreciation of the story. These results are in line with predictions from DMT and underline the importance of distinguishing between metaphor types in the experimental study of literary reading.
  • Vromans, R. D., & Jongman, S. R. (2018). The interplay between selective and nonselective inhibition during single word production. PLoS One, 13(5): e0197313. doi:10.1371/journal.pone.0197313.

    Abstract

    The present study investigated the interplay between selective inhibition (the ability to suppress specific competing responses) and nonselective inhibition (the ability to suppress any inappropriate response) during single word production. To this end, we combined two well-established research paradigms: the picture-word interference task and the stop-signal task. Selective inhibition was assessed by instructing participants to name target pictures (e.g., dog) in the presence of semantically related (e.g., cat) or unrelated (e.g., window) distractor words. Nonselective inhibition was tested by occasionally presenting a visual stop-signal, indicating that participants should withhold their verbal response. The stop-signal was presented early (250 ms) aimed at interrupting the lexical selection stage, and late (325 ms) to influence the word-encoding stage of the speech production process. We found longer naming latencies for pictures with semantically related distractors than with unrelated distractors (semantic interference effect). The results further showed that, at both delays, stopping latencies (i.e., stop-signal RTs) were prolonged for naming pictures with semantically related distractors compared to pictures with unrelated distractors. Taken together, our findings suggest that selective and nonselective inhibition, at least partly, share a common inhibitory mechanism during different stages of the speech production process.

    Additional information

    Data available (link to Figshare)
  • Vuong, L., Meyer, A. S., & Christiansen, M. H. (2016). Concurrent statistical learning of adjacent and nonadjacent dependencies. Language Learning, 66, 8-30. doi:10.1111/lang.12137.

    Abstract

    When children learn their native language, they have to deal with a confusing array of dependencies between various elements in an utterance. The dependent elements may be adjacent to one another or separated by intervening material. Prior studies suggest that nonadjacent dependencies are hard to learn when the intervening material has little variability, which may be due to a trade-off between adjacent and nonadjacent learning. In this study, we investigate the statistical learning of adjacent and nonadjacent dependencies under low intervening variability using a modified serial reaction time (SRT) task. Young adults were trained on mixed sets of materials comprising equally probable adjacent and nonadjacent dependencies. Offline tests administered after training showed better performance for adjacent than nonadjacent dependencies. However, online SRT data indicated that the participants developed sensitivity to both types of dependencies during training, with no significant differences between dependency types. The results demonstrate the value of online measures of learning and suggest that adjacent and nonadjacent learning can occur together even when there is low variability in the intervening material
  • Waller, D., Loomis, J. M., & Haun, D. B. M. (2004). Body-based senses enhance knowledge of directions in large-scale environments. Psychonomic Bulletin & Review, 11(1), 157-163.

    Abstract

    Previous research has shown that inertial cues resulting from passive transport through a large environment do not necessarily facilitate acquiring knowledge about its layout. Here we examine whether the additional body-based cues that result from active movement facilitate the acquisition of spatial knowledge. Three groups of participants learned locations along an 840-m route. One group walked the route during learning, allowing access to body-based cues (i.e., vestibular, proprioceptive, and efferent information). Another group learned by sitting in the laboratory, watching videos made from the first group. A third group watched a specially made video that minimized potentially confusing head-on-trunk rotations of the viewpoint. All groups were tested on their knowledge of directions in the environment as well as on its configural properties. Having access to body-based information reduced pointing error by a small but significant amount. Regardless of the sensory information available during learning, participants exhibited strikingly common biases.
  • Wang, L., Verdonschot, R. G., & Yang, Y. (2016). The processing difference between person names and common nouns in sentence contexts: An ERP study. Psychological Research, 80, 94-108. doi:10.1007/s00426-014-0645-6.

    Abstract

    Person names and common nouns differ in how they are stored in the mental lexicon. Using event-related potentials, this study compared the integration of names and nouns into sentence contexts. Both person names and common nouns were highly related in meaning and either congruent or incongruent within the previous contexts. Name incongruence elicited an N400 effect, suggesting that people were able to rapidly retrieve the semantic meaning of names from long-term memory even when this process was mediated by person identification. Conversely, participants showed a “good enough” processing of the nouns due to their low specificity level and, thus, rich semantic associations, leading to a P600 effect. These distinctive ERP effects provide clear evidence for the distinctive semantic representations of these word categories by showing that the activation of a name’s meaning is mediated by a single connection between identity-specific information and person identity, whereas multiple connections exist between nouns and their meanings.

    Additional information

    examples of stimuli
  • Wang, L., Hagoort, P., & Jensen, O. (2018). Language prediction is reflected by coupling between frontal gamma and posterior alpha oscillations. Journal of Cognitive Neuroscience, 30(3), 432-447. doi:10.1162/jocn_a_01190.

    Abstract

    Readers and listeners actively predict upcoming words during language processing. These predictions might serve to support the unification of incoming words into sentence context and thus rely on interactions between areas in the language network. In the current magnetoencephalography study, participants read sentences that varied in contextual constraints so that the predictability of the sentence-final words was either high or low. Before the sentence-final words, we observed stronger alpha power suppression for the highly compared with low constraining sentences in the left inferior frontal cortex, left posterior temporal region, and visual word form area. Importantly, the temporal and visual word form area alpha power correlated negatively with left frontal gamma power for the highly constraining sentences. We suggest that the correlation between alpha power decrease in temporal language areas and left prefrontal gamma power reflects the initiation of an anticipatory unification process in the language network.
  • Wang, L., Hagoort, P., & Jensen, O. (2018). Gamma oscillatory activity related to language prediction. Journal of Cognitive Neuroscience, 30(8), 1075-1085. doi:10.1162/jocn_a_01275.

    Abstract

    Using magnetoencephalography, the current study examined gamma activity associated with language prediction. Participants read high- and low-constraining sentences in which the final word of the sentence was either expected or unexpected. Although no consistent gamma power difference induced by the sentence-final words was found between the expected and unexpected conditions, the correlation of gamma power during the prediction and activation intervals of the sentence-final words was larger when the presented words matched with the prediction compared with when the prediction was violated or when no prediction was available. This suggests that gamma magnitude relates to the match between predicted and perceived words. Moreover, the expected words induced activity with a slower gamma frequency compared with that induced by unexpected words. Overall, the current study establishes that prediction is related to gamma power correlations and a slowing of the gamma frequency.
  • Wang, M., Shao, Z., Chen, Y., & Schiller, N. O. (2018). Neural correlates of spoken word production in semantic and phonological blocked cyclic naming. Language, Cognition and Neuroscience, 33(5), 575-586. doi:10.1080/23273798.2017.1395467.

    Abstract

    The blocked cyclic naming paradigm has been increasingly employed to investigate the mechanisms underlying spoken word production. Semantic homogeneity typically elicits longer naming latencies than heterogeneity; however, it is debated whether competitive lexical selection or incremental learning underlies this effect. The current study manipulated both semantic and phonological homogeneity and used behavioural and electrophysiological measurements to provide evidence that can distinguish between the two accounts. Results show that naming latencies are longer in semantically homogeneous blocks, but shorter in phonologically homogeneous blocks, relative to heterogeneity. The semantic factor significantly modulates electrophysiological waveforms from 200 ms and the phonological factor from 350 ms after picture presentation. A positive component was demonstrated in both manipulations, possibly reflecting a task-related top-down bias in performing blocked cyclic naming. These results provide novel insights into the neural correlates of blocked cyclic naming and further contribute to the understanding of spoken word production.
  • Wang, H., Callaghan, E., Gooding-Williams, G., McAllister, C., & Kessler, K. (2016). Rhythm makes the world go round: An MEG-TMS study on the role of right TPJ theta oscillations in embodied perspective taking. Cortex, 75, 68-81. doi:10.1016/j.cortex.2015.11.011.

    Abstract

    While some aspects of social processing are shared between humans and other species, some aspects are not. The former seems to apply to merely tracking another's visual perspective in the world (i.e., what a conspecific can or cannot perceive), while the latter applies to perspective taking in form of mentally “embodying” another's viewpoint. Our previous behavioural research had indicated that only perspective taking, but not tracking, relies on simulating a body schema rotation into another's viewpoint. In the current study we employed Magnetoencephalography (MEG) and revealed that this mechanism of mental body schema rotation is primarily linked to theta oscillations in a wider brain network of body-schema, somatosensory and motor-related areas, with the right posterior temporo-parietal junction (pTPJ) at its core. The latter was reflected by a convergence of theta oscillatory power in right pTPJ obtained by overlapping the separately localised effects of rotation demands (angular disparity effect), cognitive embodiment (posture congruence effect), and basic body schema involvement (posture relevance effect) during perspective taking in contrast to perspective tracking. In a subsequent experiment we interfered with right pTPJ processing using dual pulse Transcranial Magnetic Stimulation (dpTMS) and observed a significant reduction of embodied processing. We conclude that right TPJ is the crucial network hub for transforming the embodied self into another's viewpoint, body and/or mind, thus, substantiating how conflicting representations between self and other may be resolved and potentially highlighting the embodied origins of high-level social cognition in general.
  • Wang, X., Zhen, Z., Song, Y., Kong, X., & Liu, J. (2016). The Hierarchical Structure of the Face Network Revealed by Its Functional Connectivity Pattern. The Journal of Neuroscience, 36(3), 890-900. doi:10.1523/JNEUROSCI.2789-15.2016.

