Publications

Displaying 201 - 239 of 239
  • Seuren, P. A. M. (1991). Modale klokkenhuizen. In M. Klein (Ed.), Nieuwe eskapades in de neerlandistiek: Opstellen van vrienden voor M.C. van den Toorn bij zijn afscheid als hoogleraar Nederlandse taalkunde aan de Katholieke Universiteit te Nijmegen (pp. 202-236). Groningen: Wolters-Noordhoff.
  • Seuren, P. A. M. (2015). Prestructuralist and structuralist approaches to syntax. In T. Kiss, & A. Alexiadou (Eds.), Syntax--theory and analysis: An international handbook (pp. 134-157). Berlin: Mouton de Gruyter.
  • Seuren, P. A. M. (1991). The definition of serial verbs. In F. Byrne, & T. Huebner (Eds.), Development and structures of Creole languages: Essays in honor of Derek Bickerton (pp. 193-205). Amsterdam: Benjamins.
  • Seuren, P. A. M. (2015). Taal is complexer dan je denkt - recursief. In S. Lestrade, P. De Swart, & L. Hogeweg (Eds.), Addenda. Artikelen voor Ad Foolen (pp. 393-400). Nijmegen: Radboud University.
  • Seuren, P. A. M. (1991). Präsuppositionen. In A. Von Stechow, & D. Wunderlich (Eds.), Semantik: Ein internationales Handbuch der zeitgenössischen Forschung (pp. 286-318). Berlin: De Gruyter.
  • Sjerps, M. J., & Chang, E. F. (2019). The cortical processing of speech sounds in the temporal lobe. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 361-379). Cambridge, MA: MIT Press.
  • Skiba, R. (1991). Eine Datenbank für Deutsch als Zweitsprache Materialien: Zum Einsatz von PC-Software bei Planung von Zweitsprachenunterricht. In H. Barkowski, & G. Hoff (Eds.), Berlin interkulturell: Ergebnisse einer Berliner Konferenz zu Migration und Pädagogik. (pp. 131-140). Berlin: Colloquium.
  • Skiba, R. (2008). Korpora in de Zweitspracherwerbsforschung: Internetzugang zu Daten des ungesteuerten Zweitspracherwerbs. In B. Ahrenholz, U. Bredel, W. Klein, M. Rost-Roth, & R. Skiba (Eds.), Empirische Forschung und Theoriebildung: Beiträge aus Soziolinguistik, Gesprochene-Sprache- und Zweitspracherwerbsforschung: Festschrift für Norbert Dittmar (pp. 21-30). Frankfurt am Main: Lang.
  • Skiba, R., Dittmar, N., & Bressem, J. (2008). Planning, collecting, exploring and archiving longitudinal L2 data: Experiences from the P-MoLL project. In L. Ortega, & H. Byrnes (Eds.), The longitudinal study of advanced L2 capacities (pp. 73-88). New York/London: Routledge.
  • De Smedt, K., & Kempen, G. (1991). Segment Grammar: A formalism for incremental sentence generation. In C. Paris, W. Swartout, & W. Mann (Eds.), Natural language generation and computational linguistics (pp. 329-349). Dordrecht: Kluwer Academic Publishers.

