Publications

Displaying 201 - 300 of 325
  • Marcoux, K., & Ernestus, M. (2019). Differences between native and non-native Lombard speech in terms of pitch range. In M. Ochmann, M. Vorländer, & J. Fels (Eds.), Proceedings of the ICA 2019 and EAA Euroregio. 23rd International Congress on Acoustics, integrating 4th EAA Euroregio 2019 (pp. 5713-5720). Berlin: Deutsche Gesellschaft für Akustik.

    Abstract

    Lombard speech, speech produced in noise, is acoustically different from speech produced in quiet (plain speech) in several ways, including having a higher and wider F0 range (pitch). Extensive research on native Lombard speech does not consider that non-natives experience a higher cognitive load while producing
    speech and that the native language may influence the non-native speech. We investigated pitch range in plain and Lombard speech in native and non-natives.
    Dutch and American-English speakers read contrastive question-answer pairs in quiet and in noise in English, while the Dutch also read Dutch sentence pairs. We found that Lombard speech is characterized by a wider pitch range than plain speech, for all speakers (native English, non-native English, and native Dutch).
    This shows that non-natives also widen their pitch range in Lombard speech. In sentences with early-focus, we see the same increase in pitch range when going from plain to Lombard speech in native and non-native English, but a smaller increase in native Dutch. In sentences with late-focus, we see the biggest increase for the native English, followed by non-native English and then native Dutch. Together these results indicate an effect of the native language on non-native Lombard speech.
  • Marcoux, K., & Ernestus, M. (2019). Pitch in native and non-native Lombard speech. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 2019) (pp. 2605-2609). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    Lombard speech, speech produced in noise, is
    typically produced with a higher fundamental
    frequency (F0, pitch) compared to speech in quiet. This paper examined the potential differences in native and non-native Lombard speech by analyzing median pitch in sentences with early- or late-focus produced in quiet and noise. We found an increase in pitch in late-focus sentences in noise for Dutch speakers in both English and Dutch, and for American-English speakers in English. These results
    show that non-native speakers produce Lombard speech, despite their higher cognitive load. For the early-focus sentences, we found a difference between the Dutch and the American-English speakers. Whereas the Dutch showed an increased F0 in noise
    in English and Dutch, the American-English speakers did not in English. Together, these results suggest that some acoustic characteristics of Lombard speech, such as pitch, may be language-specific, potentially
    resulting in the native language influencing the non-native Lombard speech.
  • Matsuo, A. (2004). Young children's understanding of ongoing vs. completion in present and perfective participles. In J. v. Kampen, & S. Baauw (Eds.), Proceedings of GALA 2003 (pp. 305-316). Utrecht: Netherlands Graduate School of Linguistics (LOT).
  • McDonough, L., Choi, S., Bowerman, M., & Mandler, J. M. (1998). The use of preferential looking as a measure of semantic development. In C. Rovee-Collier, L. P. Lipsitt, & H. Hayne (Eds.), Advances in Infancy Research. Volume 12. (pp. 336-354). Stamford, CT: Ablex Publishing.
  • McQueen, J. M., & Cutler, A. (1997). Cognitive processes in speech perception. In W. J. Hardcastle, & J. D. Laver (Eds.), The handbook of phonetic sciences (pp. 556-585). Oxford: Blackwell.
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • McQueen, J. M., & Meyer, A. S. (2019). Key issues and future directions: Towards a comprehensive cognitive architecture for language use. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 85-96). Cambridge, MA: MIT Press.
  • McQueen, J. M., & Cutler, A. (1998). Spotting (different kinds of) words in (different kinds of) context. In R. Mannell, & J. Robert-Ribes (Eds.), Proceedings of the Fifth International Conference on Spoken Language Processing: Vol. 6 (pp. 2791-2794). Sydney: ICSLP.

    Abstract

    The results of a word-spotting experiment are presented in which Dutch listeners tried to spot different types of bisyllabic Dutch words embedded in different types of nonsense contexts. Embedded verbs were not reliably harder to spot than embedded nouns; this suggests that nouns and verbs are recognised via the same basic processes. Iambic words were no harder to spot than trochaic words, suggesting that trochaic words are not in principle easier to recognise than iambic words. Words were harder to spot in consonantal contexts (i.e., contexts which themselves could not be words) than in longer contexts which contained at least one vowel (i.e., contexts which, though not words, were possible words of Dutch). A control experiment showed that this difference was not due to acoustic differences between the words in each context. The results support the claim that spoken-word recognition is sensitive to the viability of sound sequences as possible words.
  • Merkx, D., Frank, S., & Ernestus, M. (2019). Language learning using speech to image retrieval. In Proceedings of Interspeech 2019 (pp. 1841-1845). doi:10.21437/Interspeech.2019-3067.

    Abstract

    Humans learn language by interaction with their environment and listening to other humans. It should also be possible for computational models to learn language directly from speech but so far most approaches require text. We improve on existing neural network approaches to create visually grounded embeddings for spoken utterances. Using a combination of a multi-layer GRU, importance sampling, cyclic learning rates, ensembling and vectorial self-attention our results show a remarkable increase in image-caption retrieval performance over previous work. Furthermore, we investigate which layers in the model learn to recognise words in the input. We find that deeper network layers are better at encoding word presence, although the final layer has slightly lower performance. This shows that our visually grounded sentence encoder learns to recognise words from the input even though it is not explicitly trained for word recognition.
  • Meyer, A. S. (2004). The use of eye tracking in studies of sentence generation. In J. M. Henderson, & F. Ferreira (Eds.), The interface of language, vision, and action: Eye movements and the visual world (pp. 191-212). Hove: Psychology Press.
  • Moisik, S. R., Zhi Yun, D. P., & Dediu, D. (2019). Active adjustment of the cervical spine during pitch production compensates for shape: The ArtiVarK study. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 20195) (pp. 864-868). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    The anterior lordosis of the cervical spine is thought
    to contribute to pitch (fo) production by influencing
    cricoid rotation as a function of larynx height. This
    study examines the matter of inter-individual
    variation in cervical spine shape and whether this has
    an influence on how fo is produced along increasing
    or decreasing scales, using the ArtiVarK dataset,
    which contains real-time MRI pitch production data.
    We find that the cervical spine actively participates in
    fo production, but the amount of displacement
    depends on individual shape. In general, anterior
    spine motion (tending toward cervical lordosis)
    occurs for low fo, while posterior movement (tending
    towards cervical kyphosis) occurs for high fo.
  • Narasimhan, B., Bowerman, M., Brown, P., Eisenbeiss, S., & Slobin, D. I. (2004). "Putting things in places": Effekte linguisticher Typologie auf die Sprachentwicklung. In G. Plehn (Ed.), Jahrbuch der Max-Planck Gesellschaft (pp. 659-663). Göttingen: Vandenhoeck & Ruprecht.