    Abstract

    A major principle of human brain organization is “integrating” some regions into networks while “segregating” other sets of regions into separate networks. However, little is known about the cognitive function of the integration and segregation of brain networks. Here, we examined the well-studied brain network for face processing, and asked whether the integration and segregation of the face network (FN) are related to face recognition performance. To do so, we used a voxel-based global brain connectivity method based on resting-state fMRI to characterize the within-network connectivity (WNC) and the between-network connectivity (BNC) of the FN. We found that 95.4% of voxels in the FN had a significantly stronger WNC than BNC, suggesting that the FN is a relatively encapsulated network. Importantly, individuals with a stronger WNC (i.e., integration) in the right fusiform face area were better at recognizing faces, whereas individuals with a weaker BNC (i.e., segregation) in the right occipital face area performed better in the face recognition tasks. In short, our study not only demonstrates the behavioral relevance of integration and segregation of the FN but also provides evidence supporting functional division of labor between the occipital face area and fusiform face area in the hierarchically organized FN.
  • Wanke, K., Devanna, P., & Vernes, S. C. (2018). Understanding neurodevelopmental disorders: The promise of regulatory variation in the 3’UTRome. Biological Psychiatry, 83(7), 548-557. doi:10.1016/j.biopsych.2017.11.006.

    Abstract

    Neurodevelopmental disorders have a strong genetic component, but despite widespread efforts, the specific genetic factors underlying these disorders remain undefined for a large proportion of affected individuals. Given the accessibility of exome-sequencing, this problem has thus far been addressed from a protein-centric standpoint; however, protein-coding regions only make up ∼1-2% of the human genome. With the advent of whole-genome sequencing we are in the midst of a paradigm shift as it is now possible to interrogate the entire sequence of the human genome (coding and non-coding) to fill in the missing heritability of complex disorders. These new technologies bring new challenges, as the number of non-coding variants identified per individual can be overwhelming, making it prudent to focus on non-coding regions of known function, for which the effects of variation can be predicted and directly tested to assess pathogenicity. The 3’UTRome is a region of the non-coding genome that perfectly fulfils these criteria and is of high interest when searching for pathogenic variation related to complex neurodevelopmental disorders. Herein, we review the regulatory roles of the 3’UTRome as binding sites for microRNAs, RNA binding proteins or during alternative polyadenylation. We detail existing evidence that these regions contribute to neurodevelopmental disorders and outline strategies for identification and validation of novel putatively pathogenic variation in these regions. This evidence suggests that studying the 3’UTRome will lead to the identification of new risk factors, new candidate disease genes and a better understanding of the molecular mechanisms contributing to NDDs.

    Additional information

    1-s2.0-S0006322317321911-mmc1.pdf
  • Warner, N., Jongman, A., Sereno, J., & Kemps, R. J. J. K. (2004). Incomplete neutralization and other sub-phonemic durational differences in production and perception: Evidence from Dutch. Journal of Phonetics, 32(2), 251-276. doi:10.1016/S0095-4470(03)00032-9.

    Abstract

    Words which are expected to contain the same surface string of segments may, under identical prosodic circumstances, sometimes be realized with slight differences in duration. Some researchers have attributed such effects to differences in the words’ underlying forms (incomplete neutralization), while others have suggested orthographic influence and extremely careful speech as the cause. In this paper, we demonstrate such sub-phonemic durational differences in Dutch, a language which some past research has found not to have such effects. Past literature has also shown that listeners can often make use of incomplete neutralization to distinguish apparent homophones. We extend perceptual investigations of this topic, and show that listeners can perceive even durational differences which are not consistently observed in production. We further show that a difference which is primarily orthographic rather than underlying can also create such durational differences. We conclude that a wide variety of factors, in addition to underlying form, can induce speakers to produce slight durational differences which listeners can also use in perception.
  • Wassenaar, M., Brown, C. M., & Hagoort, P. (2004). ERP-effects of subject-verb agreement violations in patients with Broca's aphasia. Journal of Cognitive Neuroscience, 16(4), 553-576. doi:10.1162/089892904323057290.

    Abstract

    This article presents electrophysiological data on on-line syntactic processing during auditory sentence comprehension in patients with Broca's aphasia. Event-related brain potentials (ERPs) were recorded from the scalp while subjects listened to sentences that were either syntactically correct or contained violations of subject-verb agreement. Three groups of subjects were tested: Broca patients (n = 10), nonaphasic patients with a right-hemisphere (RH) lesion (n = 5), and healthy agedmatched controls (n = 12). The healthy, control subjects showed a P600/SPS effect as response to the agreement violations. The nonaphasic patients with an RH lesion showed essentially the same pattern. The overall group of Broca patients did not show this sensitivity. However, the sensitivity was modulated by the severity of the syntactic comprehension impairment. The largest deviation from the standard P600/SPS effect was found in the patients with the relatively more severe syntactic comprehension impairment. In addition, ERPs to tones in a classical tone oddball paradigm were also recorded. Similar to the normal control subjects and RH patients, the group of Broca patients showed a P300 effect in the tone oddball condition. This indicates that aphasia in itself does not lead to a general reduction in all cognitive ERP effects. It was concluded that deviations from the standard P600/SPS effect in the Broca patients reflected difficulties with on-line maintaining of number information across clausal boundaries for establishing subject-verb agreement.
  • Watson, L. M., Wong, M. M. K., Vowles, J., Cowley, S. A., & Becker, E. B. E. (2018). A simplified method for generating purkinje cells from human-induced pluripotent stem cells. The Cerebellum, 17(4), 419-427. doi:10.1007/s12311-017-0913-2.

    Abstract

    The establishment of a reliable model for the study of Purkinje cells in vitro is of particular importance, given their central role in cerebellar function and pathology. Recent advances in induced pluripotent stem cell (iPSC) technology offer the opportunity to generate multiple neuronal subtypes for study in vitro. However, to date, only a handful of studies have generated Purkinje cells from human pluripotent stem cells, with most of these protocols proving challenging to reproduce. Here, we describe a simplified method for the reproducible generation of Purkinje cells from human iPSCs. After 21 days of treatment with factors selected to mimic the self-inductive properties of the isthmic organiser—insulin, fibroblast growth factor 2 (FGF2), and the transforming growth factor β (TGFβ)-receptor blocker SB431542—hiPSCs could be induced to form En1-positive cerebellar progenitors at efficiencies of up to 90%. By day 35 of differentiation, subpopulations of cells representative of the two cerebellar germinal zones, the rhombic lip (Atoh1-positive) and ventricular zone (Ptf1a-positive), could be identified, with the latter giving rise to cells positive for Purkinje cell progenitor-specific markers, including Lhx5, Kirrel2, Olig2 and Skor2. Further maturation was observed following dissociation and co-culture of these cerebellar progenitors with mouse cerebellar cells, with 10% of human cells staining positive for the Purkinje cell marker calbindin by day 70 of differentiation. This protocol, which incorporates modifications designed to enhance cell survival and maturation and improve the ease of handling, should serve to make existing models more accessible, in order to enable future advances in the field.

    Additional information

    12311_2017_913_MOESM1_ESM.docx
  • Waymel, A., Friedrich, P., Bastian, P.-A., Forkel, S. J., & Thiebaut de Schotten, M. (2020). Anchoring the human olfactory system within a functional gradient. NeuroImage, 216: 116863. doi:10.1016/j.neuroimage.2020.116863.

    Abstract

    Margulies et al. (2016) demonstrated the existence of at least five independent functional connectivity gradients in the human brain. However, it is unclear how these functional gradients might link to anatomy. The dual origin theory proposes that differences in cortical cytoarchitecture originate from two trends of progressive differentiation between the different layers of the cortex, referred to as the hippocampocentric and olfactocentric systems. When conceptualising the functional connectivity gradients within the evolutionary framework of the Dual Origin theory, the first gradient likely represents the hippocampocentric system anatomically. Here we expand on this concept and demonstrate that the fifth gradient likely links to the olfactocentric system. We describe the anatomy of the latter as well as the evidence to support this hypothesis. Together, the first and fifth gradients might help to model the Dual Origin theory of the human brain and inform brain models and pathologies.
  • Weber, A., & Cutler, A. (2004). Lexical competition in non-native spoken-word recognition. Journal of Memory and Language, 50(1), 1-25. doi:10.1016/S0749-596X(03)00105-0.

