Publications

Displaying 1301 - 1361 of 1361
  • De Vos, C. (2011). Kata Kolok color terms and the emergence of lexical signs in rural signing communities. The Senses & Society, 6(1), 68-76. doi:10.2752/174589311X12893982233795.

    Abstract

    How do new languages develop systematic ways to talk about sensory experiences, such as color? To what extent is the evolution of color terms guided by societal factors? This paper describes the color lexicon of a rural sign language called Kata Kolok which emerged approximately one century ago in a Balinese village. Kata Kolok has four color signs: black, white, red and a blue-green term. In addition, two non-conventionalized means are used to provide color descriptions: naming relevant objects, and pointing to objects in the vicinity. Comparison with Balinese culture and spoken Balinese brings to light discrepancies between the systems, suggesting that neither cultural practices nor language contact have driven the formation of color signs in Kata Kolok. The few lexicographic investigations from other rural sign languages report limitations in the domain of color. On the other hand, larger, urban signed languages have extensive systems, for example, Australian Sign Language has up to nine color terms (Woodward 1989: 149). These comparisons support the finding that, rural sign languages like Kata Kolok fail to provide the societal pressures for the lexicon to expand further.
  • De Vos, J., Schriefers, H., & Lemhöfer, K. (2018). Noticing vocabulary holes aids incidental second language word learning: An experimental study. Bilingualism: Language and Cognition, 22(3), 500-515. doi:10.1017/S1366728918000019.

    Abstract

    Noticing the hole (NTH) occurs when speakers want to say something, but realise they do not know the right word(s). Such awareness of lacking knowledge supposedly facilitates the acquisition of the unknown word(s) from later input (Swain, 1993). We tested this claim by experimentally inducing NTH in a second language (L2) for some participants (experimental), but not others (control). Then, in a price comparison game, all participants were exposed to spoken L2 input containing the to-be-learned words. They were unaware of taking part in an L2 study. Post-tests showed that participants who had noticed holes in their vocabulary had indeed learned more words compared to participants who had not. This held both for the experimental group as well as those participants in the control group who later reported to have noticed holes. Thus, when we become aware of vocabulary holes, the first step to improve our vocabulary is already taken.
  • De Vries, C., Reijnierse, W. G., & Willems, R. M. (2018). Eye movements reveal readers’ sensitivity to deliberate metaphors during narrative reading. Scientific Study of Literature, 8(1), 135-164. doi:10.1075/ssol.18008.vri.

    Abstract

    Metaphors occur frequently in literary texts. Deliberate Metaphor Theory (DMT; e.g., Steen, 2017) proposes that metaphors that serve a communicative function as metaphor are radically different from metaphors that do not have this function. We investigated differences in processing between deliberate and non-deliberate metaphors, compared to non-metaphorical words in literary reading. Using the Deliberate Metaphor Identification Procedure (Reijnierse et al., 2018), we identified metaphors in two literary stories. Then, eye-tracking was used to investigate participants’ (N = 72) reading behavior. Deliberate metaphors were read slower than non-deliberate metaphors, and both metaphor types were read slower than non-metaphorical words. Differences were controlled for several psycholinguistic variables. Differences in reading behavior were related to individual differences in reading experience and absorption and appreciation of the story. These results are in line with predictions from DMT and underline the importance of distinguishing between metaphor types in the experimental study of literary reading.
  • De Vries, M., Christiansen, M. H., & Petersson, K. M. (2011). Learning recursion: Multiple nested and crossed dependencies. Biolinguistics, 5(1/2), 010-035.

    Abstract

    Language acquisition in both natural and artificial language learning settings crucially depends on extracting information from sequence input. A shared sequence learning mechanism is thus assumed to underlie both natural and artificial language learning. A growing body of empirical evidence is consistent with this hypothesis. By means of artificial language learning experiments, we may therefore gain more insight in this shared mechanism. In this paper, we review empirical evidence from artificial language learning and computational modelling studies, as well as natural language data, and suggest that there are two key factors that help determine processing complexity in sequence learning, and thus in natural language processing. We propose that the specific ordering of non-adjacent dependencies (i.e., nested or crossed), as well as the number of non-adjacent dependencies to be resolved simultaneously (i.e., two or three) are important factors in gaining more insight into the boundaries of human sequence learning; and thus, also in natural language processing. The implications for theories of linguistic competence are discussed.
  • Vromans, R. D., & Jongman, S. R. (2018). The interplay between selective and nonselective inhibition during single word production. PLoS One, 13(5): e0197313. doi:10.1371/journal.pone.0197313.

    Abstract

    The present study investigated the interplay between selective inhibition (the ability to suppress specific competing responses) and nonselective inhibition (the ability to suppress any inappropriate response) during single word production. To this end, we combined two well-established research paradigms: the picture-word interference task and the stop-signal task. Selective inhibition was assessed by instructing participants to name target pictures (e.g., dog) in the presence of semantically related (e.g., cat) or unrelated (e.g., window) distractor words. Nonselective inhibition was tested by occasionally presenting a visual stop-signal, indicating that participants should withhold their verbal response. The stop-signal was presented early (250 ms) aimed at interrupting the lexical selection stage, and late (325 ms) to influence the word-encoding stage of the speech production process. We found longer naming latencies for pictures with semantically related distractors than with unrelated distractors (semantic interference effect). The results further showed that, at both delays, stopping latencies (i.e., stop-signal RTs) were prolonged for naming pictures with semantically related distractors compared to pictures with unrelated distractors. Taken together, our findings suggest that selective and nonselective inhibition, at least partly, share a common inhibitory mechanism during different stages of the speech production process.

    Additional information

    Data available (link to Figshare)
  • Vuong, L., & Martin, R. C. (2011). LIFG-based attentional control and the resolution of lexical ambiguities in sentence context. Brain and Language, 116, 22-32. doi:10.1016/j.bandl.2010.09.012.

    Abstract

    The role of attentional control in lexical ambiguity resolution was examined in two patients with damage to the left inferior frontal gyrus (LIFG) and one control patient with non-LIFG damage. Experiment 1 confirmed that the LIFG patients had attentional control deficits compared to normal controls while the non-LIFG patient was relatively unimpaired. Experiment 2 showed that all three patients did as well as normal controls in using biasing sentence context to resolve lexical ambiguities involving balanced ambiguous words, but only the LIFG patients took an abnormally long time on lexical ambiguities that resolved toward a subordinate meaning of biased ambiguous words. Taken together, the results suggest that attentional control plays an important role in the resolution of certain lexical ambiguities – those that induce strong interference from context-inappropriate meanings (i.e., dominant meanings of biased ambiguous words).
  • Wagner, A., & Ernestus, M. (2008). Identification of phonemes: Differences between phoneme classes and the effect of class size. Phonetica, 65(1-2), 106-127. doi:10.1159/000132389.

    Abstract

    This study reports general and language-specific patterns in phoneme identification. In a series of phoneme monitoring experiments, Castilian Spanish, Catalan, Dutch, English, and Polish listeners identified vowel, fricative, and stop consonant targets that are phonemic in all these languages, embedded in nonsense words. Fricatives were generally identified more slowly than vowels, while the speed of identification for stop consonants was highly dependent on the onset of the measurements. Moreover, listeners' response latencies and accuracy in detecting a phoneme correlated with the number of categories within that phoneme's class in the listener's native phoneme repertoire: more native categories slowed listeners down and decreased their accuracy. We excluded the possibility that this effect stems from differences in the frequencies of occurrence of the phonemes in the different languages. Rather, the effect of the number of categories can be explained by general properties of the perception system, which cause language-specific patterns in speech processing.
  • Wang, L., Hagoort, P., & Jensen, O. (2018). Language prediction is reflected by coupling between frontal gamma and posterior alpha oscillations. Journal of Cognitive Neuroscience, 30(3), 432-447. doi:10.1162/jocn_a_01190.

    Abstract

    Readers and listeners actively predict upcoming words during language processing. These predictions might serve to support the unification of incoming words into sentence context and thus rely on interactions between areas in the language network. In the current magnetoencephalography study, participants read sentences that varied in contextual constraints so that the predictability of the sentence-final words was either high or low. Before the sentence-final words, we observed stronger alpha power suppression for the highly compared with low constraining sentences in the left inferior frontal cortex, left posterior temporal region, and visual word form area. Importantly, the temporal and visual word form area alpha power correlated negatively with left frontal gamma power for the highly constraining sentences. We suggest that the correlation between alpha power decrease in temporal language areas and left prefrontal gamma power reflects the initiation of an anticipatory unification process in the language network.
  • Wang, L., Hagoort, P., & Jensen, O. (2018). Gamma oscillatory activity related to language prediction. Journal of Cognitive Neuroscience, 30(8), 1075-1085. doi:10.1162/jocn_a_01275.