    Abstract

    Effekte linguisticher Typologie auf die Sprach-entwicklung. In G. Plehn (Ed.), Jahrbuch der Max-Planck Gesellsch
  • Neijt, A., Schreuder, R., & Baayen, R. H. (2004). Seven years later: The effect of spelling on interpretation. In L. Cornips, & J. Doetjes (Eds.), Linguistics in the Netherlands 2004 (pp. 134-145). Amsterdam: Benjamins.
  • Nijveld, A., Ten Bosch, L., & Ernestus, M. (2019). ERP signal analysis with temporal resolution using a time window bank. In Proceedings of Interspeech 2019 (pp. 1208-1212). doi:10.21437/Interspeech.2019-2729.

    Abstract

    In order to study the cognitive processes underlying speech comprehension, neuro-physiological measures (e.g., EEG and MEG), or behavioural measures (e.g., reaction times and response accuracy) can be applied. Compared to behavioural measures, EEG signals can provide a more fine-grained and complementary view of the processes that take place during the unfolding of an auditory stimulus.

    EEG signals are often analysed after having chosen specific time windows, which are usually based on the temporal structure of ERP components expected to be sensitive to the experimental manipulation. However, as the timing of ERP components may vary between experiments, trials, and participants, such a-priori defined analysis time windows may significantly hamper the exploratory power of the analysis of components of interest. In this paper, we explore a wide-window analysis method applied to EEG signals collected in an auditory repetition priming experiment.

    This approach is based on a bank of temporal filters arranged along the time axis in combination with linear mixed effects modelling. Crucially, it permits a temporal decomposition of effects in a single comprehensive statistical model which captures the entire EEG trace.
  • Noordman, L. G., & Vonk, W. (1998). Discourse comprehension. In A. D. Friederici (Ed.), Language comprehension: a biological perspective (pp. 229-262). Berlin: Springer.

    Abstract

    The human language processor is conceived as a system that consists of several interrelated subsystems. Each subsystem performs a specific task in the complex process of language comprehension and production. A subsystem receives a particular input, performs certain specific operations on this input and yields a particular output. The subsystems can be characterized in terms of the transformations that relate the input representations to the output representations. An important issue in describing the language processing system is to identify the subsystems and to specify the relations between the subsystems. These relations can be conceived in two different ways. In one conception the subsystems are autonomous. They are related to each other only by the input-output channels. The operations in one subsystem are not affected by another system. The subsystems are modular, that is they are independent. In the other conception, the different subsystems influence each other. A subsystem affects the processes in another subsystem. In this conception there is an interaction between the subsystems.
  • Noordman, L. G., & Vonk, W. (1997). The different functions of a conjunction in constructing a representation of the discourse. In J. Costermans, & M. Fayol (Eds.), Processing interclausal relationships: studies in the production and comprehension of text (pp. 75-94). Mahwah, NJ: Lawrence Erlbaum.
  • Norman, D. A., & Levelt, W. J. M. (1988). Life at the center. In W. Hirst (Ed.), The making of cognitive science: essays in honor of George A. Miller (pp. 100-109). Cambridge University Press.
  • Norris, D., McQueen, J. M., & Cutler, A. (1994). Competition and segmentation in spoken word recognition. In Proceedings of the Third International Conference on Spoken Language Processing: Vol. 1 (pp. 401-404). Yokohama: PACIFICO.

    Abstract

    This paper describes recent experimental evidence which shows that models of spoken word recognition must incorporate both inhibition between competing lexical candidates and a sensitivity to metrical cues to lexical segmentation. A new version of the Shortlist [1][2] model incorporating the Metrical Segmentation Strategy [3] provides a detailed simulation of the data.
  • O'Connor, L. (2004). Going getting tired: Associated motion through space and time in Lowland Chontal. In M. Achard, & S. Kemmer (Eds.), Language, culture and mind (pp. 181-199). Stanford: CSLI.
  • O'Meara, C., Speed, L. J., San Roque, L., & Majid, A. (2019). Perception Metaphors: A view from diversity. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. 1-16). Amsterdam: Benjamins.

    Abstract

    Our bodily experiences play an important role in the way that we think and speak. Abstract language is, however, difficult to reconcile with this body-centred view, unless we appreciate the role metaphors play. To explore the role of the senses across semantic domains, we focus on perception metaphors, and examine their realisation across diverse languages, methods, and approaches. To what extent do mappings in perception metaphor adhere to predictions based on our biological propensities; and to what extent is there space for cross-linguistic and cross-cultural variation? We find that while some metaphors have widespread commonality, there is more diversity attested than should be comfortable for universalist accounts.
  • Ozyurek, A. (1998). An analysis of the basic meaning of Turkish demonstratives in face-to-face conversational interaction. In S. Santi, I. Guaitella, C. Cave, & G. Konopczynski (Eds.), Oralite et gestualite: Communication multimodale, interaction: actes du colloque ORAGE 98 (pp. 609-614). Paris: L'Harmattan.
  • Ozyurek, A., & Woll, B. (2019). Language in the visual modality: Cospeech gesture and sign language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 67-83). Cambridge, MA: MIT Press.
  • Ozyurek, A. (1994). How children talk about a conversation. In K. Beals, J. Denton, R. Knippen, L. Melnar, H. Suzuki, & E. Zeinfeld (Eds.), Papers from the Thirtieth Regional Meeting of the Chicago Linguistic Society: Main Session (pp. 309-319). Chicago, Ill: Chicago Linguistic Society.
  • Ozyurek, A. (1994). How children talk about conversations: Development of roles and voices. In E. V. Clark (Ed.), Proceedings of the Twenty-Sixth Annual Child Language Research Forum (pp. 197-206). Stanford: CSLI Publications.
  • Pallier, C., Cutler, A., & Sebastian-Galles, N. (1997). Prosodic structure and phonetic processing: A cross-linguistic study. In Proceedings of EUROSPEECH 97 (pp. 2131-2134). Grenoble, France: ESCA.