    Abstract

    Four eye-tracking experiments examined lexical competition in non-native spoken-word recognition. Dutch listeners hearing English fixated longer on distractor pictures with names containing vowels that Dutch listeners are likely to confuse with vowels in a target picture name (pencil, given target panda) than on less confusable distractors (beetle, given target bottle). English listeners showed no such viewing time difference. The confusability was asymmetric: given pencil as target, panda did not distract more than distinct competitors. Distractors with Dutch names phonologically related to English target names (deksel, ‘lid,’ given target desk) also received longer fixations than distractors with phonologically unrelated names. Again, English listeners showed no differential effect. With the materials translated into Dutch, Dutch listeners showed no activation of the English words (desk, given target deksel). The results motivate two conclusions: native phonemic categories capture second-language input even when stored representations maintain a second-language distinction; and lexical competition is greater for non-native than for native listeners.
  • Weber, K., Christiansen, M., Petersson, K. M., Indefrey, P., & Hagoort, P. (2016). fMRI syntactic and lexical repetition effects reveal the initial stages of learning a new language. The Journal of Neuroscience, 36, 6872-6880. doi:10.1523/JNEUROSCI.3180-15.2016.

    Abstract

    When learning a new language, we build brain networks to process and represent the acquired words and syntax and integrate these with existing language representations. It is an open question whether the same or different neural mechanisms are involved in learning and processing a novel language compared to the native language(s). Here we investigated the neural repetition effects of repeating known and novel word orders while human subjects were in the early stages of learning a new language. Combining a miniature language with a syntactic priming paradigm, we examined the neural correlates of language learning online using functional magnetic resonance imaging (fMRI). In left inferior frontal gyrus (LIFG) and posterior temporal cortex the repetition of novel syntactic structures led to repetition enhancement, while repetition of known structures resulted in repetition suppression. Additional verb repetition led to an
    increase in the syntactic repetition enhancement effect in language-related brain regions. Similarly the repetition of verbs led to repetition enhancement effects in areas related to lexical and semantic processing, an effect that continued to increase in a subset of these regions. Repetition enhancement might reflect a mechanism to build and strengthen a neural network to process novel syntactic structures and lexical items. By contrast, the observed repetition suppression points to overlapping neural mechanisms for native and new language constructions when these have sufficient structural similarities.
  • Weber, K., Luther, L., Indefrey, P., & Hagoort, P. (2016). Overlap and differences in brain networks underlying the processing of complex sentence structures in second language users compared to native speakers. Brain Connectivity, 6(4), 345-355. doi:10.1089/brain.2015.0383.

    Abstract

    When we learn a second language later in life do we integrate it with the established neural networks in place for the first language or is at least a partially new network recruited? While there is evidence that simple grammatical structures in a second language share a system with the native language, the story becomes more multifaceted for complex sentence structures. In this study we investigated the underlying brain networks in native speakers compared to proficient second language users while processing complex sentences. As hypothesized, complex structures were processed by the same large-scale inferior frontal and middle temporal language networks of the brain in the second language, as seen in native speakers. These effects were seen both in activations as well as task-related connectivity patterns. Furthermore, the second language users showed increased task-related connectivity from inferior frontal to inferior parietal regions of the brain, regions related to attention and cognitive control, suggesting less automatic processing for these structures in a second language.
  • Weber, K., Lau, E., Stillerman, B., & Kuperberg, G. (2016). The Yin and the Yang of Prediction: An fMRI Study of Semantic Predictive Processing. PLoS One, 11(3): 0148637. doi:10.1371/journal.pone.0148637.

    Abstract

    Probabilistic prediction plays a crucial role in language comprehension. When predictions are fulfilled, the resulting facilitation allows for fast, efficient processing of ambiguous, rapidly-unfolding input; when predictions are not fulfilled, the resulting error signal allows us to adapt to broader statistical changes in this input. We used functional Magnetic Resonance Imaging to examine the neuroanatomical networks engaged in semantic predictive processing and adaptation. We used a relatedness proportion semantic priming paradigm, in which we manipulated the probability of predictions while holding local semantic context constant. Under conditions of higher (versus lower) predictive validity, we replicate previous observations of reduced activity to semantically predictable words in the left anterior superior/middle temporal cortex, reflecting facilitated processing of targets that are consistent with prior semantic predictions. In addition, under conditions of higher (versus lower) predictive validity we observed significant differences in the effects of semantic relatedness within the left inferior frontal gyrus and the posterior portion of the left superior/middle temporal gyrus. We suggest that together these two regions mediated the suppression of unfulfilled semantic predictions and lexico-semantic processing of unrelated targets that were inconsistent with these predictions. Moreover, under conditions of higher (versus lower) predictive validity, a functional connectivity analysis showed that the left inferior frontal and left posterior superior/middle temporal gyrus were more tightly interconnected with one another, as well as with the left anterior cingulate cortex. The left anterior cingulate cortex was, in turn, more tightly connected to superior lateral frontal cortices and subcortical regions—a network that mediates rapid learning and adaptation and that may have played a role in switching to a more predictive mode of processing in response to the statistical structure of the wider environmental context. Together, these findings highlight close links between the networks mediating semantic prediction, executive function and learning, giving new insights into how our brains are able to flexibly adapt to our environment.

    Additional information

    Data availability
  • Weekes, B. S., Abutalebi, J., Mak, H.-K.-F., Borsa, V., Soares, S. M. P., Chiu, P. W., & Zhang, L. (2018). Effect of monolingualism and bilingualism in the anterior cingulate cortex: a proton magnetic resonance spectroscopy study in two centers. Letras de Hoje, 53(1), 5-12. doi:10.15448/1984-7726.2018.1.30954.

    Abstract

    Reports of an advantage of bilingualism on brain structure in young adult participants
    are inconsistent. Abutalebi et al. (2012) reported more efficient monitoring of conflict during the
    Flanker task in young bilinguals compared to young monolingual speakers. The present study
    compared young adult (mean age = 24) Cantonese-English bilinguals in Hong Kong and young
    adult monolingual speakers. We expected (a) differences in metabolites in neural tissue to result
    from bilingual experience, as measured by 1H-MRS at 3T, (b) correlations between metabolic
    levels and Flanker conflict and interference effects (c) different associations in bilingual and
    monolingual speakers. We found evidence of metabolic differences in the ACC due to bilingualism,
    specifically in metabolites Cho, Cr, Glx and NAA. However, we found no significant correlations
    between metabolic levels and conflict and interference effects and no significant evidence of
    differential relationships between bilingual and monolingual speakers. Furthermore, we found no
    evidence of significant differences in the mean size of conflict and interference effects between
    groups i.e. no bilingual advantage. Lower levels of Cho, Cr, Glx and NAA in bilingual adults
    compared to monolingual adults suggest that the brains of bilinguals develop greater adaptive
    control during conflict monitoring because of their extensive bilingual experience.
  • De Weert, C., & Levelt, W. J. M. (1974). Binocular brightness combinations: Additive and nonadditive aspects. Perception and Psychophysics, 15, 551-562.
  • Weissbart, H., Kandylaki, K. D., & Reichenbach, T. (2020). Cortical tracking of surprisal during continuous speech comprehension. Journal of Cognitive Neuroscience, 32, 155-166. doi:10.1162/jocn_a_01467.

    Abstract

    Speech comprehension requires rapid online processing of a continuous acoustic signal to extract structure and meaning. Previous studies on sentence comprehension have found neural correlates of the predictability of a word given its context, as well as of the precision of such a prediction. However, they have focused on single sentences and on particular words in those sentences. Moreover, they compared neural responses to words with low and high predictability, as well as with low and high precision. However, in speech comprehension, a listener hears many successive words whose predictability and precision vary over a large range. Here, we show that cortical activity in different frequency bands tracks word surprisal in continuous natural speech and that this tracking is modulated by precision. We obtain these results through quantifying surprisal and precision from naturalistic speech using a deep neural network and through relating these speech features to EEG responses of human volunteers acquired during auditory story comprehension. We find significant cortical tracking of surprisal at low frequencies, including the delta band as well as in the higher frequency beta and gamma bands, and observe that the tracking is modulated by the precision. Our results pave the way to further investigate the neurobiology of natural speech comprehension.
  • Whitaker, K., & Guest, O. (2020). #bropenscience is broken science: Kirstie Whitaker and Olivia Guest ask how open ‘open science’ really is. The Psychologist, 33, 34-37.
  • Widlok, T. (2004). Ethnography in language Documentation. Language Archive Newsletter, 1(3), 4-6.
  • Willems, R. M., & Jacobs, A. M. (2016). Caring about Dostoyevsky: The untapped potential of studying literature. Trends in Cognitive Sciences, 20(4), 243-245. doi:10.1016/j.tics.2015.12.009.