    Abstract

    Using magnetoencephalography, the current study examined gamma activity associated with language prediction. Participants read high- and low-constraining sentences in which the final word of the sentence was either expected or unexpected. Although no consistent gamma power difference induced by the sentence-final words was found between the expected and unexpected conditions, the correlation of gamma power during the prediction and activation intervals of the sentence-final words was larger when the presented words matched with the prediction compared with when the prediction was violated or when no prediction was available. This suggests that gamma magnitude relates to the match between predicted and perceived words. Moreover, the expected words induced activity with a slower gamma frequency compared with that induced by unexpected words. Overall, the current study establishes that prediction is related to gamma power correlations and a slowing of the gamma frequency.
  • Wang, M., Shao, Z., Chen, Y., & Schiller, N. O. (2018). Neural correlates of spoken word production in semantic and phonological blocked cyclic naming. Language, Cognition and Neuroscience, 33(5), 575-586. doi:10.1080/23273798.2017.1395467.

    Abstract

    The blocked cyclic naming paradigm has been increasingly employed to investigate the mechanisms underlying spoken word production. Semantic homogeneity typically elicits longer naming latencies than heterogeneity; however, it is debated whether competitive lexical selection or incremental learning underlies this effect. The current study manipulated both semantic and phonological homogeneity and used behavioural and electrophysiological measurements to provide evidence that can distinguish between the two accounts. Results show that naming latencies are longer in semantically homogeneous blocks, but shorter in phonologically homogeneous blocks, relative to heterogeneity. The semantic factor significantly modulates electrophysiological waveforms from 200 ms and the phonological factor from 350 ms after picture presentation. A positive component was demonstrated in both manipulations, possibly reflecting a task-related top-down bias in performing blocked cyclic naming. These results provide novel insights into the neural correlates of blocked cyclic naming and further contribute to the understanding of spoken word production.
  • Wang, L., Bastiaansen, M. C. M., Yang, Y., & Hagoort, P. (2011). The influence of information structure on the depth of semantic processing: How focus and pitch accent determine the size of the N400 effect. Neuropsychologia, 49, 813-820. doi:10.1016/j.neuropsychologia.2010.12.035.

    Abstract

    To highlight relevant information in dialogues, both wh-question context and pitch accent in answers can be used, such that focused information gains more attention and is processed more elaborately. To evaluate the relative influence of context and pitch accent on the depth of semantic processing, we measured Event-Related Potentials (ERPs) to auditorily presented wh-question-answer pairs. A semantically incongruent word in the answer occurred either in focus or non-focus position as determined by the context, and this word was either accented or unaccented. Semantic incongruency elicited different N400 effects in different conditions. The largest N400 effect was found when the question-marked focus was accented, while the other three conditions elicited smaller N400 effects. The results suggest that context and accentuation interact. Thus accented focused words were processed more deeply compared to conditions where focus and accentuation mismatched, or when the new information had no marking. In addition, there seems to be sex differences in the depth of semantic processing. For males, a significant N400 effect was observed only when the question-marked focus was accented, reduced N400 effects were found in the other dialogues. In contrast, females produced similar N400 effects in all the conditions. These results suggest that regardless of external cues, females tend to engage in more elaborate semantic processing compared to males.
  • Wanke, K., Devanna, P., & Vernes, S. C. (2018). Understanding neurodevelopmental disorders: The promise of regulatory variation in the 3’UTRome. Biological Psychiatry, 83(7), 548-557. doi:10.1016/j.biopsych.2017.11.006.

    Abstract

    Neurodevelopmental disorders have a strong genetic component, but despite widespread efforts, the specific genetic factors underlying these disorders remain undefined for a large proportion of affected individuals. Given the accessibility of exome-sequencing, this problem has thus far been addressed from a protein-centric standpoint; however, protein-coding regions only make up ∼1-2% of the human genome. With the advent of whole-genome sequencing we are in the midst of a paradigm shift as it is now possible to interrogate the entire sequence of the human genome (coding and non-coding) to fill in the missing heritability of complex disorders. These new technologies bring new challenges, as the number of non-coding variants identified per individual can be overwhelming, making it prudent to focus on non-coding regions of known function, for which the effects of variation can be predicted and directly tested to assess pathogenicity. The 3’UTRome is a region of the non-coding genome that perfectly fulfils these criteria and is of high interest when searching for pathogenic variation related to complex neurodevelopmental disorders. Herein, we review the regulatory roles of the 3’UTRome as binding sites for microRNAs, RNA binding proteins or during alternative polyadenylation. We detail existing evidence that these regions contribute to neurodevelopmental disorders and outline strategies for identification and validation of novel putatively pathogenic variation in these regions. This evidence suggests that studying the 3’UTRome will lead to the identification of new risk factors, new candidate disease genes and a better understanding of the molecular mechanisms contributing to NDDs.

    Additional information

    1-s2.0-S0006322317321911-mmc1.pdf
  • Warner, N., & Cutler, A. (2017). Stress effects in vowel perception as a function of language-specific vocabulary patterns. Phonetica, 74, 81-106. doi:10.1159/000447428.

    Abstract

    Background/Aims: Evidence from spoken word recognition suggests that for English listeners, distinguishing full versus reduced vowels is important, but discerning stress differences involving the same full vowel (as in mu- from music or museum) is not. In Dutch, in contrast, the latter distinction is important. This difference arises from the relative frequency of unstressed full vowels in the two vocabularies. The goal of this paper is to determine how this difference in the lexicon influences the perception of stressed versus unstressed vowels. Methods: All possible sequences of two segments (diphones) in Dutch and in English were presented to native listeners in gated fragments. We recorded identification performance over time throughout the speech signal. The data were here analysed specifically for patterns in perception of stressed versus unstressed vowels. Results: The data reveal significantly larger stress effects (whereby unstressed vowels are harder to identify than stressed vowels) in English than in Dutch. Both language-specific and shared patterns appear regarding which vowels show stress effects. Conclusion: We explain the larger stress effect in English as reflecting the processing demands caused by the difference in use of unstressed vowels in the lexicon. The larger stress effect in English is due to relative inexperience with processing unstressed full vowels
  • Warren, C. M., Tona, K. D., Ouwekerk, L., Van Paridon, J., Poletiek, F. H., Bosch, J. A., & Nieuwenhuis, S. (2019). The neuromodulatory and hormonal effects of transcutaneous vagus nerve stimulation as evidenced by salivary alpha amylase, salivary cortisol, pupil diameter, and the P3 event-related potential. Brain Stimulation, 12(3), 635-642. doi:10.1016/j.brs.2018.12.224.

    Abstract

    Background

    Transcutaneous vagus nerve stimulation (tVNS) is a new, non-invasive technique being investigated as an intervention for a variety of clinical disorders, including epilepsy and depression. It is thought to exert its therapeutic effect by increasing central norepinephrine (NE) activity, but the evidence supporting this notion is limited.
    Objective

    In order to test for an impact of tVNS on psychophysiological and hormonal indices of noradrenergic function, we applied tVNS in concert with assessment of salivary alpha amylase (SAA) and cortisol, pupil size, and electroencephalograph (EEG) recordings.
    Methods

    Across three experiments, we applied real and sham tVNS to 61 healthy participants while they performed a set of simple stimulus-discrimination tasks. Before and after the task, as well as during one break, participants provided saliva samples and had their pupil size recorded. EEG was recorded throughout the task. The target for tVNS was the cymba conchae, which is heavily innervated by the auricular branch of the vagus nerve. Sham stimulation was applied to the ear lobe.
    Results

    P3 amplitude was not affected by tVNS (Experiment 1A: N=24; Experiment 1B: N=20; Bayes factor supporting null model=4.53), nor was pupil size (Experiment 2: N=16; interaction of treatment and time: p=0.79). However, tVNS increased SAA (Experiments 1A and 2: N=25) and attenuated the decline of salivary cortisol compared to sham (Experiment 2: N=17), as indicated by significant interactions involving treatment and time (p=.023 and p=.040, respectively).
    Conclusion

    These findings suggest that tVNS modulates hormonal indices but not psychophysiological indices of noradrenergic function.
  • Watson, L. M., Wong, M. M. K., Vowles, J., Cowley, S. A., & Becker, E. B. E. (2018). A simplified method for generating purkinje cells from human-induced pluripotent stem cells. The Cerebellum, 17(4), 419-427. doi:10.1007/s12311-017-0913-2.