    Abstract

    Dutch and Spanish differ in how predictable the stress pattern is as a function of the segmental content: it is correlated with syllable weight in Dutch but not in Spanish. In the present study, two experiments were run to compare the abilities of Dutch and Spanish speakers to separately process segmental and stress information. It was predicted that the Spanish speakers would have more difficulty focusing on the segments and ignoring the stress pattern than the Dutch speakers. The task was a speeded classification task on CVCV syllables, with blocks of trials in which the stress pattern could vary versus blocks in which it was fixed. First, we found interference due to stress variability in both languages, suggesting that the processing of segmental information cannot be performed independently of stress. Second, the effect was larger for Spanish than for Dutch, suggesting that that the degree of interference from stress variation may be partially mitigated by the predictability of stress placement in the language.
  • Parhammer*, S. I., Ebersberg*, M., Tippmann*, J., Stärk*, K., Opitz, A., Hinger, B., & Rossi, S. (2019). The influence of distraction on speech processing: How selective is selective attention? In Proceedings of Interspeech 2019 (pp. 3093-3097). doi:10.21437/Interspeech.2019-2699.

    Abstract

    -* indicates shared first authorship -
    The present study investigated the effects of selective attention on the processing of morphosyntactic errors in unattended parts of speech. Two groups of German native (L1) speakers participated in the present study. Participants listened to sentences in which irregular verbs were manipulated in three different conditions (correct, incorrect but attested ablaut pattern, incorrect and crosslinguistically unattested ablaut pattern). In order to track fast dynamic neural reactions to the stimuli, electroencephalography was used. After each sentence, participants in Experiment 1 performed a semantic judgement task, which deliberately distracted the participants from the syntactic manipulations and directed their attention to the semantic content of the sentence. In Experiment 2, participants carried out a syntactic judgement task, which put their attention on the critical stimuli. The use of two different attentional tasks allowed for investigating the impact of selective attention on speech processing and whether morphosyntactic processing steps are performed automatically. In Experiment 2, the incorrect attested condition elicited a larger N400 component compared to the correct condition, whereas in Experiment 1 no differences between conditions were found. These results suggest that the processing of morphosyntactic violations in irregular verbs is not entirely automatic but seems to be strongly affected by selective attention.
  • Piai, V., & Zheng, X. (2019). Speaking waves: Neuronal oscillations in language production. In K. D. Federmeier (Ed.), Psychology of Learning and Motivation (pp. 265-302). Elsevier.

    Abstract

    Language production involves the retrieval of information from memory, the planning of an articulatory program, and executive control and self-monitoring. These processes can be related to the domains of long-term memory, motor control, and executive control. Here, we argue that studying neuronal oscillations provides an important opportunity to understand how general neuronal computational principles support language production, also helping elucidate relationships between language and other domains of cognition. For each relevant domain, we provide a brief review of the findings in the literature with respect to neuronal oscillations. Then, we show how similar patterns are found in the domain of language production, both through review of previous literature and novel findings. We conclude that neurophysiological mechanisms, as reflected in modulations of neuronal oscillations, may act as a fundamental basis for bringing together and enriching the fields of language and cognition.
  • Poletiek, F. H., & Stolker, C. J. J. M. (2004). Who decides the worth of an arm and a leg? Assessing the monetary value of nonmonetary damage. In E. Kurz-Milcke, & G. Gigerenzer (Eds.), Experts in science and society (pp. 201-213). New York: Kluwer Academic/Plenum Publishers.
  • Pouw, W., Paxton, A., Harrison, S. J., & Dixon, J. A. (2019). Acoustic specification of upper limb movement in voicing. In A. Grimminger (Ed.), Proceedings of the 6th Gesture and Speech in Interaction – GESPIN 6 (pp. 68-74). Paderborn: Universitaetsbibliothek Paderborn. doi:10.17619/UNIPB/1-812.
  • Pouw, W., & Dixon, J. A. (2019). Quantifying gesture-speech synchrony. In A. Grimminger (Ed.), Proceedings of the 6th Gesture and Speech in Interaction – GESPIN 6 (pp. 75-80). Paderborn: Universitaetsbibliothek Paderborn. doi:10.17619/UNIPB/1-812.

    Abstract

    Spontaneously occurring speech is often seamlessly accompanied by hand gestures. Detailed
    observations of video data suggest that speech and gesture are tightly synchronized in time,
    consistent with a dynamic interplay between body and mind. However, spontaneous gesturespeech
    synchrony has rarely been objectively quantified beyond analyses of video data, which
    do not allow for identification of kinematic properties of gestures. Consequently, the point in
    gesture which is held to couple with speech, the so-called moment of “maximum effort”, has
    been variably equated with the peak velocity, peak acceleration, peak deceleration, or the onset
    of the gesture. In the current exploratory report, we provide novel evidence from motiontracking
    and acoustic data that peak velocity is closely aligned, and shortly leads, the peak pitch
    (F0) of speech

    Additional information

    https://osf.io/9843h/
  • Randall, J., Van Hout, A., Weissenborn, J., & Baayen, R. H. (2004). Acquiring unaccusativity: A cross-linguistic look. In A. Alexiadou (Ed.), The unaccusativity puzzle (pp. 332-353). Oxford: Oxford University Press.
  • Ravignani, A., Chiandetti, C., & Kotz, S. (2019). Rhythm and music in animal signals. In J. Choe (Ed.), Encyclopedia of Animal Behavior (vol. 1) (2nd ed., pp. 615-622). Amsterdam: Elsevier.
  • Reesink, G. (2004). Interclausal relations. In G. Booij (Ed.), Morphologie / morphology (pp. 1202-1207). Berlin: Mouton de Gruyter.
  • Rissman, L., & Majid, A. (2019). Agency drives category structure in instrumental events. In A. K. Goel, C. M. Seifert, & C. Freksa (Eds.), Proceedings of the 41st Annual Meeting of the Cognitive Science Society (CogSci 2019) (pp. 2661-2667). Montreal, QB: Cognitive Science Society.