    Abstract

    Should cognitive scientists and neuroscientists care about Dostoyevsky? Engaging with fiction is a natural and rich behavior, providing a unique window onto the mind and brain, particularly for mental simulation, emotion, empathy, and immersion. With advances in analysis techniques, it is time that cognitive scientists and neuroscientists embrace literature and fiction.
  • Willems, R. M., Nastase, S. A., & Milivojevic, B. (2020). Narratives for Neuroscience. Trends in Neurosciences, 43(5), 271-273. doi:10.1016/j.tins.2020.03.003.

    Abstract

    People organize and convey their thoughts according to narratives. However, neuroscientists are often reluctant to incorporate narrative stimuli into their experiments. We argue that narratives deserve wider adoption in human neuroscience because they tap into the brain’s native machinery for representing the world and provide rich variability for testing hypotheses.
  • Willems, R. M., Frank, S. L., Nijhoff, A. D., Hagoort, P., & Van den Bosch, A. (2016). Prediction during natural language comprehension. Cerebral Cortex, 26(6), 2506-2516. doi:10.1093/cercor/bhv075.

    Abstract

    The notion of prediction is studied in cognitive neuroscience with increasing intensity. We investigated the neural basis of 2 distinct aspects of word prediction, derived from information theory, during story comprehension. We assessed the effect of entropy of next-word probability distributions as well as surprisal. A computational model determined entropy and surprisal for each word in 3 literary stories. Twenty-four healthy participants listened to the same 3 stories while their brain activation was measured using fMRI. Reversed speech fragments were presented as a control condition. Brain areas sensitive to entropy were left ventral premotor cortex, left middle frontal gyrus, right inferior frontal gyrus, left inferior parietal lobule, and left supplementary motor area. Areas sensitive to surprisal were left inferior temporal sulcus (“visual word form area”), bilateral superior temporal gyrus, right amygdala, bilateral anterior temporal poles, and right inferior frontal sulcus. We conclude that prediction during language comprehension can occur at several levels of processing, including at the level of word form. Our study exemplifies the power of combining computational linguistics with cognitive neuroscience, and additionally underlines the feasibility of studying continuous spoken language materials with fMRI.

    Additional information

    Supplementary Material
  • Wilson, B., Spierings, M., Ravignani, A., Mueller, J. L., Mintz, T. H., Wijnen, F., Van der Kant, A., Smith, K., & Rey, A. (2020). Non‐adjacent dependency learning in humans and other animals. Topics in Cognitive Science, 12(3), 843-858. doi:10.1111/tops.12381.

    Abstract

    Learning and processing natural language requires the ability to track syntactic relationships between words and phrases in a sentence, which are often separated by intervening material. These nonadjacent dependencies can be studied using artificial grammar learning paradigms and structured sequence processing tasks. These approaches have been used to demonstrate that human adults, infants and some nonhuman animals are able to detect and learn dependencies between nonadjacent elements within a sequence. However, learning nonadjacent dependencies appears to be more cognitively demanding than detecting dependencies between adjacent elements, and only occurs in certain circumstances. In this review, we discuss different types of nonadjacent dependencies in language and in artificial grammar learning experiments, and how these differences might impact learning. We summarize different types of perceptual cues that facilitate learning, by highlighting the relationship between dependent elements bringing them closer together either physically, attentionally, or perceptually. Finally, we review artificial grammar learning experiments in human adults, infants, and nonhuman animals, and discuss how similarities and differences observed across these groups can provide insights into how language is learned across development and how these language‐related abilities might have evolved.
  • Winsvold, B. S., Palta, P., Eising, E., Page, C. M., The International Headache Genetics Consortium, Van den Maagdenberg, A. M. J. M., Palotie, A., & Zwart, J.-A. (2018). Epigenetic DNA methylation changes associated with headache chronification: A retrospective case-control study. Cephalalgia, 38(2), 312-322. doi:10.1177/0333102417690111.

    Abstract

    Background

    The biological mechanisms of headache chronification are poorly understood. We aimed to identify changes in DNA methylation associated with the transformation from episodic to chronic headache.
    Methods

    Participants were recruited from the population-based Norwegian HUNT Study. Thirty-six female headache patients who transformed from episodic to chronic headache between baseline and follow-up 11 years later were matched against 35 controls with episodic headache. DNA methylation was quantified at 485,000 CpG sites, and changes in methylation level at these sites were compared between cases and controls by linear regression analysis. Data were analyzed in two stages (Stages 1 and 2) and in a combined meta-analysis.
    Results

    None of the top 20 CpG sites identified in Stage 1 replicated in Stage 2 after multiple testing correction. In the combined meta-analysis the strongest associated CpG sites were related to SH2D5 and NPTX2, two brain-expressed genes involved in the regulation of synaptic plasticity. Functional enrichment analysis pointed to processes including calcium ion binding and estrogen receptor pathways.
    Conclusion

    In this first genome-wide study of DNA methylation in headache chronification several potentially implicated loci and processes were identified. The study exemplifies the use of prospectively collected population cohorts to search for epigenetic mechanisms of disease
  • Winter, B., Perlman, M., & Majid, A. (2018). Vision dominates in perceptual language: English sensory vocabulary is optimized for usage. Cognition, 179, 213-220. doi:10.1016/j.cognition.2018.05.008.

    Abstract

    Researchers have suggested that the vocabularies of languages are oriented towards the communicative needs of language users. Here, we provide evidence demonstrating that the higher frequency of visual words in a large variety of English corpora is reflected in greater lexical differentiation—a greater number of unique words—for the visual domain in the English lexicon. In comparison, sensory modalities that are less frequently talked about, particularly taste and smell, show less lexical differentiation. In addition, we show that even though sensory language can be expected to change across historical time and between contexts of use (e.g., spoken language versus fiction), the pattern of visual dominance is a stable property of the English language. Thus, we show that across the board, precisely those semantic domains that are more frequently talked about are also more lexically differentiated, for perceptual experiences. This correlation between type and token frequencies suggests that the sensory lexicon of English is geared towards communicative efficiency.
  • Wittenburg, P., Skiba, R., & Trilsbeek, P. (2004). Technology and Tools for Language Documentation. Language Archive Newsletter, 1(4), 3-4.
  • Wittenburg, P. (2004). Training Course in Lithuania. Language Archive Newsletter, 1(2), 6-6.
  • Wittenburg, P., Dirksmeyer, R., Brugman, H., & Klaas, G. (2004). Digital formats for images, audio and video. Language Archive Newsletter, 1(1), 3-6.
  • Wittenburg, P. (2004). International Expert Meeting on Access Management for Distributed Language Archives. Language Archive Newsletter, 1(3), 12-12.
  • Wittenburg, P. (2004). Final review of INTERA. Language Archive Newsletter, 1(4), 11-12.
  • Wittenburg, P. (2004). LinguaPax Forum on Language Diversity, Sustainability, and Peace. Language Archive Newsletter, 1(3), 13-13.
  • Wittenburg, P. (2004). LREC conference 2004. Language Archive Newsletter, 1(3), 12-13.
  • Wittenburg, P. (2004). News from the Archive of the Max Planck Institute for Psycholinguistics. Language Archive Newsletter, 1(4), 12-12.
  • Wittenburg, P., Lautenschlager, M., Thiemann, H., Baldauf, C., & Trilsbeek, P. (2020). FAIR Practices in Europe. Data Intelligence, 2(1-2), 257-263. doi:10.1162/dint_a_00048.

    Abstract

    Institutions driving fundamental research at the cutting edge such as for example from the Max Planck Society (MPS) took steps to optimize data management and stewardship to be able to address new scientific questions. In this paper we selected three institutes from the MPS from the areas of humanities, environmental sciences and natural sciences as examples to indicate the efforts to integrate large amounts of data from collaborators worldwide to create a data space that is ready to be exploited to get new insights based on data intensive science methods. For this integration the typical challenges of fragmentation, bad quality and also social differences had to be overcome. In all three cases, well-managed repositories that are driven by the scientific needs and harmonization principles that have been agreed upon in the community were the core pillars. It is not surprising that these principles are very much aligned with what have now become the FAIR principles. The FAIR principles confirm the correctness of earlier decisions and their clear formulation identified the gaps which the projects need to address.
  • Wnuk, E., Laophairoj, R., & Majid, A. (2020). Smell terms are not rara: A semantic investigation of odor vocabulary in Thai. Linguistics, 58(4), 937-966. doi:10.1515/ling-2020-0009.
  • Wnuk, E. (2016). Semantic specificity of perception verbs in Maniq. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Wong, M. M. K., Hoekstra, S. D., Vowles, J., Watson, L. M., Fuller, G., Németh, A. H., Cowley, S. A., Ansorge, O., Talbot, K., & Becker, E. B. E. (2018). Neurodegeneration in SCA14 is associated with increased PKCγ kinase activity, mislocalization and aggregation. Acta Neuropathologica Communications, 6: 99. doi:10.1186/s40478-018-0600-7.