    Abstract

    The establishment of a reliable model for the study of Purkinje cells in vitro is of particular importance, given their central role in cerebellar function and pathology. Recent advances in induced pluripotent stem cell (iPSC) technology offer the opportunity to generate multiple neuronal subtypes for study in vitro. However, to date, only a handful of studies have generated Purkinje cells from human pluripotent stem cells, with most of these protocols proving challenging to reproduce. Here, we describe a simplified method for the reproducible generation of Purkinje cells from human iPSCs. After 21 days of treatment with factors selected to mimic the self-inductive properties of the isthmic organiser—insulin, fibroblast growth factor 2 (FGF2), and the transforming growth factor β (TGFβ)-receptor blocker SB431542—hiPSCs could be induced to form En1-positive cerebellar progenitors at efficiencies of up to 90%. By day 35 of differentiation, subpopulations of cells representative of the two cerebellar germinal zones, the rhombic lip (Atoh1-positive) and ventricular zone (Ptf1a-positive), could be identified, with the latter giving rise to cells positive for Purkinje cell progenitor-specific markers, including Lhx5, Kirrel2, Olig2 and Skor2. Further maturation was observed following dissociation and co-culture of these cerebellar progenitors with mouse cerebellar cells, with 10% of human cells staining positive for the Purkinje cell marker calbindin by day 70 of differentiation. This protocol, which incorporates modifications designed to enhance cell survival and maturation and improve the ease of handling, should serve to make existing models more accessible, in order to enable future advances in the field.

    Additional information

    12311_2017_913_MOESM1_ESM.docx
  • Weber, K., Christiansen, M., Indefrey, P., & Hagoort, P. (2019). Primed from the start: Syntactic priming during the first days of language learning. Language Learning, 69(1), 198-221. doi:10.1111/lang.12327.

    Abstract

    New linguistic information must be integrated into our existing language system. Using a novel experimental task that incorporates a syntactic priming paradigm into artificial language learning, we investigated how new grammatical regularities and words are learned. This innovation allowed us to control the language input the learner received, while the syntactic priming paradigm provided insight into the nature of the underlying syntactic processing machinery. The results of the present study pointed to facilitatory syntactic processing effects within the first days of learning: Syntactic and lexical priming effects revealed participants’ sensitivity to both novel words and word orders. This suggested that novel syntactic structures and their meaning (form–function mapping) can be acquired rapidly through incidental learning. More generally, our study indicated similar mechanisms for learning and processing in both artificial and natural languages, with implications for the relationship between first and second language learning.
  • Weber, K., Micheli, C., Ruigendijk, E., & Rieger, J. (2019). Sentence processing is modulated by the current linguistic environment and a priori information: An fMRI study. Brain and Behavior, 9(7): e01308. doi:10.1002/brb3.1308.

    Abstract

    Introduction
    Words are not processed in isolation but in rich contexts that are used to modulate and facilitate language comprehension. Here, we investigate distinct neural networks underlying two types of contexts, the current linguistic environment and verb‐based syntactic preferences.

    Methods
    We had two main manipulations. The first was the current linguistic environment, where the relative frequencies of two syntactic structures (prepositional object [PO] and double‐object [DO]) would either follow everyday linguistic experience or not. The second concerned the preference toward one or the other structure depending on the verb; learned in everyday language use and stored in memory. German participants were reading PO and DO sentences in German while brain activity was measured with functional magnetic resonance imaging.

    Results
    First, the anterior cingulate cortex (ACC) showed a pattern of activation that integrated the current linguistic environment with everyday linguistic experience. When the input did not match everyday experience, the unexpected frequent structure showed higher activation in the ACC than the other conditions and more connectivity from the ACC to posterior parts of the language network. Second, verb‐based surprisal of seeing a structure given a verb (PO verb preference but DO structure presentation) resulted, within the language network (left inferior frontal and left middle/superior temporal gyrus) and the precuneus, in increased activation compared to a predictable verb‐structure pairing.

    Conclusion
    In conclusion, (1) beyond the canonical language network, brain areas engaged in prediction and error signaling, such as the ACC, might use the statistics of syntactic structures to modulate language processing, (2) the language network is directly engaged in processing verb preferences. These two networks show distinct influences on sentence processing.

    Additional information

    Supporting information
  • Weber, A., Broersma, M., & Aoyagi, M. (2011). Spoken-word recognition in foreign-accented speech by L2 listeners. Journal of Phonetics, 39, 479-491. doi:10.1016/j.wocn.2010.12.004.

    Abstract

    Two cross-modal priming studies investigated the recognition of English words spoken with a foreign accent. Auditory English primes were either typical of a Dutch accent or typical of a Japanese accent in English and were presented to both Dutch and Japanese L2 listeners. Lexical-decision times to subsequent visual target words revealed that foreign-accented words can facilitate word recognition for L2 listeners if at least one of two requirements is met: the foreign-accented production is in accordance with the language background of the L2 listener, or the foreign accent is perceptually confusable with the standard pronunciation for the L2 listener. If neither one of the requirements is met, no facilitatory effect of foreign accents on L2 word recognition is found. Taken together, these findings suggest that linguistic experience with a foreign accent affects the ability to recognize words carrying this accent, and there is furthermore a general benefit for L2 listeners for recognizing foreign-accented words that are perceptually confusable with the standard pronunciation.
  • Weber, K., & Lavric, A. (2008). Syntactic anomaly elicits a lexico-semantic (N400) ERP effect in the second but not in the first language. Psychophysiology, 45(6), 920-925. doi:10.1111/j.1469-8986.2008.00691.x.

    Abstract

    Recent brain potential research into first versus second language (L1 vs. L2) processing revealed striking responses to morphosyntactic features absent in the mother tongue. The aim of the present study was to establish whether the presence of comparable morphosyntactic features in L1 leads to more similar electrophysiological L1 and L2 profiles. ERPs were acquired while German-English bilinguals and native speakers of English read sentences. Some sentences were meaningful and well formed, whereas others contained morphosyntactic or semantic violations in the final word. In addition to the expected P600 component, morphosyntactic violations in L2 but not L1 led to an enhanced N400. This effect may suggest either that resolution of morphosyntactic anomalies in L2 relies on the lexico-semantic system or that the weaker/slower morphological mechanisms in L2 lead to greater sentence wrap-up difficulties known to result in N400 enhancement.
  • Weekes, B. S., Abutalebi, J., Mak, H.-K.-F., Borsa, V., Soares, S. M. P., Chiu, P. W., & Zhang, L. (2018). Effect of monolingualism and bilingualism in the anterior cingulate cortex: a proton magnetic resonance spectroscopy study in two centers. Letras de Hoje, 53(1), 5-12. doi:10.15448/1984-7726.2018.1.30954.

    Abstract

    Reports of an advantage of bilingualism on brain structure in young adult participants
    are inconsistent. Abutalebi et al. (2012) reported more efficient monitoring of conflict during the
    Flanker task in young bilinguals compared to young monolingual speakers. The present study
    compared young adult (mean age = 24) Cantonese-English bilinguals in Hong Kong and young
    adult monolingual speakers. We expected (a) differences in metabolites in neural tissue to result
    from bilingual experience, as measured by 1H-MRS at 3T, (b) correlations between metabolic
    levels and Flanker conflict and interference effects (c) different associations in bilingual and
    monolingual speakers. We found evidence of metabolic differences in the ACC due to bilingualism,
    specifically in metabolites Cho, Cr, Glx and NAA. However, we found no significant correlations
    between metabolic levels and conflict and interference effects and no significant evidence of
    differential relationships between bilingual and monolingual speakers. Furthermore, we found no
    evidence of significant differences in the mean size of conflict and interference effects between
    groups i.e. no bilingual advantage. Lower levels of Cho, Cr, Glx and NAA in bilingual adults
    compared to monolingual adults suggest that the brains of bilinguals develop greater adaptive
    control during conflict monitoring because of their extensive bilingual experience.
  • Wegman, J., Tyborowska, A., Hoogman, M., Vasquez, A. A., & Janzen, G. (2017). The brain-derived neurotrophic factor Val66Met polymorphism affects encoding of object locations during active navigation. European Journal of Neuroscience, 45(12), 1501-1511. doi:10.1111/ejn.13416.