    Abstract

    Thematic roles such as Agent and Instrument have a long-standing place in theories of event representation. Nonetheless, the structure of these categories has been difficult to determine. We investigated how instrumental events, such as someone slicing bread with a knife, are categorized in English. Speakers described a variety of typical and atypical instrumental events, and we determined the similarity structure of their descriptions using correspondence analysis. We found that events where the instrument is an extension of an intentional agent were most likely to elicit similar language, highlighting the importance of agency in structuring instrumental categories.
  • Roelofs, A. (2004). The seduced speaker: Modeling of cognitive control. In A. Belz, R. Evans, & P. Piwek (Eds.), Natural language generation. (pp. 1-10). Berlin: Springer.

    Abstract

    Although humans are the ultimate “natural language generators”, the area of psycholinguistic modeling has been somewhat underrepresented in recent approaches to Natural Language Generation in computer science. To draw attention to the area and illustrate its potential relevance to Natural Language Generation, I provide an overview of recent work on psycholinguistic modeling of language production together with some key empirical findings, state-of-the-art experimental techniques, and their historical roots. The techniques include analyses of speech-error corpora, chronometric analyses, eyetracking, and neuroimaging.
    The overview is built around the issue of cognitive control in natural language generation, concentrating on the production of single words, which is an essential ingredient of the generation of larger utterances. Most of the work exploited the fact that human speakers are good but not perfect at resisting temptation, which has provided some critical clues about the nature of the underlying system.
  • Roelofs, A., & Schiller, N. (2004). Produzieren von Ein- und Mehrwortäusserungen. In G. Plehn (Ed.), Jahrbuch der Max-Planck Gesellschaft (pp. 655-658). Göttingen: Vandenhoeck & Ruprecht.
  • Rojas-Berscia, L. M. (2019). Nominalization in Shawi/Chayahuita. In R. Zariquiey, M. Shibatani, & D. W. Fleck (Eds.), Nominalization in languages of the Americas (pp. 491-514). Amsterdam: Benjamins.

    Abstract

    This paper deals with the Shawi nominalizing suffixes -su’~-ru’~-nu’ ‘general nominalizer’, -napi/-te’/-tun‘performer/agent nominalizer’, -pi’‘patient nominalizer’, and -nan ‘instrument nominalizer’. The goal of this article is to provide a description of nominalization in Shawi. Throughout this paper I apply the Generalized Scale Model (GSM) (Malchukov, 2006) to Shawi verbal nominalizations, with the intention of presenting a formal representation that will provide a basis for future areal and typological studies of nominalization. In addition, I dialogue with Shibatani’s model to see how the loss or gain of categories correlates with the lexical or grammatical nature of nominalizations. strong nominalization in Shawi correlates with lexical nominalization, whereas weak nominalizations correlate with grammatical nominalization. A typology which takes into account the productivity of the nominalizers is also discussed.
  • Rowland, C. F., & Kidd, E. (2019). Key issues and future directions: How do children acquire language? In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 181-185). Cambridge, MA: MIT Press.
  • Rubio-Fernández, P. (2019). Theory of mind. In C. Cummins, & N. Katsos (Eds.), The Handbook of Experimental Semantics and Pragmatics (pp. 524-536). Oxford: Oxford University Press.
  • De Ruiter, J. P. (2004). On the primacy of language in multimodal communication. In Workshop Proceedings on Multimodal Corpora: Models of Human Behaviour for the Specification and Evaluation of Multimodal Input and Output Interfaces.(LREC2004) (pp. 38-41). Paris: ELRA - European Language Resources Association (CD-ROM).

    Abstract

    In this paper, I will argue that although the study of multimodal interaction offers exciting new prospects for Human Computer Interaction and human-human communication research, language is the primary form of communication, even in multimodal systems. I will support this claim with theoretical and empirical arguments, mainly drawn from human-human communication research, and will discuss the implications for multimodal communication research and Human-Computer Interaction.
  • De Ruiter, J. P. (2004). Response systems and signals of recipiency. In A. Majid (Ed.), Field Manual Volume 9 (pp. 53-55). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.506961.

    Abstract

    Listeners’ signals of recipiency, such as “Mm-hm” or “uh-huh” in English, are the most elementary or minimal “conversational turns” possible. Minimal, because apart from acknowledging recipiency and inviting the speaker to continue with his/her next turn, they do not add any new information to the discourse of the conversation. The goal of this project is to gather cross cultural information on listeners’ feedback behaviour during conversation. Listeners in a conversation usually provide short signals that indicate to the speaker that they are still “with the speaker”. These signals could be verbal (like for instance “mm hm” in English or “hm hm” in Dutch) or nonverbal (visual), like nodding. Often, these signals are produced in overlap with the speaker’s vocalisation. If listeners do not produce these signals, speakers often invite them explicitly (e.g. “are you still there?” in a telephone conversation). Our goal is to investigate what kind of signals are used by listeners of different languages to signal “recipiency” to the speaker.
  • Sauter, D., Scott, S., & Calder, A. (2004). Categorisation of vocally expressed positive emotion: A first step towards basic positive emotions? [Abstract]. Proceedings of the British Psychological Society, 12, 111.