    Abstract

    Incremental sentence generation imposes special constraints on the representation of the grammar and the design of the formulator (the module which is responsible for constructing the syntactic and morphological structure). In the model of natural speech production presented here, a formalism called Segment Grammar is used for the representation of linguistic knowledge. We give a definition of this formalism and present a formulator design which relies on it. Next, we present an object- oriented implementation of Segment Grammar. Finally, we compare Segment Grammar with other formalisms.
  • Smith, A. C. (2015). Modelling multimodal language processing. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Sollis, E. (2019). A network of interacting proteins disrupted in language-related disorders. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • De Sousa, H., Langella, F., & Enfield, N. J. (2015). Temperature terms in Lao, Southern Zhuang, Southern Pinghua and Cantonese. In M. Koptjevskaja-Tamm (Ed.), The linguistics of temperature (pp. 594-638). Amsterdam: Benjamins.
  • Sumer, B. (2015). Acquisition of spatial language by signing and speaking children: A comparison of Turkish Sign Language (TID) and Turkish. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Thomaz, A. L., Lieven, E., Cakmak, M., Chai, J. Y., Garrod, S., Gray, W. D., Levinson, S. C., Paiva, A., & Russwinkel, N. (2019). Interaction for task instruction and learning. In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 91-110). Cambridge, MA: MIT Press.
  • Trabasso, T., & Ozyurek, A. (1997). Communicating evaluation in narrative understanding. In T. Givon (Ed.), Conversation: Cognitive, communicative and social perspectives (pp. 268-302). Philadelphia, PA: Benjamins.
  • Udden, J., & Schoffelen, J.-M. (2015). Mother of all Unification Studies (MOUS). In A. E. Konopka (Ed.), Research Report 2013 | 2014 (pp. 21-22). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.2236748.
  • Van Turennout, M. (1997). The electrophysiology of speaking: Investigations on the time course of semantic, syntactic, and phonological processing. PhD Thesis, Radboud University Nijmegen, Nijmegen. doi:10.17617/2.2057711.
  • Van Berkum, J. J. A., & Nieuwland, M. S. (2019). A cognitive neuroscience perspective on language comprehension in context. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 429-442). Cambridge, MA: MIT Press.
  • Van de Velde, M. (2015). Incrementality and flexibility in sentence production. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Van Heugten, M., Bergmann, C., & Cristia, A. (2015). The Effects of Talker Voice and Accent on Young Children's Speech Perception. In S. Fuchs, D. Pape, C. Petrone, & P. Perrier (Eds.), Individual Differences in Speech Production and Perception (pp. 57-88). Bern: Peter Lang.

    Abstract

    Within the first few years of life, children acquire many of the building blocks of their native language. This not only involves knowledge about the linguistic structure of spoken language, but also knowledge about the way in which this linguistic structure surfaces in their speech input. In this chapter, we review how infants and toddlers cope with differences between speakers and accents. Within the context of milestones in early speech perception, we examine how voice and accent characteristics are integrated during language processing, looking closely at the advantages and disadvantages of speaker and accent familiarity, surface-level deviation between two utterances, variability in the input, and prior speaker exposure. We conclude that although deviation from the child’s standard can complicate speech perception early in life, young listeners can overcome these additional challenges. This suggests that early spoken language processing is flexible and adaptive to the listening situation at hand.
  • Van Leeuwen, E. J. C. (2015). Social learning dynamics in chimpanzees: Reflections on animal culture. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Van Valin Jr., R. D. (2008). Some remarks on universal grammar. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 311-320). New York: Psychology Press.
  • Van Valin Jr., R. D. (2008). RPs and the nature of lexical and syntactic categories in role and reference grammar. In R. D. Van Valin Jr. (Ed.), Investigations of the syntax-semantics-pragmatics interface (pp. 161-178). Amsterdam: Benjamins.
  • Van Rhijn, J. R. (2019). The role of FoxP2 in striatal circuitry. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Verga, L. (2015). Learning together or learning alone: Investigating the role of social interaction in second language word learning. PhD Thesis, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
  • Verkerk, A., & Lestrade, S. (2008). The encoding of adjectives. In M. Van Koppen, & B. Botma (Eds.), Linguistics in the Netherlands 2008 (pp. 157-168). Amsterdam: Benjamins.

    Abstract

    In this paper, we will give a unified account of the cross-linguistic variation in the encoding of adjectives in predicative and attributive constructions. Languages may differ in the encoding strategy of adjectives in the predicative domain (Stassen 1997), and sometimes change this strategy in the attributive domain (Verkerk 2007). We will show that the interaction of two principles, that of faithfulness to the semantic class of a lexical root and that of faithfulness to discourse functions, can account for all attested variation in the encoding of adjectives.
  • Vernes, S. C. (2019). Neuromolecular approaches to the study of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 577-593). Cambridge, MA: MIT Press.
  • De Vos, J. (2019). Naturalistic word learning in a second language. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Wagner, A. (2008). Phoneme inventories and patterns of speech sound perception. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Weber, A. (2008). What eye movements can tell us about spoken-language processing: A psycholinguistic survey. In C. M. Riehl (Ed.), Was ist linguistische Evidenz: Kolloquium des Zentrums Sprachenvielfalt und Mehrsprachigkeit, November 2006 (pp. 57-68). Aachen: Shaker.
  • Wegener, C. (2008). A grammar of Savosavo: A Papuan language of the Solomon Islands. PhD Thesis, Radboud University Nijmegen, Njimegen.
  • Widlok, T., Rapold, C. J., & Hoymann, G. (2008). Multimedia analysis in documentation projects: Kinship, interrogatives and reciprocals in ǂAkhoe Haiǁom. In K. D. Harrison, D. S. Rood, & A. Dwyer (Eds.), Lessons from documented endangered languages (pp. 355-370). Amsterdam: Benjamins.