    Abstract

    Spinocerebellar ataxia type 14 (SCA14) is a subtype of the autosomal dominant cerebellar ataxias that is characterized by slowly progressive cerebellar dysfunction and neurodegeneration. SCA14 is caused by mutations in the PRKCG gene, encoding protein kinase C gamma (PKCγ). Despite the identification of 40 distinct disease-causing mutations in PRKCG, the pathological mechanisms underlying SCA14 remain poorly understood. Here we report the molecular neuropathology of SCA14 in post-mortem cerebellum and in human patient-derived induced pluripotent stem cells (iPSCs) carrying two distinct SCA14 mutations in the C1 domain of PKCγ, H36R and H101Q. We show that endogenous expression of these mutations results in the cytoplasmic mislocalization and aggregation of PKCγ in both patient iPSCs and cerebellum. PKCγ aggregates were not efficiently targeted for degradation. Moreover, mutant PKCγ was found to be hyper-activated, resulting in increased substrate phosphorylation. Together, our findings demonstrate that a combination of both, loss-of-function and gain-of-function mechanisms are likely to underlie the pathogenesis of SCA14, caused by mutations in the C1 domain of PKCγ. Importantly, SCA14 patient iPSCs were found to accurately recapitulate pathological features observed in post-mortem SCA14 cerebellum, underscoring their potential as relevant disease models and their promise as future drug discovery tools.

    Additional information

    additional file
  • Woo, Y. J., Wang, T., Guadalupe, T., Nebel, R. A., Vino, A., Del Bene, V. A., Molholm, S., Ross, L. A., Zwiers, M. P., Fisher, S. E., Foxe, J. J., & Abrahams, B. S. (2016). A Common CYFIP1 Variant at the 15q11.2 Disease Locus Is Associated with Structural Variation at the Language-Related Left Supramarginal Gyrus. PLoS One, 11(6): e0158036. doi:10.1371/journal.pone.0158036.

    Abstract

    s Metrics Comments Related Content Abstract Introduction Materials and Methods Results Discussion Supporting Information Acknowledgments Author Contributions References Reader Comments (0) Media Coverage Figures Abstract Copy number variants (CNVs) at the Breakpoint 1 to Breakpoint 2 region at 15q11.2 (BP1-2) are associated with language-related difficulties and increased risk for developmental disorders in which language is compromised. Towards underlying mechanisms, we investigated relationships between single nucleotide polymorphisms (SNPs) across the region and quantitative measures of human brain structure obtained by magnetic resonance imaging of healthy subjects. We report an association between rs4778298, a common variant at CYFIP1, and inter-individual variation in surface area across the left supramarginal gyrus (lh.SMG), a cortical structure implicated in speech and language in independent discovery (n = 100) and validation cohorts (n = 2621). In silico analyses determined that this same variant, and others nearby, is also associated with differences in levels of CYFIP1 mRNA in human brain. One of these nearby polymorphisms is predicted to disrupt a consensus binding site for FOXP2, a transcription factor implicated in speech and language. Consistent with a model where FOXP2 regulates CYFIP1 levels and in turn influences lh.SMG surface area, analysis of publically available expression data identified a relationship between expression of FOXP2 and CYFIP1 mRNA in human brain. We propose that altered CYFIP1 dosage, through aberrant patterning of the lh.SMG, may contribute to language-related difficulties associated with BP1-2 CNVs. More generally, this approach may be useful in clarifying the contribution of individual genes at CNV risk loci.
  • Xiong, K., Verdonschot, R. G., & Tamaoka, K. (2020). The time course of brain activity in reading identical cognates: An ERP study of Chinese - Japanese bilinguals. Journal of Neurolinguistics, 55: 100911. doi:10.1016/j.jneuroling.2020.100911.

    Abstract

    Previous studies suggest that bilinguals' lexical access is language non-selective, especially for orthographically identical translation equivalents across languages (i.e., identical cognates). The present study investigated how such words (e.g., meaning "school" in both Chinese and Japanese) are processed in the (late) Chinese - Japanese bilingual brain. Using an L2-Japanese lexical decision task, both behavioral and electrophysiological data were collected. Reaction times (RTs), as well as the N400 component, showed that cognates are more easily recognized than non-cognates. Additionally, an early component (i.e., the N250), potentially reflecting activation at the word-form level, was also found. Cognates elicited a more positive N250 than non-cognates in the frontal region, indicating that the cognate facilitation effect occurred at an early stage of word formation for languages with logographic scripts.
  • Yang, W., Chan, A., Chang, F., & Kidd, E. (2020). Four-year-old Mandarin-speaking children’s online comprehension of relative clauses. Cognition, 196: 104103. doi:10.1016/j.cognition.2019.104103.

    Abstract

    A core question in language acquisition is whether children’s syntactic processing is experience-dependent and language-specific, or whether it is governed by abstract, universal syntactic machinery. We address this question by presenting corpus and on-line processing dat a from children learning Mandarin Chinese, a language that has been important in debates about the universality of parsing processes. The corpus data revealed that two different relative clause constructions in Mandarin are differentially used to modify syntactic subjects and objects. In the experiment, 4-year-old children’s eye-movements were recorded as they listened to the two RC construction types (e.g., Can you pick up the pig that pushed the sheep?). A permutation analysis showed that children’s ease of comprehension was closely aligned with the distributional frequencies, suggesting syntactic processing preferences are shaped by the input experience of these constructions.

    Additional information

    1-s2.0-S001002771930277X-mmc1.pdf
  • Yang, J., Cai, Q., & Tian, X. (2020). How do we segment text? Two-stage chunking operation in reading. eNeuro, 7(3): ENEURO.0425-19.2020. doi:10.1523/ENEURO.0425-19.2020.

    Abstract

    Chunking in language comprehension is a process that segments continuous linguistic input into smaller chunks that are in the reader’s mental lexicon. Effective chunking during reading facilitates disambiguation and enhances efficiency for comprehension. However, the chunking mechanisms remain elusive, especially in reading given that information arrives simultaneously yet the written systems may not have explicit cues for labeling boundaries such as Chinese. What are the mechanisms of chunking that mediates the reading of the text that contains hierarchical information? We investigated this question by manipulating the lexical status of the chunks at distinct levels in four-character Chinese strings, including the two-character local chunk and four-character global chunk. Male and female human participants were asked to make lexical decisions on these strings in a behavioral experiment, followed by a passive reading task when their electroencephalography (EEG) was recorded. The behavioral results showed that the lexical decision time of lexicalized two-character local chunks was influenced by the lexical status of the four-character global chunk, but not vice versa, which indicated the processing of global chunks possessed priority over the local chunks. The EEG results revealed that familiar lexical chunks were detected simultaneously at both levels and further processed in a different temporal order – the onset of lexical access for the global chunks was earlier than that of local chunks. These consistent results suggest a two-stage operation for chunking in reading–– the simultaneous detection of familiar lexical chunks at multiple levels around 100 ms followed by recognition of chunks with global precedence.
  • Yang, J., Zhu, H., & Tian, X. (2018). Group-level multivariate analysis in EasyEEG toolbox: Examining the temporal dynamics using topographic responses. Frontiers in Neuroscience, 12: 468. doi:10.3389/fnins.2018.00468.

    Abstract

    Electroencephalography (EEG) provides high temporal resolution cognitive information from non-invasive recordings. However, one of the common practices-using a subset of sensors in ERP analysis is hard to provide a holistic and precise dynamic results. Selecting or grouping subsets of sensors may also be subject to selection bias, multiple comparison, and further complicated by individual differences in the group-level analysis. More importantly, changes in neural generators and variations in response magnitude from the same neural sources are difficult to separate, which limit the capacity of testing different aspects of cognitive hypotheses. We introduce EasyEEG, a toolbox that includes several multivariate analysis methods to directly test cognitive hypotheses based on topographic responses that include data from all sensors. These multivariate methods can investigate effects in the dimensions of response magnitude and topographic patterns separately using data in the sensor space, therefore enable assessing neural response dynamics. The concise workflow and the modular design provide user-friendly and programmer-friendly features. Users of all levels can benefit from the open-sourced, free EasyEEG to obtain a straightforward solution for efficient processing of EEG data and a complete pipeline from raw data to final results for publication.
  • Yang, Z., Zhen, Z., Huang, L., Kong, X., Wang, X., Song, Y., & Liu, J. (2016). Neural Univariate Activity and Multivariate Pattern in the Posterior Superior Temporal Sulcus Differentially Encode Facial Expression and Identity. Scientific Reports, 6: 23427. doi:10.1038/srep23427.