    Abstract

    Most of the study of basic emotion expressions has focused on facial expressions and little work has been done to specifically investigate happiness, the only positive of the basic emotions (Ekman & Friesen, 1971). However, a theoretical suggestion has been made that happiness could be broken down into discrete positive emotions, which each fulfil the criteria of basic emotions, and that these would be expressed vocally (Ekman, 1992). To empirically test this hypothesis, 20 participants categorised 80 paralinguistic sounds using the labels achievement, amusement, contentment, pleasure and relief. The results suggest that achievement, amusement and relief are perceived as distinct categories, which subjects accurately identify. In contrast, the categories of contentment and pleasure were systematically confused with other responses, although performance was still well above chance levels. These findings are initial evidence that the positive emotions engage distinct vocal expressions and may be considered to be distinct emotion categories.
  • Scharenborg, O., Boves, L., & Ten Bosch, L. (2004). ‘On-line early recognition’ of polysyllabic words in continuous speech. In S. Cassidy, F. Cox, R. Mannell, & P. Sallyanne (Eds.), Proceedings of the Tenth Australian International Conference on Speech Science & Technology (pp. 387-392). Canberra: Australian Speech Science and Technology Association Inc.

    Abstract

    In this paper, we investigate the ability of SpeM, our recognition system based on the combination of an automatic phone recogniser and a wordsearch module, to determine as early as possible during the word recognition process whether a word is likely to be recognised correctly (this we refer to as ‘on-line’ early word recognition). We present two measures that can be used to predict whether a word is correctly recognised: the Bayesian word activation and the amount of available (acoustic) information for a word. SpeM was tested on 1,463 polysyllabic words in 885 continuous speech utterances. The investigated predictors indicated that a word activation that is 1) high (but not too high) and 2) based on more phones is more reliable to predict the correctness of a word than a similarly high value based on a small number of phones or a lower value of the word activation.
  • Schiller, N. O., Van Lieshout, P. H. H. M., Meyer, A. S., & Levelt, W. J. M. (1997). Is the syllable an articulatory unit in speech production? Evidence from an Emma study. In P. Wille (Ed.), Fortschritte der Akustik: Plenarvorträge und Fachbeiträge der 23. Deutschen Jahrestagung für Akustik (DAGA 97) (pp. 605-606). Oldenburg: DEGA.
  • Schmitt, B. M., Schiller, N. O., Rodriguez-Fornells, A., & Münte, T. F. (2004). Elektrophysiologische Studien zum Zeitverlauf von Sprachprozessen. In H. H. Müller, & G. Rickheit (Eds.), Neurokognition der Sprache (pp. 51-70). Tübingen: Stauffenburg.
  • Schoenmakers, G.-J., & De Swart, P. (2019). Adverbial hurdles in Dutch scrambling. In A. Gattnar, R. Hörnig, M. Störzer, & S. Featherston (Eds.), Proceedings of Linguistic Evidence 2018: Experimental Data Drives Linguistic Theory (pp. 124-145). Tübingen: University of Tübingen.

    Abstract

    This paper addresses the role of the adverb in Dutch direct object scrambling constructions. We report four experiments in which we investigate whether the structural position and the scope sensitivity of the adverb affect acceptability judgments of scrambling constructions and native speakers' tendency to scramble definite objects. We conclude that the type of adverb plays a key role in Dutch word ordering preferences.
  • Schuerman, W. L., McQueen, J. M., & Meyer, A. S. (2019). Speaker statistical averageness modulates word recognition in adverse listening conditions. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 20195) (pp. 1203-1207). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    We tested whether statistical averageness (SA) at the level of the individual speaker could predict a speaker’s intelligibility. 28 female and 21 male speakers of Dutch were recorded producing 336 sentences,
    each containing two target nouns. Recordings were compared to those of all other same-sex speakers using dynamic time warping (DTW). For each sentence, the DTW distance constituted a metric
    of phonetic distance from one speaker to all other speakers. SA comprised the average of these distances. Later, the same participants performed a word recognition task on the target nouns in the same sentences, under three degraded listening conditions. In all three conditions, accuracy increased with SA. This held even when participants listened to their own utterances. These findings suggest that listeners process speech with respect to the statistical
    properties of the language spoken in their community, rather than using their own speech as a reference
  • Scott, S., & Sauter, D. (2004). Vocal expressions of emotion and positive and negative basic emotions [Abstract]. Proceedings of the British Psychological Society, 12, 156.

    Abstract

    Previous studies have indicated that vocal and facial expressions of the ‘basic’ emotions share aspects of processing. Thus amygdala damage compromises the perception of fear and anger from the face and from the voice. In the current study we tested the hypothesis that there exist positive basic emotions, expressed mainly in the voice (Ekman, 1992). Vocal stimuli were produced to express the specific positive emotions of amusement, achievement, pleasure, contentment and relief.
  • Seidlmayer, E., Galke, L., Melnychuk, T., Schultz, C., Tochtermann, K., & Förstner, K. U. (2019). Take it personally - A Python library for data enrichment for infometrical applications. In M. Alam, R. Usbeck, T. Pellegrini, H. Sack, & Y. Sure-Vetter (Eds.), Proceedings of the Posters and Demo Track of the 15th International Conference on Semantic Systems co-located with 15th International Conference on Semantic Systems (SEMANTiCS 2019).

    Abstract

    Like every other social sphere, science is influenced by individual characteristics of researchers. However, for investigations on scientific networks, only little data about the social background of researchers, e.g. social origin, gender, affiliation etc., is available.
    This paper introduces ”Take it personally - TIP”, a conceptual model and library currently under development, which aims to support the
    semantic enrichment of publication databases with semantically related background information which resides elsewhere in the (semantic) web, such as Wikidata.
    The supplementary information enriches the original information in the publication databases and thus facilitates the creation of complex scientific knowledge graphs. Such enrichment helps to improve the scientometric analysis of scientific publications as they can also take social backgrounds of researchers into account and to understand social structure in research communities.
  • Seijdel, N., Sakmakidis, N., De Haan, E. H. F., Bohte, S. M., & Scholte, H. S. (2019). Implicit scene segmentation in deeper convolutional neural networks. In Proceedings of the 2019 Conference on Cognitive Computational Neuroscience (pp. 1059-1062). doi:10.32470/CCN.2019.1149-0.