    Abstract

    The brain-derived neurotrophic factor (BDNF) was shown to be involved in spatial memory and spatial strategy preference. A naturally occurring single nucleotide polymorphism of the BDNF gene (Val66Met) affects activity-dependent secretion of BDNF. The current event-related fMRI study on preselected groups of ‘Met’ carriers and homozygotes of the ‘Val’ allele investigated the role of this polymorphism on encoding and retrieval in a virtual navigation task in 37 healthy volunteers. In each trial, participants navigated toward a target object. During encoding, three positional cues (columns) with directional cues (shadows) were available. During retrieval, the invisible target had to be replaced while either two objects without shadows (objects trial) or one object with a shadow (shadow trial) were available. The experiment consisted of blocks, informing participants of which trial type would be most likely to occur during retrieval. We observed no differences between genetic groups in task performance or time to complete the navigation tasks. The imaging results show that Met carriers compared to Val homozygotes activate the left hippocampus more during successful object location memory encoding. The observed effects were independent of non-significant performance differences or volumetric differences in the hippocampus. These results indicate that variations of the BDNF gene affect memory encoding during spatial navigation, suggesting that lower levels of BDNF in the hippocampus results in less efficient spatial memory processing
  • Whitehouse, A. J., Bishop, D. V., Ang, Q., Pennell, C. E., & Fisher, S. E. (2011). CNTNAP2 variants affect early language development in the general population. Genes, Brain and Behavior, 10, 451-456. doi:10.1111/j.1601-183X.2011.00684.x.

    Abstract

    Early language development is known to be under genetic influence, but the genes affecting normal variation in the general population remain largely elusive. Recent studies of disorder reported that variants of the CNTNAP2 gene are associated both with language deficits in specific language impairment (SLI) and with language delays in autism. We tested the hypothesis that these CNTNAP2 variants affect communicative behavior, measured at 2 years of age in a large epidemiological sample, the Western Australian Pregnancy Cohort (Raine) Study. Singlepoint analyses of 1149 children (606 males, 543 emales) revealed patterns of association which were strikingly reminiscent of those observed in previous investigations of impaired language, centered on the same genetic markers, and with a consistent direction of effect (rs2710102, p = .0239; rs759178, p = .0248). Based on these findings we performed analyses of four-marker haplotypes of rs2710102- s759178-rs17236239-rs2538976, and identified significant association (haplotype TTAA, p = .049; haplotype GCAG, p = .0014). Our study suggests that common variants in the exon 13-15 region of CNTNAP2 influence early language acquisition, as assessed at age 2, in the general population. We propose that these CNTNAP2 variants increase susceptibility to SLI or autism when they occur together with other risk factors.

    Additional information

    Whitehouse_Additional_Information.doc
  • Widlok, T. (2008). Landscape unbounded: Space, place, and orientation in ≠Akhoe Hai// om and beyond. Language Sciences, 30(2/3), 362-380. doi:10.1016/j.langsci.2006.12.002.

    Abstract

    Even before it became a common place to assume that “the Eskimo have a hundred words for snow” the languages of hunting and gathering people have played an important role in debates about linguistic relativity concerning geographical ontologies. Evidence from languages of hunter-gatherers has been used in radical relativist challenges to the overall notion of a comparative typology of generic natural forms and landscapes as terms of reference. It has been invoked to emphasize a personalized relationship between humans and the non-human world. It is against this background that this contribution discusses the landscape terminology of ≠Akhoe Hai//om, a Khoisan language spoken by “Bushmen” in Namibia. Landscape vocabulary is ubiquitous in ≠Akhoe Hai//om due to the fact that the landscape plays a critical role in directionals and other forms of “topographical gossip” and due to merges between landscape and group terminology. This system of landscape-cum-group terminology is outlined and related to the use of place names in the area.
  • Wiese, R., Orzechowska, P., Alday, P. M., & Ulbrich, C. (2017). Structural Principles or Frequency of Use? An ERP Experiment on the Learnability of Consonant Clusters. Frontiers in Psychology, 7: 2005. doi:10.3389/fpsyg.2016.02005.

    Abstract

    Phonological knowledge of a language involves knowledge about which segments can be combined under what conditions. Languages vary in the quantity and quality of licensed combinations, in particular sequences of consonants, with Polish being a language with a large inventory of such combinations. The present paper reports on a two-session experiment in which Polish-speaking adult participants learned nonce words with final consonant clusters. The aim was to study the role of two factors which potentially play a role in the learning of phonotactic structures: the phonological principle of sonority (ordering sound segments within the syllable according to their inherent loudness) and the (non-) existence as a usage-based phenomenon. EEG responses in two different time windows (adversely to behavioral responses) show linguistic processing by native speakers of Polish to be sensitive to both distinctions, in spite of the fact that Polish is rich in sonority-violating clusters. In particular, a general learning effect in terms of an N400 effect was found which was demonstrated to be different for sonority-obeying clusters than for sonority-violating clusters. Furthermore, significant interactions of formedness and session, and of existence and session, demonstrate that both factors, the sonority principle and the frequency pattern, play a role in the learning process.
  • Willems, R. M., Ozyurek, A., & Hagoort, P. (2008). Seeing and hearing meaning: ERP and fMRI evidence of word versus picture integration into a sentence context. Journal of Cognitive Neuroscience, 20, 1235-1249. doi:10.1162/jocn.2008.20085.

    Abstract

    Understanding language always occurs within a situational context and, therefore, often implies combining streams of information from different domains and modalities. One such combination is that of spoken language and visual information, which are perceived together in a variety of ways during everyday communication. Here we investigate whether and how words and pictures differ in terms of their neural correlates when they are integrated into a previously built-up sentence context. This is assessed in two experiments looking at the time course (measuring event-related potentials, ERPs) and the locus (using functional magnetic resonance imaging, fMRI) of this integration process. We manipulated the ease of semantic integration of word and/or picture to a previous sentence context to increase the semantic load of processing. In the ERP study, an increased semantic load led to an N400 effect which was similar for pictures and words in terms of latency and amplitude. In the fMRI study, we found overlapping activations to both picture and word integration in the left inferior frontal cortex. Specific activations for the integration of a word were observed in the left superior temporal cortex. We conclude that despite obvious differences in representational format, semantic information coming from pictures and words is integrated into a sentence context in similar ways in the brain. This study adds to the growing insight that the language system incorporates (semantic) information coming from linguistic and extralinguistic domains with the same neural time course and by recruitment of overlapping brain areas.
  • Willems, R. M., Labruna, L., D'Esposito, M., Ivry, R., & Casasanto, D. (2011). A functional role for the motor system in language understanding: Evidence from Theta-Burst Transcranial Magnetic Stimulation. Psychological Science, 22, 849 -854. doi:10.1177/0956797611412387.

    Abstract

    Does language comprehension depend, in part, on neural systems for action? In previous studies, motor areas of the brain were activated when people read or listened to action verbs, but it remains unclear whether such activation is functionally relevant for comprehension. In the experiments reported here, we used off-line theta-burst transcranial magnetic stimulation to investigate whether a causal relationship exists between activity in premotor cortex and action-language understanding. Right-handed participants completed a lexical decision task, in which they read verbs describing manual actions typically performed with the dominant hand (e.g., “to throw,” “to write”) and verbs describing nonmanual actions (e.g., “to earn,” “to wander”). Responses to manual-action verbs (but not to nonmanual-action verbs) were faster after stimulation of the hand area in left premotor cortex than after stimulation of the hand area in right premotor cortex. These results suggest that premotor cortex has a functional role in action-language understanding.

    Additional information

    Supplementary materials Willems.pdf
  • Willems, R. M., Clevis, K., & Hagoort, P. (2011). Add a picture for suspense: Neural correlates of the interaction between language and visual information in the perception of fear. Social, Cognitive and Affective Neuroscience, 6, 404-416. doi:10.1093/scan/nsq050.

    Abstract

    We investigated how visual and linguistic information interact in the perception of emotion. We borrowed a phenomenon from film theory which states that presentation of an as such neutral visual scene intensifies the percept of fear or suspense induced by a different channel of information, such as language. Our main aim was to investigate how neutral visual scenes can enhance responses to fearful language content in parts of the brain involved in the perception of emotion. Healthy participants’ brain activity was measured (using functional magnetic resonance imaging) while they read fearful and less fearful sentences presented with or without a neutral visual scene. The main idea is that the visual scenes intensify the fearful content of the language by subtly implying and concretizing what is described in the sentence. Activation levels in the right anterior temporal pole were selectively increased when a neutral visual scene was paired with a fearful sentence, compared to reading the sentence alone, as well as to reading of non-fearful sentences presented with the same neutral scene. We conclude that the right anterior temporal pole serves a binding function of emotional information across domains such as visual and linguistic information.
  • Willems, R. M., Benn, Y., Hagoort, P., Tonia, I., & Varley, R. (2011). Communicating without a functioning language system: Implications for the role of language in mentalizing. Neuropsychologia, 49, 3130-3135. doi:10.1016/j.neuropsychologia.2011.07.023.