    Abstract

    Faces contain a variety of information such as one’s identity and expression. One prevailing model suggests a functional division of labor in processing faces that different aspects of facial information are processed in anatomically separated and functionally encapsulated brain regions. Here, we demonstrate that facial identity and expression can be processed in the same region, yet with different neural coding strategies. To this end, we employed functional magnetic resonance imaging to examine two types of coding schemes, namely univariate activity and multivariate pattern, in the posterior superior temporal cortex (pSTS) - a face-selective region that is traditionally viewed as being specialized for processing facial expression. With the individual difference approach, we found that participants with higher overall face selectivity in the right pSTS were better at differentiating facial expressions measured outside of the scanner. In contrast, individuals whose spatial pattern for faces in the right pSTS was less similar to that for objects were more accurate in identifying previously presented faces. The double dissociation of behavioral relevance between overall neural activity and spatial neural pattern suggests that the functional-division-of-labor model on face processing is over-simplified, and that coding strategies shall be incorporated in a revised model.
  • Yılmaz, O., Karadöller, D. Z., & Sofuoğlu, G. (2016). Analytic Thinking, Religion, and Prejudice: An Experimental Test of the Dual-Process Model of Mind. The International Journal for the Psychology of Religion, 26(4), 360-369. doi:10.1080/10508619.2016.1151117.

    Abstract

    Dual-process models of the mind, as well as the relation between analytic thinking and religious belief, have aroused interest in recent years. However, few studies have examined this relation experimentally. We predicted that religious belief might be one of the causes of prejudice, while analytic thinking reduces both. The first experiment replicated, in a mostly Muslim sample, past research showing that analytic thinking promotes religious disbelief. The second experiment investigated the effect of Muslim religious priming and analytic priming on prejudice and showed that, although the former significantly increased the total prejudice score, the latter had an effect only on antigay prejudice. Thus, the findings partially support our proposed pattern of relationships in that analytic thinking might be one of the cognitive factors that prevents prejudice, whereas religious belief might be the one that increases it.

    Files private

    Request files
  • Yoshihara, M., Nakayama, M., Verdonschot, R. G., & Hino, Y. (2020). The influence of orthography on speech production: Evidence from masked priming in word-naming and picture-naming tasks. Journal of Experimental Psychology: Learning, Memory, and Cognition, 46(8), 1570-1589. doi:10.1037/xlm0000829.

    Abstract

    In a masked priming word-naming task, a facilitation due to the initial-segmental sound overlap for 2-character kanji prime-target pairs was affected by certain orthographic properties (Yoshihara, Nakayama, Verdonschot, & Hino, 2017). That is, the facilitation that was due to the initial mora overlap occurred only when the mora was the whole pronunciation of their initial kanji characters (i.e., match pairs; e.g., /ka-se.ki/-/ka-rjo.ku/). When the shared initial mora was only a part of the kanji characters' readings, however, there was no facilitation (i.e., mismatch pairs; e.g., /ha.tu-a.N/-/ha.ku-bu.tu/). In the present study, we used a masked priming picture-naming task to investigate whether the previous results were relevant only when the orthography of targets is visually presented. In Experiment 1. the main findings of our word-naming task were fully replicated in a picture-naming task. In Experiments 2 and 3. the absence of facilitation for the mismatch pairs were confirmed with a new set of stimuli. On the other hand, a significant facilitation was observed for the match pairs that shared the 2 initial morae (in Experiment 4), which was again consistent with the results of our word-naming study. These results suggest that the orthographic properties constrain the phonological expression of masked priming for kanji words across 2 tasks that are likely to differ in how phonology is retrieved. Specifically, we propose that orthography of a word is activated online and constrains the phonological encoding processes in these tasks.
  • Zeidler, H., Herrmann, E., Haun, D. B. M., & Tomasello, M. (2016). Taking turns or not? Children’s approach to limited resource problems in three different cultures. Child Development, 87(3), 677-688. doi:10.1111/cdev.12505.

    Abstract

    Some problems of resource distribution can be solved on equal terms only by taking turns. We presented such a problem to 168 pairs of 5- to 10-year-old children from one Western and two non-Western societies (German, Samburu, Kikuyu). Almost all German pairs solved the problem by taking turns immediately, resulting in an equal distribution of resources throughout the game. In the other groups, one child usually monopolized the resource in Trial 1 and sometimes let the partner monopolize it in Trial 2, resulting in an equal distribution in only half the dyads. These results suggest that turn-taking is not a natural strategy uniformly across human cultures, but rather that different cultures use it to different degrees and in different contexts.

    Additional information

    cdev12505-sup-0001-Suppinfo.docx
  • Zeshan, U. (2004). Basic English course taught in Indian Sign Language (Ali Yavar Young National Institute for Hearing Handicapped, Ed.). National Institute for the Hearing Handicapped: Mumbai.
  • Zeshan, U. (2004). Interrogative constructions in sign languages - Cross-linguistic perspectives. Language, 80(1), 7-39.

    Abstract

    This article reports on results from a broad crosslinguistic study based on data from thirty-five signed languages around the world. The study is the first of its kind, and the typological generalizations presented here cover the domain of interrogative structures as they appear across a wide range of geographically and genetically distinct signed languages. Manual and nonmanual ways of marking basic types of questions in signed languages are investigated. As a result, it becomes clear that the range of crosslinguistic variation is extensive for some subparameters, such as the structure of question-word paradigms, while other parameters, such as the use of nonmanual expressions in questions, show more similarities across signed languages. Finally, it is instructive to compare the findings from signed language typology to relevant data from spoken languages at a more abstract, crossmodality level.
  • Zeshan, U. (2004). Hand, head and face - negative constructions in sign languages. Linguistic Typology, 8(1), 1-58. doi:10.1515/lity.2004.003.

    Abstract

    This article presents a typology of negative constructions across a substantial number of sign languages from around the globe. After situating the topic within the wider context of linguistic typology, the main negation strategies found across sign languages are described. Nonmanual negation includes the use of head movements and facial expressions for negation and is of great importance in sign languages as well as particularly interesting from a typological point of view. As far as manual signs are concerned, independent negative particles represent the dominant strategy, but there are also instances of irregular negation in most sign languages. Irregular negatives may take the form of suppletion, cliticisation, affixing, or internal modification of a sign. The results of the study lead to interesting generalisations about similarities and differences between negatives in signed and spoken languages.
  • Zhang, M., Gao, X., Li, B., Yu, S., Gong, T., Jiang, T., Hu, Q., & Chen, Y. (2016). Spatial representation of ordinal information. Frontiers in Psychology, 7: 505. doi:10.3389/fpsyg.2016.00505.

    Abstract

    Right hand responds faster than left hand when shown larger numbers and vice-versa when shown smaller numbers (the SNARC effect). Accumulating evidence suggests that the SNARC effect may not be exclusive for numbers and can be extended to other ordinal sequences (e.g., months or letters in the alphabet) as well. In this study, we tested the SNARC effect with a non-numerically ordered sequence: the Chinese notations for the color spectrum (Red, Orange, Yellow, Green, Blue, Indigo, and Violet). Chinese color word sequence reserves relatively weak ordinal information, because each element color in the sequence normally appears in non-sequential contexts, making it ideal to test the spatial organization of sequential information that was stored in the long-term memory. This study found a reliable SNARC-like effect for Chinese color words (deciding whether the presented color word was before or after the reference color word “green”), suggesting that, without access to any quantitative information or exposure to any previous training, ordinal representation can still activate a sense of space. The results support that weak ordinal information without quantitative magnitude encoded in the long-term memory can activate spatial representation in a comparison task
  • Zhao, H., Eising, E., de Vries, B., Vijfhuizen, L. S., Anttila, V., Winswold, B. S., Kurth, T., Stefansson, H., Kallela, M., Malik, R., Stam, A. H., Afran Ikram, M., Ligthart, L., Freilinger, T., Alexander, M., Müller-Myhsok, B., Schreiber, S., Meilinger, T., Aromas, A., Eriksson, J. G. and 15 moreZhao, H., Eising, E., de Vries, B., Vijfhuizen, L. S., Anttila, V., Winswold, B. S., Kurth, T., Stefansson, H., Kallela, M., Malik, R., Stam, A. H., Afran Ikram, M., Ligthart, L., Freilinger, T., Alexander, M., Müller-Myhsok, B., Schreiber, S., Meilinger, T., Aromas, A., Eriksson, J. G., Boomsma, D. I., van Duijn, C. M., Anker Zwart, J., Quaye, L., Kubisch, C., Dichgans, M., Wessman, M., Stefansson, K., Chasman, D. I., Palotie, A., Martin, N. G., Montgomery, G. W., Ferrari, M. D., van den Maagdenberg, A. M., & Nyholt, D. R. (2016). Gene-based pleiotropy across migraine with aura and migraine without aura patient groups. Cephalalgia, 36(7), 648-657. doi:10.1177/0333102415591497.