    Abstract

    Feedforward deep convolutional neural networks (DCNNs) are matching and even surpassing human performance on object recognition. This performance suggests that activation of a loose collection of image
    features could support the recognition of natural object categories, without dedicated systems to solve specific visual subtasks. Recent findings in humans however, suggest that while feedforward activity may suffice for
    sparse scenes with isolated objects, additional visual operations ('routines') that aid the recognition process (e.g. segmentation or grouping) are needed for more complex scenes. Linking human visual processing to
    performance of DCNNs with increasing depth, we here explored if, how, and when object information is differentiated from the backgrounds they appear on. To this end, we controlled the information in both objects
    and backgrounds, as well as the relationship between them by adding noise, manipulating background congruence and systematically occluding parts of the image. Results indicated less distinction between object- and background features for more shallow networks. For those networks, we observed a benefit of training on segmented objects (as compared to unsegmented objects). Overall, deeper networks trained on natural
    (unsegmented) scenes seem to perform implicit 'segmentation' of the objects from their background, possibly by improved selection of relevant features.
  • Senft, G. (2004). Sprache, Kognition und Konzepte des Raumes in verschiedenen Kulturen - Zum Problem der Interdependenz sprachlicher und mentaler Strukturen. In L. Jäger (Ed.), Medialität und Mentalität (pp. 163-176). Paderborn: Wilhelm Fink.
  • Senft, G. (2004). What do we really know about serial verb constructions in Austronesian and Papuan languages? In I. Bril, & F. Ozanne-Rivierre (Eds.), Complex predicates in Oceanic languages (pp. 49-64). Berlin: Mouton de Gruyter.
  • Senft, G. (2004). Wosi tauwau topaisewa - songs about migrant workers from the Trobriand Islands. In A. Graumann (Ed.), Towards a dynamic theory of language. Festschrift for Wolfgang Wildgen on occasion of his 60th birthday (pp. 229-241). Bochum: Universitätsverlag Dr. N. Brockmeyer.
  • Senft, G. (1994). Darum gehet hin und lehret alle Völker: Mission, Kultur- und Sprachwandel am Beispiel der Trobriand-Insulaner von Papua-Neuguinea. In P. Stüben (Ed.), Seelenfischer: Mission, Stammesvölker und Ökologie (pp. 71-91). Gießen: Focus.
  • Senft, G. (1998). 'Noble Savages' and the 'Islands of Love': Trobriand Islanders in 'Popular Publications'. In J. Wassmann (Ed.), Pacific answers to Western hegemony: Cultural practices of identity construction (pp. 119-140). Oxford: Berg Publishers.
  • Senft, G. (2004). Aspects of spatial deixis in Kilivila. In G. Senft (Ed.), Deixis and demonstratives in Oceanic languages (pp. 59-80). Canberra: Pacific Linguistics.
  • Senft, G. (2004). Introduction. In G. Senft (Ed.), Deixis and demonstratives in Oceanic languages (pp. 1-13). Canberra: Pacific Linguistics.
  • Senft, G. (1997). Magic, missionaries, and religion - Some observations from the Trobriand Islands. In T. Otto, & A. Borsboom (Eds.), Cultural dynamics of religious change in Oceania (pp. 45-58). Leiden: KITLV press.
  • Senft, G. (1997). Introduction. In G. Senft (Ed.), Referring to space - Studies in Austronesian and Papuan languages (pp. 1-38). Oxford: Clarendon Press.
  • Senft, G. (2004). Participation and posture. In A. Majid (Ed.), Field Manual Volume 9 (pp. 80-82). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.506964.

    Abstract

    Human ethologists have shown that humans are both attracted to others and at the same time fear them. They refer to this kind of fear with the technical term ‘social fear’ and claim that “it is alleviated with personal acquaintance but remains a principle characteristic of interpersonal behaviour. As a result, we maintain various degrees of greater distance between ourselves and others depending on the amount of confidence we have in the other” (Eibl-Eibesfeldt 1989: 335). The goal of this task is to conduct exploratory, heuristic research to establish a new subproject that – based on a corpus of video data – will investigate various forms of human spatial behaviour cross-culturally.
  • Senft, G. (2019). Rituelle Kommunikation. In F. Liedtke, & A. Tuchen (Eds.), Handbuch Pragmatik (pp. 423-430). Stuttgart: J. B. Metzler. doi:10.1007/978-3-476-04624-6_41.