    Abstract

    A debated issue in the relationship between language and thought is how our linguistic abilities are involved in understanding the intentions of others (‘mentalizing’). The results of both theoretical and empirical work have been used to argue that linguistic, and more specifically, grammatical, abilities are crucial in representing the mental states of others. Here we contribute to this debate by investigating how damage to the language system influences the generation and understanding of intentional communicative behaviors. Four patients with pervasive language difficulties (severe global or agrammatic aphasia) engaged in an experimentally controlled non-verbal communication paradigm, which required signaling and understanding a communicative message. Despite their profound language problems they were able to engage in recipient design as well as intention recognition, showing similar indicators of mentalizing as have been observed in the neurologically healthy population. Our results show that aspects of the ability to communicate remain present even when core capacities of the language system are dysfunctional
  • Willems, R. M., Oostenveld, R., & Hagoort, P. (2008). Early decreases in alpha and gamma band power distinguish linguistic from visual information during spoken sentence comprehension. Brain Research, 1219, 78-90. doi:10.1016/j.brainres.2008.04.065.

    Abstract

    Language is often perceived together with visual information. This raises the question on how the brain integrates information conveyed in visual and/or linguistic format during spoken language comprehension. In this study we investigated the dynamics of semantic integration of visual and linguistic information by means of time-frequency analysis of the EEG signal. A modified version of the N400 paradigm with either a word or a picture of an object being semantically incongruous with respect to the preceding sentence context was employed. Event-Related Potential (ERP) analysis showed qualitatively similar N400 effects for integration of either word or picture. Time-frequency analysis revealed early specific decreases in alpha and gamma band power for linguistic and visual information respectively. We argue that these reflect a rapid context-based analysis of acoustic (word) or visual (picture) form information. We conclude that although full semantic integration of linguistic and visual information occurs through a common mechanism, early differences in oscillations in specific frequency bands reflect the format of the incoming information and, importantly, an early context-based detection of its congruity with respect to the preceding language context
  • Willems, R. M., & Casasanto, D. (2011). Flexibility in embodied language understanding. Frontiers in Psychology, 2, 116. doi:10.3389/fpsyg.2011.00116.

    Abstract

    Do people use sensori-motor cortices to understand language? Here we review neurocognitive studies of language comprehension in healthy adults and evaluate their possible contributions to theories of language in the brain. We start by sketching the minimal predictions that an embodied theory of language understanding makes for empirical research, and then survey studies that have been offered as evidence for embodied semantic representations. We explore four debated issues: first, does activation of sensori-motor cortices during action language understanding imply that action semantics relies on mirror neurons? Second, what is the evidence that activity in sensori-motor cortices plays a functional role in understanding language? Third, to what extent do responses in perceptual and motor areas depend on the linguistic and extra-linguistic context? And finally, can embodied theories accommodate language about abstract concepts? Based on the available evidence, we conclude that sensori-motor cortices are activated during a variety of language comprehension tasks, for both concrete and abstract language. Yet, this activity depends on the context in which perception and action words are encountered. Although modality-specific cortical activity is not a sine qua non of language processing even for language about perception and action, sensori-motor regions of the brain appear to make functional contributions to the construction of meaning, and should therefore be incorporated into models of the neurocognitive architecture of language.
  • Willems, R. M. (2011). Re-appreciating the why of cognition: 35 years after Marr and Poggio. Frontiers in Psychology, 2, 244. doi:10.3389/fpsyg.2011.00244.

    Abstract

    Marr and Poggio’s levels of description are one of the most well-known theoretical constructs of twentieth century cognitive science. It entails that behavior can and should be considered at three different levels: computation, algorithm, and implementation. In this contribution focus is on the computational level of description, the level that describes the “why” of cognition. I argue that the computational level should be taken as a starting point in devising experiments in cognitive (neuro)science. Instead, the starting point in empirical practice often is a focus on the stimulus or on some capacity of the cognitive system. The “why” of cognition tends to be ignored when designing research, and is not considered in subsequent inference from experimental results. The overall aim of this manuscript is to show how re-appreciation of the computational level of description as a starting point for experiments can lead to more informative experimentation.
  • Williams, N. M., Williams, H., Majounie, E., Norton, N., Glaser, B., Morris, H. R., Owen, M. J., & O'Donovan, M. C. (2008). Analysis of copy number variation using quantitative interspecies competitive PCR. Nucleic Acids Research, 36(17): e112. doi:10.1093/nar/gkn495.

    Abstract

    Over recent years small submicroscopic DNA copy-number variants (CNVs) have been highlighted as an important source of variation in the human genome, human phenotypic diversity and disease susceptibility. Consequently, there is a pressing need for the development of methods that allow the efficient, accurate and cheap measurement of genomic copy number polymorphisms in clinical cohorts. We have developed a simple competitive PCR based method to determine DNA copy number which uses the entire genome of a single chimpanzee as a competitor thus eliminating the requirement for competitive sequences to be synthesized for each assay. This results in the requirement for only a single reference sample for all assays and dramatically increases the potential for large numbers of loci to be analysed in multiplex. In this study we establish proof of concept by accurately detecting previously characterized mutations at the PARK2 locus and then demonstrating the potential of quantitative interspecies competitive PCR (qicPCR) to accurately genotype CNVs in association studies by analysing chromosome 22q11 deletions in a sample of previously characterized patients and normal controls.
  • Winsvold, B. S., Palta, P., Eising, E., Page, C. M., The International Headache Genetics Consortium, Van den Maagdenberg, A. M. J. M., Palotie, A., & Zwart, J.-A. (2018). Epigenetic DNA methylation changes associated with headache chronification: A retrospective case-control study. Cephalalgia, 38(2), 312-322. doi:10.1177/0333102417690111.

    Abstract

    Background

    The biological mechanisms of headache chronification are poorly understood. We aimed to identify changes in DNA methylation associated with the transformation from episodic to chronic headache.
    Methods

    Participants were recruited from the population-based Norwegian HUNT Study. Thirty-six female headache patients who transformed from episodic to chronic headache between baseline and follow-up 11 years later were matched against 35 controls with episodic headache. DNA methylation was quantified at 485,000 CpG sites, and changes in methylation level at these sites were compared between cases and controls by linear regression analysis. Data were analyzed in two stages (Stages 1 and 2) and in a combined meta-analysis.
    Results

    None of the top 20 CpG sites identified in Stage 1 replicated in Stage 2 after multiple testing correction. In the combined meta-analysis the strongest associated CpG sites were related to SH2D5 and NPTX2, two brain-expressed genes involved in the regulation of synaptic plasticity. Functional enrichment analysis pointed to processes including calcium ion binding and estrogen receptor pathways.
    Conclusion

    In this first genome-wide study of DNA methylation in headache chronification several potentially implicated loci and processes were identified. The study exemplifies the use of prospectively collected population cohorts to search for epigenetic mechanisms of disease
  • Winter, B., Perlman, M., & Majid, A. (2018). Vision dominates in perceptual language: English sensory vocabulary is optimized for usage. Cognition, 179, 213-220. doi:10.1016/j.cognition.2018.05.008.

    Abstract

    Researchers have suggested that the vocabularies of languages are oriented towards the communicative needs of language users. Here, we provide evidence demonstrating that the higher frequency of visual words in a large variety of English corpora is reflected in greater lexical differentiation—a greater number of unique words—for the visual domain in the English lexicon. In comparison, sensory modalities that are less frequently talked about, particularly taste and smell, show less lexical differentiation. In addition, we show that even though sensory language can be expected to change across historical time and between contexts of use (e.g., spoken language versus fiction), the pattern of visual dominance is a stable property of the English language. Thus, we show that across the board, precisely those semantic domains that are more frequently talked about are also more lexically differentiated, for perceptual experiences. This correlation between type and token frequencies suggests that the sensory lexicon of English is geared towards communicative efficiency.
  • Wirthlin, M., Chang, E. F., Knörnschild, M., Krubitzer, L. A., Mello, C. V., Miller, C. T., Pfenning, A. R., Vernes, S. C., Tchernichovski, O., & Yartsev, M. M. (2019). A modular approach to vocal learning: Disentangling the diversity of a complex behavioral trait. Neuron, 104(1), 87-99. doi:10.1016/j.neuron.2019.09.036.