    Abstract

    Introduction It is unclear whether patients diagnosed according to International Classification of Headache Disorders criteria for migraine with aura (MA) and migraine without aura (MO) experience distinct disorders or whether their migraine subtypes are genetically related. Aim Using a novel gene-based (statistical) approach, we aimed to identify individual genes and pathways associated both with MA and MO. Methods Gene-based tests were performed using genome-wide association summary statistic results from the most recent International Headache Genetics Consortium study comparing 4505 MA cases with 34,813 controls and 4038 MO cases with 40,294 controls. After accounting for non-independence of gene-based test results, we examined the significance of the proportion of shared genes associated with MA and MO. Results We found a significant overlap in genes associated with MA and MO. Of the total 1514 genes with a nominally significant gene-based p value (pgene-based ≤ 0.05) in the MA subgroup, 107 also produced pgene-based ≤ 0.05 in the MO subgroup. The proportion of overlapping genes is almost double the empirically derived null expectation, producing significant evidence of gene-based overlap (pleiotropy) (pbinomial-test = 1.5 × 10–4). Combining results across MA and MO, six genes produced genome-wide significant gene-based p values. Four of these genes (TRPM8, UFL1, FHL5 and LRP1) were located in close proximity to previously reported genome-wide significant SNPs for migraine, while two genes, TARBP2 and NPFF separated by just 259 bp on chromosome 12q13.13, represent a novel risk locus. The genes overlapping in both migraine types were enriched for functions related to inflammation, the cardiovascular system and connective tissue. Conclusions Our results provide novel insight into the likely genes and biological mechanisms that underlie both MA and MO, and when combined with previous data, highlight the neuropeptide FF-amide peptide encoding gene (NPFF) as a novel candidate risk gene for both types of migraine.
  • Zheng, X., Roelofs, A., & Lemhöfer, K. (2020). Language selection contributes to intrusion errors in speaking: Evidence from picture naming. Bilingualism: Language and Cognition, 23, 788-800. doi:10.1017/S1366728919000683.

    Abstract

    Bilinguals usually select the right language to speak for the particular context they are in, but sometimes the nontarget language intrudes. Despite a large body of research into language selection and language control, it remains unclear where intrusion errors originate from. These errors may be due to incorrect selection of the nontarget language at the conceptual level, or be a consequence of erroneous word selection (despite correct language selection) at the lexical level. We examined the former possibility in two language switching experiments using a manipulation that supposedly affects language selection on the conceptual level, namely whether the conversational language context was associated with the target language (congruent) or with the alternative language (incongruent) on a trial. Both experiments showed that language intrusion errors occurred more often in incongruent than in congruent contexts, providing converging evidence that language selection during concept preparation is one driving force behind language intrusion.
  • Zheng, X. (2020). Control and monitoring in bilingual speech production: Language selection, switching and intrusion. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Zheng, X., Roelofs, A., Erkan, H., & Lemhöfer, K. (2020). Dynamics of inhibitory control during bilingual speech production: An electrophysiological study. Neuropsychologia, 140: 107387. doi:10.1016/j.neuropsychologia.2020.107387.

    Abstract

    Bilingual speakers have to control their languages to avoid interference, which may be achieved by enhancing the target language and/or inhibiting the nontarget language. Previous research suggests that bilinguals use inhibition (e.g., Jackson et al., 2001), which should be reflected in the N2 component of the event-related potential (ERP) in the EEG. In the current study, we investigated the dynamics of inhibitory control by measuring the N2 during language switching and repetition in bilingual picture naming. Participants had to name pictures in Dutch or English depending on the cue. A run of same-language trials could be short (two or three trials) or long (five or six trials). We assessed whether RTs and N2 changed over the course of same-language runs, and at a switch between languages. Results showed that speakers named pictures more quickly late as compared to early in a run of same-language trials. Moreover, they made a language switch more quickly after a long run than after a short run. This run-length effect was only present in the first language (L1), not in the second language (L2). In ERPs, we observed a widely distributed switch effect in the N2, which was larger after a short run than after a long run. This effect was only present in the L2, not in the L1, although the difference was not significant between languages. In contrast, the N2 was not modulated during a same-language run. Our results suggest that the nontarget language is inhibited at a switch, but not during the repeated use of the target language.

    Additional information

    Data availability

    Files private

    Request files
  • Zheng, X., Roelofs, A., Farquhar, J., & Lemhöfer, K. (2018). Monitoring of language selection errors in switching: Not all about conflict. PLoS One, 13(11): e0200397. doi:10.1371/journal.pone.0200397.

    Abstract

    Although bilingual speakers are very good at selectively using one language rather than another, sometimes language selection errors occur. To investigate how bilinguals monitor their speech errors and control their languages in use, we recorded event-related potentials (ERPs) in unbalanced Dutch-English bilingual speakers in a cued language-switching task. We tested the conflict-based monitoring model of Nozari and colleagues by investigating the error-related negativity (ERN) and comparing the effects of the two switching directions (i.e., to the first language, L1 vs. to the second language, L2). Results show that the speakers made more language selection errors when switching from their L2 to the L1 than vice versa. In the EEG, we observed a robust ERN effect following language selection errors compared to correct responses, reflecting monitoring of speech errors. Most interestingly, the ERN effect was enlarged when the speakers were switching to their L2 (less conflict) compared to switching to the L1 (more conflict). Our findings do not support the conflict-based monitoring model. We discuss an alternative account in terms of error prediction and reinforcement learning.
  • Zheng, X., Roelofs, A., & Lemhöfer, K. (2018). Language selection errors in switching: language priming or cognitive control? Language, Cognition and Neuroscience, 33(2), 139-147. doi:10.1080/23273798.2017.1363401.

    Abstract

    Although bilingual speakers are very good at selectively using one language rather than another, sometimes language selection errors occur. We examined the relative contribution of top-down cognitive control and bottom-up language priming to these errors. Unbalanced Dutch-English bilinguals named pictures and were cued to switch between languages under time pressure. We also manipulated the number of same-language trials before a switch (long vs. short runs). Results show that speakers made more language selection errors when switching from their second language (L2) to the first language (L1) than vice versa. Furthermore, they made more errors when switching to the L1 after a short compared to a long run of L2 trials. In the reverse switching direction (L1 to L2), run length had no effect. These findings are most compatible with an account of language selection errors that assigns a strong role to top-down processes of cognitive control.

    Additional information

    plcp_a_1363401_sm2537.docx
  • Zimianiti, E. (2020). Verb production and comprehension in dementia: A verb argument structure approach. Master Thesis, Aristotle University of Thessaloniki, Thessaloniki, Greece.

    Abstract

    The purpose of this study is to shed light to the linguistic deficit in populations with dementia, and more specifically with Mild Cognitive Impairment and Alzheimer’s Disease; by examining the assignment of thematic roles (θ-roles) in sentences including psychological verbs.
    The interest in types of dementia and its precursor is due to the relevance of the disease in present-day world society (Caloi, 2017). 47 millions of people worldwide were reported by the World Alzheimer Report in 2016 (Prince et al. 2016) as people with a type of dementia. This number surpasses the number of inhabitants in Spain, a whole country, and it is expected, according to the report, to triplicate until 2050 reaching the number of 131 million. The impact of this disease is observed not only at the social level but also in the economic one, because of their need for assistance in their everyday life. What is worrying, is the lack of total treatment once the disease has started. Despite the efforts of medicine, dementia is problematic in terms of its diagnosis, because a variety of cognitive abilities is assessed in combination with medical workup. Language is a crucial component in the procedure of diagnosis as linguistic deficits are among the first symptoms that accompany the onset of the disease. Therefore, further investigation of linguistic impairment is a necessity in order to enhance the diagnostic techniques used nowadays. Furthermore, the lack of efficient drugs for the treatment of the disease has necessitated the development of training programs for maintenance and increase of the cognitive abilities in people with either Mild Cognitive Impairment or a type of dementia …
  • Zimmermann, M., Verhagen, L., De Lange, F., & Toni, I. (2016). The extrastriate body area computes desired goal states during action planning. eNeuro, 3(2): ENEURO.0020-16.2016. doi:10.1523/ENEURO.0020-16.2016.

    Abstract

    How do object perception and action interact at a neural level? Here we test the hypothesis that perceptual
    features, processed by the ventral visuoperceptual stream, are used as priors by the dorsal visuomotor stream to
    specify goal-directed grasping actions. We present three main findings, which were obtained by combining
    time-resolved transcranial magnetic stimulation and kinematic tracking of grasp-and-rotate object manipulations,
    in a group of healthy human participants (N 22). First, the extrastriate body area (EBA), in the ventral stream,
    provides an initial structure to motor plans, based on current and desired states of a grasped object and of the
    grasping hand. Second, the contributions of EBA are earlier in time than those of a caudal intraparietal region
    known to specify the action plan. Third, the contributions of EBA are particularly important when desired and
    current object configurations differ, and multiple courses of actions are possible. These findings specify the
    temporal and functional characteristics for a mechanism that integrates perceptual processing with motor
    planning.
  • Zinken, J., & Rossi, G. (2016). Assistance and other forms of cooperative engagement. Research on Language and Social Interaction, 49(1), 20-26. doi:10.1080/08351813.2016.1126439.