    Abstract

    Die Sprachwissenschaft hat den Begriff und das Konzept ›Rituelle Kommunikation‹ von der vergleichenden Verhaltensforschung übernommen. Humanethologen unterscheiden eine Reihe von sogenannten ›Ausdrucksbewegungen‹, die in der Mimik, der Gestik, der Personaldistanz (Proxemik) und der Körperhaltung (Kinesik) zum Ausdruck kommen. Viele dieser Ausdrucksbewegungen haben sich zu spezifischen Signalen entwickelt. Ethologen definieren Ritualisierung als Veränderung von Verhaltensweisen im Dienst der Signalbildung. Die zu Signalen ritualisierten Verhaltensweisen sind Rituale. Im Prinzip kann jede Verhaltensweise zu einem Signal werden, entweder im Laufe der Evolution oder durch Konventionen, die in einer bestimmten Gemeinschaft gültig sind, die solche Signale kulturell entwickelt hat und die von ihren Mitgliedern tradiert und gelernt werden.
  • Senft, G. (1998). Zeichenkonzeptionen in Ozeanien. In R. Posner, T. Robering, & T.. Sebeok (Eds.), Semiotics: A handbook on the sign-theoretic foundations of nature and culture (Vol. 2) (pp. 1971-1976). Berlin: de Gruyter.
  • Seuren, P. A. M. (1994). Categorial presupposition. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 2) (pp. 477-478). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Accommodation and presupposition. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 1) (pp. 15-16). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Denotation in discourse semantics. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 2) (pp. 859-860). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Donkey sentences. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 2) (pp. 1059-1060). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Discourse domain. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 2) (pp. 964-965). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Discourse semantics. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 2) (pp. 982-993). Oxford: Pergamon Press.
  • Seuren, P. A. M. (2004). How the cognitive revolution passed linguistics by. In F. Brisard (Ed.), Language and revolution: Language and time. (pp. 63-77). Antwerpen: Universiteit van Antwerpen.
  • Seuren, P. A. M. (1994). Factivity. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 3) (pp. 1205). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Function, set-theoretical. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 3) (pp. 1314). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Incrementation. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 3) (pp. 1646). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Lexical conditions. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 4) (pp. 2140-2141). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1988). Lexical meaning and presupposition. In W. Hüllen, & R. Schulze (Eds.), Understanding the lexicon: Meaning, sense and world knowledge in lexical semantics (pp. 170-187). Tübingen: Niemeyer.
  • Seuren, P. A. M. (1994). Existence predicate (discourse semantics). In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 3) (pp. 1190-1191). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Existential presupposition. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 3) (pp. 1191-1192). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Presupposition. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 6) (pp. 3311-3320). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Projection problem. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 6) (pp. 3358-3360). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). The computational lexicon: All lexical content is predicate. In Z. Yusoff (Ed.), Proceedings of the International Conference on Linguistic Applications 26-28 July 1994 (pp. 211-216). Penang: Universiti Sains Malaysia, Unit Terjemahan Melalui Komputer (UTMK).
  • Seuren, P. A. M. (1994). Sign. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 7) (pp. 3885-3888). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Syntax and semantics: Relationship. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 8) (pp. 4494-4500). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Prediction and retrodiction. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 6) (pp. 3302-3303). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1998). Towards a discourse-semantic account of donkey anaphora. In S. Botley, & T. McEnery (Eds.), New Approaches to Discourse Anaphora: Proceedings of the Second Colloquium on Discourse Anaphora and Anaphor Resolution (DAARC2) (pp. 212-220). Lancaster: Universiy Centre for Computer Corpus Research on Language, Lancaster University.
  • Seuren, P. A. M. (1994). Translation relations in semantic syntax. In G. Bouma, & G. Van Noord (Eds.), CLIN IV: Papers from the Fourth CLIN Meeting (pp. 149-162). Groningen: Vakgroep Alfa-informatica, Rijksuniversiteit Groningen.
  • Shatzman, K. B. (2004). Segmenting ambiguous phrases using phoneme duration. In S. Kin, & M. J. Bae (Eds.), Proceedings of the 8th International Conference on Spoken Language Processing (Interspeech 2004-ICSLP) (pp. 329-332). Seoul: Sunjijn Printing Co.

    Abstract

    The results of an eye-tracking experiment are presented in which Dutch listeners' eye movements were monitored as they heard sentences and saw four pictured objects. Participants were instructed to click on the object mentioned in the sentence. In the critical sentences, a stop-initial target (e.g., "pot") was preceded by an [s], thus causing ambiguity regarding whether the sentence refers to a stop-initial or a cluster-initial word (e.g., "spot"). Participants made fewer fixations to the target pictures when the stop and the preceding [s] were cross-spliced from the cluster-initial word than when they were spliced from a different token of the sentence containing the stop-initial word. Acoustic analyses showed that the two versions differed in various measures, but only one of these - the duration of the [s] - correlated with the perceptual effect. Thus, in this context, the [s] duration information is an important factor guiding word recognition.
  • Shen, C., & Janse, E. (2019). Articulatory control in speech production. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 2019) (pp. 2533-2537). Canberra, Australia: Australasian Speech Science and Technology Association Inc.
  • Shen, C., Cooke, M., & Janse, E. (2019). Individual articulatory control in speech enrichment. In M. Ochmann, M. Vorländer, & J. Fels (Eds.), Proceedings of the 23rd International Congress on Acoustics (pp. 5726-5730). Berlin: Deutsche Gesellschaft für Akustik.

    Abstract

    ndividual talkers may use various strategies to enrich their speech while speaking in noise (i.e., Lombard speech) to improve their intelligibility. The resulting acoustic-phonetic changes in Lombard speech vary amongst different speakers, but it is unclear what causes these talker differences, and what impact these differences have on intelligibility. This study investigates the potential role of articulatory control in talkers’ Lombard speech enrichment success. Seventy-eight speakers read out sentences in both their habitual style and in a condition where they were instructed to speak clearly while hearing loud speech-shaped noise. A diadochokinetic (DDK) speech task that requires speakers to repetitively produce word or non-word sequences as accurately and as rapidly as possible, was used to quantify their articulatory control. Individuals’ predicted intelligibility in both speaking styles (presented at -5 dB SNR) was measured using an acoustic glimpse-based metric: the High-Energy Glimpse Proportion (HEGP). Speakers’ HEGP scores show a clear effect of speaking condition (better HEGP scores in the Lombard than habitual condition), but no simple effect of articulatory control on HEGP, nor an interaction between speaking condition and articulatory control. This indicates that individuals’ speech enrichment success as measured by the HEGP metric was not predicted by DDK performance.
  • Sjerps, M. J., & Chang, E. F. (2019). The cortical processing of speech sounds in the temporal lobe. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 361-379). Cambridge, MA: MIT Press.
  • Skiba, R. (2004). Revitalisierung bedrohter Sprachen - Ein Ernstfall für die Sprachdidaktik. In H. W. Hess (Ed.), Didaktische Reflexionen "Berliner Didaktik" und Deutsch als Fremdsprache heute (pp. 251-262). Berlin: Staufenburg.
  • Skiba, R. (1988). Computer analysis of language data using the data transformation program TEXTWOLF in conjunction with a database system. In U. Jung (Ed.), Computers in applied linguistics and language teaching (pp. 155-159). Frankfurt am Main: Peter Lang.
  • Skiba, R. (1988). Computerunterstützte Analyse von sprachlichen Daten mit Hilfe des Datenumwandlungsprogramms TextWolf in Kombination mit einem Datenbanksystem. In B. Spillner (Ed.), Angewandte Linguistik und Computer (pp. 86-88). Tübingen: Gunter Narr.
  • Stivers, T. (2004). Question sequences in interaction. In A. Majid (Ed.), Field Manual Volume 9 (pp. 45-47). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.506967.