    Abstract

    This contribution emphasizes the role of multimedia data not only for archiving languages but also for creating opportunities for innovative analyses. In the case at hand, video material was collected as part of the documentation of Akhoe Haiom, a Khoisan language spoken in northern Namibia. The multimedia documentation project brought together linguistic and anthropological work to highlight connections between specialized domains, namely kinship terminology, interrogatives and reciprocals. These connections would have gone unnoticed or undocumented in more conventional modes of language description. It is suggested that such an approach may be particularly appropriate for the documentation of endangered languages since it directs the focus of attention away from isolated traits of languages towards more complex practices of communication that are also frequently threatened with extinction.
  • Widlok, T. (2008). The dilemmas of walking: A comparative view. In T. Ingold, & J. L. Vergunst (Eds.), Ways of walking: Ethnography and practice on foot (pp. 51-66). Aldershot: Ashgate.
  • Willems, R. M. (2015). Cognitive neuroscience of natural language use: Introduction. In Cognitive neuroscience of natural language use (pp. 1-7). Cambridge: Cambridge University Press.
  • Zhang, Y., Chen, C.-h., & Yu, C. (2019). Mechanisms of cross-situational learning: Behavioral and computational evidence. In Advances in Child Development and Behavior; vol. 56 (pp. 37-63).

    Abstract

    Word learning happens in everyday contexts with many words and many potential referents for those words in view at the same time. It is challenging for young learners to find the correct referent upon hearing an unknown word at the moment. This problem of referential uncertainty has been deemed as the crux of early word learning (Quine, 1960). Recent empirical and computational studies have found support for a statistical solution to the problem termed cross-situational learning. Cross-situational learning allows learners to acquire word meanings across multiple exposures, despite each individual exposure is referentially uncertain. Recent empirical research shows that infants, children and adults rely on cross-situational learning to learn new words (Smith & Yu, 2008; Suanda, Mugwanya, & Namy, 2014; Yu & Smith, 2007). However, researchers have found evidence supporting two very different theoretical accounts of learning mechanisms: Hypothesis Testing (Gleitman, Cassidy, Nappa, Papafragou, & Trueswell, 2005; Markman, 1992) and Associative Learning (Frank, Goodman, & Tenenbaum, 2009; Yu & Smith, 2007). Hypothesis Testing is generally characterized as a form of learning in which a coherent hypothesis regarding a specific word-object mapping is formed often in conceptually constrained ways. The hypothesis will then be either accepted or rejected with additional evidence. However, proponents of the Associative Learning framework often characterize learning as aggregating information over time through implicit associative mechanisms. A learner acquires the meaning of a word when the association between the word and the referent becomes relatively strong. In this chapter, we consider these two psychological theories in the context of cross-situational word-referent learning. By reviewing recent empirical and cognitive modeling studies, our goal is to deepen our understanding of the underlying word learning mechanisms by examining and comparing the two theoretical learning accounts.
  • Zhou, W. (2015). Assessing birth language memory in young adoptees. PhD Thesis, Radboud University Nijmegen, Nijmegen.
  • Zuidema, W., & Fitz, H. (2019). Key issues and future directions: Models of human language and speech processing. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 353-358). Cambridge, MA: MIT Press.
  • Zwitserlood, I. (2008). Morphology below the level of the sign - frozen forms and classifier predicates. In J. Quer (Ed.), Proceedings of the 8th Conference on Theoretical Issues in Sign Language Research (TISLR) (pp. 251-272). Hamburg: Signum Verlag.

    Abstract

    The lexicons of many sign languages hold large proportions of “frozen” forms, viz. signs that are generally considered to have been formed productively (as classifier predicates), but that have diachronically undergone processes of lexicalisation. Nederlandse Gebarentaal (Sign Language of the Netherlands; henceforth: NGT) also has many of these signs (Van der Kooij 2002, Zwitserlood 2003). In contrast to the general view on “frozen” forms, a few researchers claim that these signs may be formed according to productive sign formation rules, notably Brennan (1990) for BSL, and Meir (2001, 2002) for ISL. Following these claims, I suggest an analysis of “frozen” NGT signs as morphologically complex, using the framework of Distributed Morphology. The signs in question are derived in a similar way as classifier predicates; hence their similar form (but diverging characteristics). I will indicate how and why the structure and use of classifier predicates and “frozen” forms differ. Although my analysis focuses on NGT, it may also be applicable to other sign languages.

Share this page