    Abstract

    Vocal learning is a behavioral trait in which the social and acoustic environment shapes the vocal repertoire of individuals. Over the past century, the study of vocal learning has progressed at the intersection of ecology, physiology, neuroscience, molecular biology, genomics, and evolution. Yet, despite the complexity of this trait, vocal learning is frequently described as a binary trait, with species being classified as either vocal learners or vocal non-learners. As a result, studies have largely focused on a handful of species for which strong evidence for vocal learning exists. Recent studies, however, suggest a continuum in vocal learning capacity across taxa. Here, we further suggest that vocal learning is a multi-component behavioral phenotype comprised of distinct yet interconnected modules. Discretizing the vocal learning phenotype into its constituent modules would facilitate integration of findings across a wider diversity of species, taking advantage of the ways in which each excels in a particular module, or in a specific combination of features. Such comparative studies can improve understanding of the mechanisms and evolutionary origins of vocal learning. We propose an initial set of vocal learning modules supported by behavioral and neurobiological data and highlight the need for diversifying the field in order to disentangle the complexity of the vocal learning phenotype.

    Files private

    Request files
  • Wittenburg, P. (2008). Die CLARIN Forschungsinfrastruktur. ÖGAI-journal (Österreichische Gesellschaft für Artificial Intelligence), 27, 10-17.
  • Wnuk, E., De Valk, J. M., Huisman, J. L. A., & Majid, A. (2017). Hot and cold smells: Odor-temperature associations across cultures. Frontiers in Psychology, 8: 1373. doi:10.3389/fpsyg.2017.01373.

    Abstract

    It is often assumed odors are associated with hot and cold temperature, since odor processing may trigger thermal sensations, such as coolness in the case of mint. It is unknown, however, whether people make consistent temperature associations for a variety of everyday odors, and, if so, what determines them. Previous work investigating the bases of cross-modal associations suggests a number of possibilities, including universal forces (e.g., perception), as well as culture-specific forces (e.g., language and cultural beliefs). In this study, we examined odor-temperature associations in three cultures—Maniq (N = 11), Thai (N = 24), and Dutch (N = 24)—who differ with respect to their cultural preoccupation with odors, their odor lexicons, and their beliefs about the relationship of odors (and odor objects) to temperature. Participants matched 15 odors to temperature by touching cups filled with hot or cold water, and described the odors in their native language. The results showed no consistent associations among the Maniq, and only a handful of consistent associations between odor and temperature among the Thai and Dutch. The consistent associations differed across the two groups, arguing against their universality. Further analysis revealed cross-modal associations could not be explained by language, but could be the result of cultural beliefs
  • Wolf, M. C., Muijselaar, M. M. L., Boonstra, A. M., & De Bree, E. H. (2019). The relationship between reading and listening comprehension: Shared and modality-specific components. Reading and Writing, 32(7), 1747-1767. doi:10.1007/s11145-018-9924-8.

    Abstract

    This study aimed to increase our understanding on the relationship between reading and listening comprehension. Both in comprehension theory and in educational practice, reading and listening comprehension are often seen as interchangeable, overlooking modality-specific aspects of them separately. Three questions were addressed. First, it was examined to what extent reading and listening comprehension comprise modality-specific, distinct skills or an overlapping, domain-general skill in terms of the amount of explained variance in one comprehension type by the opposite comprehension type. Second, general and modality-unique subskills of reading and listening comprehension were sought by assessing the contributions of the foundational skills word reading fluency, vocabulary, memory, attention, and inhibition to both comprehension types. Lastly, the practice of using either listening comprehension or vocabulary as a proxy of general comprehension was investigated. Reading and listening comprehension tasks with the same format were assessed in 85 second and third grade children. Analyses revealed that reading comprehension explained 34% of the variance in listening comprehension, and listening comprehension 40% of reading comprehension. Vocabulary and word reading fluency were found to be shared contributors to both reading and listening comprehension. None of the other cognitive skills contributed significantly to reading or listening comprehension. These results indicate that only part of the comprehension process is indeed domain-general and not influenced by the modality in which the information is provided. Especially vocabulary seems to play a large role in this domain-general part. The findings warrant a more prominent focus of modality-specific aspects of both reading and listening comprehension in research and education.
  • Wolters, G., & Poletiek, F. H. (2008). Beslissen over aangiftes van seksueel misbruik bij kinderen. De Psycholoog, 43, 29-29.
  • Wong, M. M. K., Hoekstra, S. D., Vowles, J., Watson, L. M., Fuller, G., Németh, A. H., Cowley, S. A., Ansorge, O., Talbot, K., & Becker, E. B. E. (2018). Neurodegeneration in SCA14 is associated with increased PKCγ kinase activity, mislocalization and aggregation. Acta Neuropathologica Communications, 6: 99. doi:10.1186/s40478-018-0600-7.

    Abstract

    Spinocerebellar ataxia type 14 (SCA14) is a subtype of the autosomal dominant cerebellar ataxias that is characterized by slowly progressive cerebellar dysfunction and neurodegeneration. SCA14 is caused by mutations in the PRKCG gene, encoding protein kinase C gamma (PKCγ). Despite the identification of 40 distinct disease-causing mutations in PRKCG, the pathological mechanisms underlying SCA14 remain poorly understood. Here we report the molecular neuropathology of SCA14 in post-mortem cerebellum and in human patient-derived induced pluripotent stem cells (iPSCs) carrying two distinct SCA14 mutations in the C1 domain of PKCγ, H36R and H101Q. We show that endogenous expression of these mutations results in the cytoplasmic mislocalization and aggregation of PKCγ in both patient iPSCs and cerebellum. PKCγ aggregates were not efficiently targeted for degradation. Moreover, mutant PKCγ was found to be hyper-activated, resulting in increased substrate phosphorylation. Together, our findings demonstrate that a combination of both, loss-of-function and gain-of-function mechanisms are likely to underlie the pathogenesis of SCA14, caused by mutations in the C1 domain of PKCγ. Importantly, SCA14 patient iPSCs were found to accurately recapitulate pathological features observed in post-mortem SCA14 cerebellum, underscoring their potential as relevant disease models and their promise as future drug discovery tools.

    Additional information

    additional file
  • Wong, M. M. K., Watson, L. M., & Becker, E. B. E. (2017). Recent advances in modelling of cerebellar ataxia using induced pluripotent stem cells. Journal of Neurology & Neuromedicine, 2(7), 11-15. doi:10.29245/2572.942X/2017/7.1134.

    Abstract

    The cerebellar ataxias are a group of incurable brain disorders that are caused primarily by the progressive dysfunction and degeneration of cerebellar Purkinje cells. The lack of reliable disease models for the heterogeneous ataxias has hindered the understanding of the underlying pathogenic mechanisms as well as the development of effective therapies for these devastating diseases. Recent advances in the field of induced pluripotent stem cell (iPSC) technology offer new possibilities to better understand and potentially reverse disease pathology. Given the neurodevelopmental phenotypes observed in several types of ataxias, iPSC-based models have the potential to provide significant insights into disease progression, as well as opportunities for the development of early intervention therapies. To date, however, very few studies have successfully used iPSC-derived cells to cerebellar ataxias. In this review, we focus on recent breakthroughs in generating human iPSC-derived Purkinje cells. We also highlight the future challenges that will need to be addressed in order to fully exploit these models for the modelling of the molecular mechanisms underlying cerebellar ataxias and the development of effective therapeutics.
  • Yager, J., & Burenhult, N. (2017). Jedek: a newly discovered Aslian variety of Malaysia. Linguistic Typology, 21(3), 493-545. doi:10.1515/lingty-2017-0012.

    Abstract

    Jedek is a previously unrecognized variety of the Northern Aslian subgroup of the Aslian branch of the Austroasiatic language family. It is spoken by c. 280 individuals in the resettlement area of Sungai Rual, near Jeli in Kelantan state, Peninsular Malaysia. The community originally consisted of several bands of foragers along the middle reaches of the Pergau river. Jedek’s distinct status first became known during a linguistic survey carried out in the DOBES project Tongues of the Semang (2005-2011). This paper describes the process leading up to its discovery and provides an overview of its typological characteristics.
  • Li, X., Yang, Y., & Hagoort, P. (2008). Pitch accent and lexical tone processing in Chinese discourse comprehension: An ERP study. Brain Research, 1222, 192-200. doi:10.1016/j.brainres.2008.05.031.