    Abstract

    When people request information, they have a variety of means for eliciting the information. In English two of the primary resources for eliciting information include asking questions, making statements about their interlocutor (thereby generating confirmation or revision). But within these types there are a variety of ways that these information elicitors can be designed. The goal of this task is to examine how different languages seek and provide information, the extent to which syntax vs prosodic resources are used (e.g., in questions), and the extent to which the design of information seeking actions and their responses display a structural preference to promote social solidarity.
  • Stolker, C. J. J. M., & Poletiek, F. H. (1998). Smartengeld - Wat zijn we eigenlijk aan het doen? Naar een juridische en psychologische evaluatie. In F. Stadermann (Ed.), Bewijs en letselschade (pp. 71-86). Lelystad, The Netherlands: Koninklijke Vermande.
  • Suppes, P., Böttner, M., & Liang, L. (1998). Machine Learning of Physics Word Problems: A Preliminary Report. In A. Aliseda, R. van Glabbeek, & D. Westerståhl (Eds.), Computing Natural Language (pp. 141-154). Stanford, CA, USA: CSLI Publications.
  • Ten Bosch, L., Oostdijk, N., & De Ruiter, J. P. (2004). Turn-taking in social talk dialogues: Temporal, formal and functional aspects. In 9th International Conference Speech and Computer (SPECOM'2004) (pp. 454-461).

    Abstract

    This paper presents a quantitative analysis of the
    turn-taking mechanism evidenced in 93 telephone
    dialogues that were taken from the 9-million-word
    Spoken Dutch Corpus. While the first part of the paper
    focuses on the temporal phenomena of turn taking, such
    as durations of pauses and overlaps of turns in the
    dialogues, the second part explores the discoursefunctional
    aspects of utterances in a subset of 8
    dialogues that were annotated especially for this
    purpose. The results show that speakers adapt their turntaking
    behaviour to the interlocutor’s behaviour.
    Furthermore, the results indicate that male-male dialogs
    show a higher proportion of overlapping turns than
    female-female dialogues.
  • Ten Bosch, L., Mulder, K., & Boves, L. (2019). Phase synchronization between EEG signals as a function of differences between stimuli characteristics. In Proceedings of Interspeech 2019 (pp. 1213-1217). doi:10.21437/Interspeech.2019-2443.

    Abstract

    The neural processing of speech leads to specific patterns in the brain which can be measured as, e.g., EEG signals. When properly aligned with the speech input and averaged over many tokens, the Event Related Potential (ERP) signal is able to differentiate specific contrasts between speech signals. Well-known effects relate to the difference between expected and unexpected words, in particular in the N400, while effects in N100 and P200 are related to attention and acoustic onset effects. Most EEG studies deal with the amplitude of EEG signals over time, sidestepping the effect of phase and phase synchronization. This paper investigates the relation between phase in the EEG signals measured in an auditory lexical decision task by Dutch participants listening to full and reduced English word forms. We show that phase synchronization takes place across stimulus conditions, and that the so-called circular variance is narrowly related to the type of contrast between stimuli.
  • Ten Bosch, L., Oostdijk, N., & De Ruiter, J. P. (2004). Durational aspects of turn-taking in spontaneous face-to-face and telephone dialogues. In P. Sojka, I. Kopecek, & K. Pala (Eds.), Text, Speech and Dialogue: Proceedings of the 7th International Conference TSD 2004 (pp. 563-570). Heidelberg: Springer.

    Abstract

    On the basis of two-speaker spontaneous conversations, it is shown that the distributions of both pauses and speech-overlaps of telephone and faceto-face dialogues have different statistical properties. Pauses in a face-to-face
    dialogue last up to 4 times longer than pauses in telephone conversations in functionally comparable conditions. There is a high correlation (0.88 or larger) between the average pause duration for the two speakers across face-to-face
    dialogues and telephone dialogues. The data provided form a first quantitative analysis of the complex turn-taking mechanism evidenced in the dialogues available in the 9-million-word Spoken Dutch Corpus.
  • Ter Bekke, M., Ozyurek, A., & Ünal, E. (2019). Speaking but not gesturing predicts motion event memory within and across languages. In A. Goel, C. Seifert, & C. Freksa (Eds.), Proceedings of the 41st Annual Meeting of the Cognitive Science Society (CogSci 2019) (pp. 2940-2946). Montreal, QB: Cognitive Science Society.

    Abstract

    In everyday life, people see, describe and remember motion events. We tested whether the type of motion event information (path or manner) encoded in speech and gesture predicts which information is remembered and if this varies across speakers of typologically different languages. We focus on intransitive motion events (e.g., a woman running to a tree) that are described differently in speech and co-speech gesture across languages, based on how these languages typologically encode manner and path information (Kita & Özyürek, 2003; Talmy, 1985). Speakers of Dutch (n = 19) and Turkish (n = 22) watched and described motion events. With a surprise (i.e. unexpected) recognition memory task, memory for manner and path components of these events was measured. Neither Dutch nor Turkish speakers’ memory for manner went above chance levels. However, we found a positive relation between path speech and path change detection: participants who described the path during encoding were more accurate at detecting changes to the path of an event during the memory task. In addition, the relation between path speech and path memory changed with native language: for Dutch speakers encoding path in speech was related to improved path memory, but for Turkish speakers no such relation existed. For both languages, co-speech gesture did not predict memory speakers. We discuss the implications of these findings for our understanding of the relations between speech, gesture, type of encoding in language and memory.
  • Terrill, A. (2004). Coordination in Lavukaleve. In M. Haspelmath (Ed.), Coordinating Constructions. (pp. 427-443). Amsterdam: John Benjamins.
  • Thomaz, A. L., Lieven, E., Cakmak, M., Chai, J. Y., Garrod, S., Gray, W. D., Levinson, S. C., Paiva, A., & Russwinkel, N. (2019). Interaction for task instruction and learning. In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 91-110). Cambridge, MA: MIT Press.

Share this page