    Abstract

    In their analysis of methods that participants use to manage the realization of practical courses of action, Kendrick and Drew (2016/this issue) focus on cases of assistance, where the need to be addressed is Self’s, and Other lends a helping hand. In our commentary, we point to other forms of cooperative engagement that are ubiquitously recruited in interaction. Imperative requests characteristically expect compliance on the grounds of Other’s already established commitment to a wider and shared course of actions. Established commitments can also provide the engine behind recruitment sequences that proceed nonverbally. And forms of cooperative engagement that are well glossed as assistance can nevertheless be demonstrably oriented to established commitments. In sum, we find commitment to shared courses of action to be an important element in the design and progression of certain recruitment sequences, where the involvement of Other is best defined as contribution. The commentary highlights the importance of interdependent orientations in the organization of cooperation. Data are in German, Italian, and Polish.
  • Zoefel, B., Ten Oever, S., & Sack, A. T. (2018). The involvement of endogenous neural oscillations in the processing of rhythmic input: More than a regular repetition of evoked neural responses. Frontiers in Neuroscience, 12: 95. doi:10.3389/fnins.2018.00095.

    Abstract

    It is undisputed that presenting a rhythmic stimulus leads to a measurable brain response that follows the rhythmic structure of this stimulus. What is still debated, however, is the question whether this brain response exclusively reflects a regular repetition of evoked responses, or whether it also includes entrained oscillatory activity. Here we systematically present evidence in favor of an involvement of entrained neural oscillations in the processing of rhythmic input while critically pointing out which questions still need to be addressed before this evidence could be considered conclusive. In this context, we also explicitly discuss the potential functional role of such entrained oscillations, suggesting that these stimulus-aligned oscillations reflect, and serve as, predictive processes, an idea often only implicitly assumed in the literature.
  • Zora, H., Heldner, M., & Schwarz, I.-C. (2016). Perceptual Correlates of Turkish Word Stress and Their Contribution to Automatic Lexical Access: Evidence from Early ERP Components. Frontiers in Neuroscience, 10: 7. doi:10.3389/fnins.2016.00007.

    Abstract

    Perceptual correlates of Turkish word stress and their contribution to lexical access were studied using the mismatch negativity (MMN) component in event-related potentials (ERPs). The MMN was expected to indicate if segmentally identical Turkish words were distinguished on the sole basis of prosodic features such as fundamental frequency (f0), spectral emphasis (SE), and duration. The salience of these features in lexical access was expected to be reflected in the amplitude of MMN responses. In a multi-deviant oddball paradigm, neural responses to changes in f0, SE, and duration individually, as well as to all three features combined, were recorded for words and pseudowords presented to 14 native speakers of Turkish. The word and pseudoword contrast was used to differentiate language-related effects from acoustic-change effects on the neural responses. First and in line with previous findings, the overall MMN was maximal over frontal and central scalp locations. Second, changes in prosodic features elicited neural responses both in words and pseudowords, confirming the brain's automatic response to any change in auditory input. However, there were processing differences between the prosodic features, most significantly in f0: While f0 manipulation elicited a slightly right-lateralized frontally-maximal MMN in words, it elicited a frontal P3a in pseudowords. Considering that P3a is associated with involuntary allocation of attention to salient changes, the manipulations of f0 in the absence of lexical processing lead to an intentional evaluation of pitch change. f0 is therefore claimed to be lexically specified in Turkish. Rather than combined features, individual prosodic features differentiate language-related effects from acoustic-change effects. The present study confirms that segmentally identical words can be distinguished on the basis of prosodic information alone, and establishes the salience of f0 in lexical access.
  • Zora, H., Rudner, M., & Montell Magnusson, A. (2020). Concurrent affective and linguistic prosody with the same emotional valence elicits a late positive ERP response. European Journal of Neuroscience, 51(11), 2236-2249. doi:10.1111/ejn.14658.

    Abstract

    Change in linguistic prosody generates a mismatch negativity response (MMN), indicating neural representation of linguistic prosody, while change in affective prosody generates a positive response (P3a), reflecting its motivational salience. However, the neural response to concurrent affective and linguistic prosody is unknown. The present paper investigates the integration of these two prosodic features in the brain by examining the neural response to separate and concurrent processing by electroencephalography (EEG). A spoken pair of Swedish words—[ˈfɑ́ːsɛn] phase and [ˈfɑ̀ːsɛn] damn—that differed in emotional semantics due to linguistic prosody was presented to 16 subjects in an angry and neutral affective prosody using a passive auditory oddball paradigm. Acoustically matched pseudowords—[ˈvɑ́ːsɛm] and [ˈvɑ̀ːsɛm]—were used as controls. Following the constructionist concept of emotions, accentuating the conceptualization of emotions based on language, it was hypothesized that concurrent affective and linguistic prosody with the same valence—angry [ˈfɑ̀ːsɛn] damn—would elicit a unique late EEG signature, reflecting the temporal integration of affective voice with emotional semantics of prosodic origin. In accordance, linguistic prosody elicited an MMN at 300–350 ms, and affective prosody evoked a P3a at 350–400 ms, irrespective of semantics. Beyond these responses, concurrent affective and linguistic prosody evoked a late positive component (LPC) at 820–870 ms in frontal areas, indicating the conceptualization of affective prosody based on linguistic prosody. This study provides evidence that the brain does not only distinguish between these two functions of prosody but also integrates them based on language and experience.
  • Zora, H., Riad, T., Schwarz, I.-C., & Heldner, M. (2016). Lexical specification of prosodic information in Swedish: Evidence from mismatch negativity. Frontiers in Neuroscience, 10(NOV): 533. doi:10.3389/fnins.2016.00533.

    Abstract

    Like that of many other Germanic languages, the stress system of Swedish has mainly undergone phonological analysis. Recently, however, researchers have begun to recognize the central role of morphology in these systems. Similar to the lexical specification of tonal accent, the Swedish stress system is claimed to be morphologically determined and morphemes are thus categorized as prosodically specified and prosodically unspecified. Prosodically specified morphemes bear stress information as part of their lexical representations and are classified as tonic (i.e., lexically stressed), pretonic and posttonic, whereas prosodically unspecified morphemes receive stress through a phonological rule that is right-edge oriented, but is sensitive to prosodic specification at that edge. The presence of prosodic specification is inferred from vowel quality and vowel quantity; if stress moves elsewhere, vowel quality and quantity change radically in phonologically stressed morphemes, whereas traces of stress remain in lexically stressed morphemes. The present study is the first to investigate whether stress is a lexical property of Swedish morphemes by comparing mismatch negativity (MMN) responses to vowel quality and quantity changes in phonologically stressed and lexically stressed words. In a passive oddball paradigm, 15 native speakers of Swedish were presented with standards and deviants, which differed from the standards in formant frequency and duration. Given that vowel quality and quantity changes are associated with morphological derivations only in phonologically stressed words, MMN responses are expected to be greater in phonologically stressed words than in lexically stressed words that lack such an association. The results indicated that the processing differences between phonologically and lexically stressed words were reflected in the amplitude and topography of MMN responses. Confirming the expectation, MMN amplitude was greater for the phonologically stressed word than for the lexically stressed word and showed a more widespread topographic distribution. The brain did not only detect vowel quality and quantity changes but also used them to activate memory traces associated with derivations. The present study therefore implies that morphology is directly involved in the Swedish stress system and that changes in phonological shape due to stress shift cue upcoming stress and potential addition of a morpheme.
  • Zormpa, E. (2020). Memory for speaking and listening. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Zuidema, W., French, R. M., Alhama, R. G., Ellis, K., O'Donnell, T. J. O., Sainburgh, T., & Gentner, T. Q. (2020). Five ways in which computational modeling can help advance cognitive science: Lessons from artificial grammar learning. Topics in Cognitive Science, 12(3), 925-941. doi:10.1111/tops.12474.

    Abstract

    There is a rich tradition of building computational models in cognitive science, but modeling, theoretical, and experimental research are not as tightly integrated as they could be. In this paper, we show that computational techniques—even simple ones that are straightforward to use—can greatly facilitate designing, implementing, and analyzing experiments, and generally help lift research to a new level. We focus on the domain of artificial grammar learning, and we give five concrete examples in this domain for (a) formalizing and clarifying theories, (b) generating stimuli, (c) visualization, (d) model selection, and (e) exploring the hypothesis space.

Share this page