    Abstract

    In the present study, event-related brain potentials (ERP) were recorded to investigate the role of pitch accent and lexical tone in spoken discourse comprehension. Chinese was used as material to explore the potential difference in the nature and time course of brain responses to sentence meaning as indicated by pitch accent and to lexical meaning as indicated by tone. In both cases, the pitch contour of critical words was varied. The results showed that both inconsistent pitch accent and inconsistent lexical tone yielded N400 effects, and there was no interaction between them. The negativity evoked by inconsistent pitch accent had the some topography as that evoked by inconsistent lexical tone violation, with a maximum over central–parietal electrodes. Furthermore, the effect for the combined violations was the sum of effects for pure pitch accent and pure lexical tone violation. However, the effect for the lexical tone violation appeared approximately 90 ms earlier than the effect of the pitch accent violation. It is suggested that there might be a correspondence between the neural mechanism underlying pitch accent and lexical meaning processing in context. They both reflect the integration of the current information into a discourse context, independent of whether the current information was sentence meaning indicated by accentuation, or lexical meaning indicated by tone. In addition, lexical meaning was processed earlier than sentence meaning conveyed by pitch accent during spoken language processing.
  • Yang, J., Zhu, H., & Tian, X. (2018). Group-level multivariate analysis in EasyEEG toolbox: Examining the temporal dynamics using topographic responses. Frontiers in Neuroscience, 12: 468. doi:10.3389/fnins.2018.00468.

    Abstract

    Electroencephalography (EEG) provides high temporal resolution cognitive information from non-invasive recordings. However, one of the common practices-using a subset of sensors in ERP analysis is hard to provide a holistic and precise dynamic results. Selecting or grouping subsets of sensors may also be subject to selection bias, multiple comparison, and further complicated by individual differences in the group-level analysis. More importantly, changes in neural generators and variations in response magnitude from the same neural sources are difficult to separate, which limit the capacity of testing different aspects of cognitive hypotheses. We introduce EasyEEG, a toolbox that includes several multivariate analysis methods to directly test cognitive hypotheses based on topographic responses that include data from all sensors. These multivariate methods can investigate effects in the dimensions of response magnitude and topographic patterns separately using data in the sensor space, therefore enable assessing neural response dynamics. The concise workflow and the modular design provide user-friendly and programmer-friendly features. Users of all levels can benefit from the open-sourced, free EasyEEG to obtain a straightforward solution for efficient processing of EEG data and a complete pipeline from raw data to final results for publication.
  • Yoshihara, M., Nakayama, M., Verdonschot, R. G., & Hino, Y. (2017). The phonological unit of Japanese Kanji compounds: A masked priming investigation. Journal of Experimental Psychology: Human Perception and Performance, 43(7), 1303-1328. doi:10.1037/xhp0000374.

    Abstract

    Using the masked priming paradigm, we examined which phonological unit is used when naming Kanji compounds. Although the phonological unit in the Japanese language has been suggested to be the mora, Experiment 1 found no priming for mora-related Kanji prime-target pairs. In Experiment 2, significant priming was only found when Kanji pairs shared the whole sound of their initial Kanji characters. Nevertheless, when the same Kanji pairs used in Experiment 2 were transcribed into Kana, significant mora priming was observed in Experiment 3. In Experiment 4, matching the syllable structure and pitch-accent of the initial Kanji characters did not lead to mora priming, ruling out potential alternative explanations for the earlier absence of the effect. A significant mora priming effect was observed, however, when the shared initial mora constituted the whole sound of their initial Kanji characters in Experiments 5. Lastly, these results were replicated in Experiment 6. Overall, these results indicate that the phonological unit involved when naming Kanji compounds is not the mora but the whole sound of each Kanji character. We discuss how different phonological units may be involved when processing Kanji and Kana words as well as the implications for theories dealing with language production processes.
  • Zhen, Z., Kong, X., Huang, L., Yang, Z., Wang, X., Hao, X., Huang, T., Song, Y., & Liu, J. (2017). Quantifying the variability of scene-selective regions: Interindividual, interhemispheric, and sex differences. Human Brain Mapping, 38(4), 2260-2275. doi:10.1002/hbm.23519.

    Abstract

    Scene-selective regions (SSRs), including the parahippocampal place area (PPA), retrosplenial cortex (RSC), and transverse occipital sulcus (TOS), are among the most widely characterized functional regions in the human brain. However, previous studies have mostly focused on the commonality within each SSR, providing little information on different aspects of their variability. In a large group of healthy adults (N = 202), we used functional magnetic resonance imaging to investigate different aspects of topographical and functional variability within SSRs, including interindividual, interhemispheric, and sex differences. First, the PPA, RSC, and TOS were delineated manually for each individual. We then demonstrated that SSRs showed substantial interindividual variability in both spatial topography and functional selectivity. We further identified consistent interhemispheric differences in the spatial topography of all three SSRs, but distinct interhemispheric differences in scene selectivity. Moreover, we found that all three SSRs showed stronger scene selectivity in men than in women. In summary, our work thoroughly characterized the interindividual, interhemispheric, and sex variability of the SSRs and invites future work on the origin and functional significance of these variabilities. Additionally, we constructed the first probabilistic atlases for the SSRs, which provide the detailed anatomical reference for further investigations of the scene network.
  • Zheng, X., Roelofs, A., Farquhar, J., & Lemhöfer, K. (2018). Monitoring of language selection errors in switching: Not all about conflict. PLoS One, 13(11): e0200397. doi:10.1371/journal.pone.0200397.

    Abstract

    Although bilingual speakers are very good at selectively using one language rather than another, sometimes language selection errors occur. To investigate how bilinguals monitor their speech errors and control their languages in use, we recorded event-related potentials (ERPs) in unbalanced Dutch-English bilingual speakers in a cued language-switching task. We tested the conflict-based monitoring model of Nozari and colleagues by investigating the error-related negativity (ERN) and comparing the effects of the two switching directions (i.e., to the first language, L1 vs. to the second language, L2). Results show that the speakers made more language selection errors when switching from their L2 to the L1 than vice versa. In the EEG, we observed a robust ERN effect following language selection errors compared to correct responses, reflecting monitoring of speech errors. Most interestingly, the ERN effect was enlarged when the speakers were switching to their L2 (less conflict) compared to switching to the L1 (more conflict). Our findings do not support the conflict-based monitoring model. We discuss an alternative account in terms of error prediction and reinforcement learning.
  • Zheng, X., Roelofs, A., & Lemhöfer, K. (2018). Language selection errors in switching: language priming or cognitive control? Language, Cognition and Neuroscience, 33(2), 139-147. doi:10.1080/23273798.2017.1363401.

    Abstract

    Although bilingual speakers are very good at selectively using one language rather than another, sometimes language selection errors occur. We examined the relative contribution of top-down cognitive control and bottom-up language priming to these errors. Unbalanced Dutch-English bilinguals named pictures and were cued to switch between languages under time pressure. We also manipulated the number of same-language trials before a switch (long vs. short runs). Results show that speakers made more language selection errors when switching from their second language (L2) to the first language (L1) than vice versa. Furthermore, they made more errors when switching to the L1 after a short compared to a long run of L2 trials. In the reverse switching direction (L1 to L2), run length had no effect. These findings are most compatible with an account of language selection errors that assigns a strong role to top-down processes of cognitive control.

    Additional information

    plcp_a_1363401_sm2537.docx
  • Zheng, X., & Lemhöfer, K. (2019). The “semantic P600” in second language processing: When syntax conflicts with semantics. Neuropsychologia, 127, 131-147. doi:10.1016/j.neuropsychologia.2019.02.010.

    Abstract

    In sentences like “the mouse that chased the cat was hungry”, the syntactically correct interpretation (the mouse chases the cat) is contradicted by semantic and pragmatic knowledge. Previous research has shown that L1 speakers sometimes base sentence interpretation on this type of knowledge (so-called “shallow” or “good-enough” processing). We made use of both behavioural and ERP measurements to investigate whether L2 learners differ from native speakers in the extent to which they engage in “shallow” syntactic processing. German learners of Dutch as well as Dutch native speakers read sentences containing relative clauses (as in the example above) for which the plausible thematic roles were or were not reversed, and made plausibility judgments. The results show that behaviourally, L2 learners had more difficulties than native speakers to discriminate plausible from implausible sentences. In the ERPs, we replicated the previously reported finding of a “semantic P600” for semantic reversal anomalies in native speakers, probably reflecting the effort to resolve the syntax-semantics conflict. In L2 learners, though, this P600 was largely attenuated and surfaced only in those trials that were judged correctly for plausibility. These results generally point at a more prevalent, but not exclusive occurrence of shallow syntactic processing in L2 learners.
  • Zhu, Z., Bastiaansen, M. C. M., Hakun, J. G., Petersson, K. M., Wang, S., & Hagoort, P. (2019). Semantic unification modulates N400 and BOLD signal change in the brain: A simultaneous EEG-fMRI study. Journal of Neurolinguistics, 52: 100855. doi:10.1016/j.jneuroling.2019.100855.

    Abstract

    Semantic unification during sentence comprehension has been associated with amplitude change of the N400 in event-related potential (ERP) studies, and activation in the left inferior frontal gyrus (IFG) in functional magnetic resonance imaging (fMRI) studies. However, the specificity of this activation to semantic unification remains unknown. To more closely examine the brain processes involved in semantic unification, we employed simultaneous EEG-fMRI to time-lock the semantic unification related N400 change, and integrated trial-by-trial variation in both N400 and BOLD change beyond the condition-level BOLD change difference measured in traditional fMRI analyses. Participants read sentences in which semantic unification load was parametrically manipulated by varying cloze probability. Separately, ERP and fMRI results replicated previous findings, in that semantic unification load parametrically modulated the amplitude of N400 and cortical activation. Integrated EEG-fMRI analyses revealed a different pattern in which functional activity in the left IFG and bilateral supramarginal gyrus (SMG) was associated with N400 amplitude, with the left IFG activation and bilateral SMG activation being selective to the condition-level and trial-level of semantic unification load, respectively. By employing the EEG-fMRI integrated analyses, this study among the first sheds light on how to integrate trial-level variation in language comprehension.
  • Zoefel, B., Ten Oever, S., & Sack, A. T. (2018). The involvement of endogenous neural oscillations in the processing of rhythmic input: More than a regular repetition of evoked neural responses. Frontiers in Neuroscience, 12: 95. doi:10.3389/fnins.2018.00095.

    Abstract

    It is undisputed that presenting a rhythmic stimulus leads to a measurable brain response that follows the rhythmic structure of this stimulus. What is still debated, however, is the question whether this brain response exclusively reflects a regular repetition of evoked responses, or whether it also includes entrained oscillatory activity. Here we systematically present evidence in favor of an involvement of entrained neural oscillations in the processing of rhythmic input while critically pointing out which questions still need to be addressed before this evidence could be considered conclusive. In this context, we also explicitly discuss the potential functional role of such entrained oscillations, suggesting that these stimulus-aligned oscillations reflect, and serve as, predictive processes, an idea often only implicitly assumed in the literature.
  • Zora, H., Riad, T., & Ylinen, S. (2019). Prosodically controlled derivations in the mental lexicon. Journal of Neurolinguistics, 52: 100856. doi:10.1016/j.jneuroling.2019.100856.

    Abstract

    Swedish morphemes are classified as prosodically specified or prosodically unspecified, depending on lexical or phonological stress, respectively. Here, we investigate the allomorphy of the suffix -(i)sk, which indicates the distinction between lexical and phonological stress; if attached to a lexically stressed morpheme, it takes a non-syllabic form (-sk), whereas if attached to a phonologically stressed morpheme, an epenthetic vowel is inserted (-isk). Using mismatch negativity (MMN), we explored the neural processing of this allomorphy across lexically stressed and phonologically stressed morphemes. In an oddball paradigm, participants were occasionally presented with congruent and incongruent derivations, created by the suffix -(i)sk, within the repetitive presentation of their monomorphemic stems. The results indicated that the congruent derivation of the lexically stressed stem elicited a larger MMN than the incongruent sequences of the same stem and the derivational suffix, whereas after the phonologically stressed stem a non-significant tendency towards an opposite pattern was observed. We argue that the significant MMN response to the congruent derivation in the lexical stress condition is in line with lexical MMN, indicating a holistic processing of the sequence of lexically stressed stem and derivational suffix. The enhanced MMN response to the incongruent derivation in the phonological stress condition, on the other hand, is suggested to reflect combinatorial processing of the sequence of phonologically stressed stem and derivational suffix. These findings bring a new aspect to the dual-system approach to neural processing of morphologically complex words, namely the specification of word stress.
  • Zormpa, E., Meyer, A. S., & Brehm, L. (2019). Slow naming of pictures facilitates memory for their names. Psychonomic Bulletin & Review, 26(5), 1675-1682. doi:10.3758/s13423-019-01620-x.

    Abstract

    Speakers remember their own utterances better than those of their interlocutors, suggesting that language production is beneficial to memory. This may be partly explained by a generation effect: The act of generating a word is known to lead to a memory advantage (Slamecka & Graf, 1978). In earlier work, we showed a generation effect for recognition of images (Zormpa, Brehm, Hoedemaker, & Meyer, 2019). Here, we tested whether the recognition of their names would also benefit from name generation. Testing whether picture naming improves memory for words was our primary aim, as it serves to clarify whether the representations affected by generation are visual or conceptual/lexical. A secondary aim was to assess the influence of processing time on memory. Fifty-one participants named pictures in three conditions: after hearing the picture name (identity condition), backward speech, or an unrelated word. A day later, recognition memory was tested in a yes/no task. Memory in the backward speech and unrelated conditions, which required generation, was superior to memory in the identity condition, which did not require generation. The time taken by participants for naming was a good predictor of memory, such that words that took longer to be retrieved were remembered better. Importantly, that was the case only when generation was required: In the no-generation (identity) condition, processing time was not related to recognition memory performance. This work has shown that generation affects conceptual/lexical representations, making an important contribution to the understanding of the relationship between memory and language.
  • Zormpa, E., Brehm, L., Hoedemaker, R. S., & Meyer, A. S. (2019). The production effect and the generation effect improve memory in picture naming. Memory, 27(3), 340-352. doi:10.1080/09658211.2018.1510966.

    Abstract

    The production effect (better memory for words read aloud than words read silently) and the picture superiority effect (better memory for pictures than words) both improve item memory in a picture naming task (Fawcett, J. M., Quinlan, C. K., & Taylor, T. L. (2012). Interplay of the production and picture superiority effects: A signal detection analysis. Memory (Hove, England), 20(7), 655–666. doi:10.1080/09658211.2012.693510). Because picture naming requires coming up with an appropriate label, the generation effect (better memory for generated than read words) may contribute to the latter effect. In two forced-choice memory experiments, we tested the role of generation in a picture naming task on later recognition memory. In Experiment 1, participants named pictures silently or aloud with the correct name or an unreadable label superimposed. We observed a generation effect, a production effect, and an interaction between the two. In Experiment 2, unreliable labels were included to ensure full picture processing in all conditions. In this experiment, we observed a production and a generation effect but no interaction, implying the effects are dissociable. This research demonstrates the separable roles of generation and production in picture naming and their impact on memory. As such, it informs the link between memory and language production and has implications for memory asymmetries between language production and comprehension.

    Additional information

    pmem_a_1510966_sm9257.pdf
  • De Zubicaray, G., & Fisher, S. E. (Eds.). (2017). Genes, brain and language [Special Issue]. Brain and Language, 172.
  • De Zubicaray, G., & Fisher, S. E. (2017). Genes, Brain, and Language: A brief introduction to the Special Issue. Brain and Language, 172, 1-2. doi:10.1016/j.bandl.2017.08.003.
  • Zwitserlood, I. (2008). Grammatica-vertaalmethode en nederlandse gebarentaal. Levende Talen Magazine, 95(5), 28-29.
  • Zwitserlood, I. (2011). Gebruiksgemak van het eerste Nederlandse Gebarentaal woordenboek kan beter [Book review]. Levende Talen Magazine, 4, 46-47.

    Abstract

    Review: User friendliness of the first dictionary of Sign Language of the Netherlands can be improved
  • Zwitserlood, I. (2011). Gevraagd: medewerkers verzorgingshuis met een goede oog-handcoördinatie. Het meten van NGT-vaardigheid. Levende Talen Magazine, 1, 44-46.

    Abstract

    (Needed: staff for residential care home with good eye-hand coordination. Measuring NGT-skills.)
  • Zwitserlood, I. (2011). Het Corpus NGT en de dagelijkse lespraktijk. Levende Talen Magazine, 6, 46.

    Abstract

    (The Corpus NGT and the daily practice of language teaching)
  • Zwitserlood, I. (2011). Het Corpus NGT en de opleiding leraar/tolk NGT. Levende Talen Magazine, 1, 40-41.

    Abstract

    (The Corpus NGT and teacher NGT/interpreter NGT training)

Share this page