Publications

Displaying 201 - 300 of 460
  • Jordens, P. (2004). Morphology in Second Language Acquisition. In G. Booij (Ed.), Morphologie: Ein internationales Handbuch zur Flexion und Wortbildung (pp. 1806-1816). Berlin: Walter de Gruyter.
  • Jordens, P. (2009). The acquisition of functional categories in child L1 and adult L2 acquisition. In C. Dimroth, & P. Jordens (Eds.), Functional categories in learner language (pp. 45-96). Berlin: Mouton de Gruyter.
  • Kempen, G. (2004). Terug naar Wundt: Pleidooi voor integraal onderzoek van taal, taalkennis en taalgedrag. In Koninklijke Nederlandse Akademie van Wetenschappen (Ed.), Gij letterdames en gij letterheren': Nieuwe mogelijkheden voor taalkundig en letterkundig onderzoek in Nederland. (pp. 174-188). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.
  • Kempen, G. (1986). Beyond word processing. In E. Cluff, & G. Bunting (Eds.), Information management yearbook 1986 (pp. 178-181). London: IDPM Publications.
  • Kempen, G. (1985). Artificiële intelligentie: Bouw, benutting, beheersing. In W. Veldkamp (Ed.), Innovatie in perspectief (pp. 42-47). Vianen: Nixdorf Computer B.V.
  • Kempen, G., & Harbusch, K. (1998). A 'tree adjoining' grammar without adjoining: The case of scrambling in German. In Fourth International Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+4).
  • Kempen, G., & Harbusch, K. (2004). A corpus study into word order variation in German subordinate clauses: Animacy affects linearization independently of grammatical function assignment. In T. Pechmann, & C. Habel (Eds.), Multidisciplinary approaches to language production (pp. 173-181). Berlin: Mouton de Gruyter.
  • Kempen, G., & Harbusch, K. (2004). Generating natural word orders in a semi-free word order language: Treebank-based linearization preferences for German. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing (pp. 350-354). Berlin: Springer.

    Abstract

    We outline an algorithm capable of generating varied but natural sounding sequences of argument NPs in subordinate clauses of German, a semi-free word order language. In order to attain the right level of output flexibility, the algorithm considers (1) the relevant lexical properties of the head verb (not only transitivity type but also reflexivity, thematic relations expressed by the NPs, etc.), and (2) the animacy and definiteness values of the arguments, and their length. The relevant statistical data were extracted from the NEGRA–II treebank and from hand-coded features for animacy and definiteness. The algorithm maps the relevant properties onto “primary” versus “secondary” placement options in the generator. The algorithm is restricted in that it does not take into account linear order determinants related to the sentence’s information structure and its discourse context (e.g. contrastiveness). These factors may modulate the above preferences or license “tertiary” linear orders beyond the primary and secondary options considered here.
  • Kempen, G., & Harbusch, K. (2004). How flexible is constituent order in the midfield of German subordinate clauses? A corpus study revealing unexpected rigidity. In S. Kepser, & M. Reis (Eds.), Pre-Proceedings of the International Conference on Linguistic Evidence (pp. 81-85). Tübingen: Niemeyer.
  • Kempen, G. (2004). Interactive visualization of syntactic structure assembly for grammar-intensive first- and second-language instruction. In R. Delmonte, P. Delcloque, & S. Tonelli (Eds.), Proceedings of InSTIL/ICALL2004 Symposium on NLP and speech technologies in advanced language learning systems (pp. 183-186). Venice: University of Venice.
  • Kempen, G., & Harbusch, K. (2004). How flexible is constituent order in the midfield of German subordinate clauses?: A corpus study revealing unexpected rigidity. In Proceedings of the International Conference on Linguistic Evidence (pp. 81-85). Tübingen: University of Tübingen.
  • Kempen, G. (2004). Human grammatical coding: Shared structure formation resources for grammatical encoding and decoding. In Cuny 2004 - The 17th Annual CUNY Conference on Human Sentence Processing. March 25-27, 2004. University of Maryland (pp. 66).
  • Kempen, G., & Hoenkamp, E. (1982). Incremental sentence generation: Implications for the structure of a syntactic processor. In J. Horecký (Ed.), COLING 82. Proceedings of the Ninth International Conference on Computational Linguistics, Prague, July 5-10, 1982 (pp. 151-156). Amsterdam: North-Holland.

    Abstract

    Human speakers often produce sentences incrementally. They can start speaking having in mind only a fragmentary idea of what they want to say, and while saying this they refine the contents underlying subsequent parts of the utterance. This capability imposes a number of constraints on the design of a syntactic processor. This paper explores these constraints and evaluates some recent computational sentence generators from the perspective of incremental production.
  • Kempen, G. (1986). Kunstmatige intelligentie en gezond verstand. In P. Hagoort, & R. Maessen (Eds.), Geest, computer, kunst (pp. 118-123). Utrecht: Stichting Grafiet.
  • Kempen, G. (1978). Sentence construction by a psychologically plausible formulator. In R. N. Campbell, & P. T. Smith (Eds.), Recent advances in the psychology of language: Formal and experimental approaches. Volume 2 (pp. 103-124). New York: Plenum Press.
  • Kempen, G. (1998). Sentence parsing. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 213-228). Berlin: Springer.
  • Kempen, G., Schotel, H., & Pijls, J. (1985). Taaltechnologie en taalonderwijs. In J. Heene (Ed.), Onderwijs en informatietechnologie. Den Haag: Stichting voor Onderzoek van het Onderwijs (SVO).
  • Kempen, G. (1999). Visual Grammar: Multimedia for grammar and spelling instruction in primary education. In K. Cameron (Ed.), CALL: Media, design, and applications (pp. 223-238). Lisse: Swets & Zeitlinger.
  • Khetarpal, N., Majid, A., & Regier, T. (2009). Spatial terms reflect near-optimal spatial categories. In N. Taatgen, & H. Van Rijn (Eds.), Proceedings of the Thirty-First Annual Conference of the Cognitive Science Society (pp. 2396-2401). Austin, TX: Cognitive Science Society.

    Abstract

    Spatial terms in the world’s languages appear to reflect both universal conceptual tendencies and linguistic convention. A similarly mixed picture in the case of color naming has been accounted for in terms of near-optimal partitions of color space. Here, we demonstrate that this account generalizes to spatial terms. We show that the spatial terms of 9 diverse languages near-optimally partition a similarity space of spatial meanings, just as color terms near-optimally partition color space. This account accommodates both universal tendencies and cross-language differences in spatial category extension, and identifies general structuring principles that appear to operate across different semantic domains.
  • Kita, S., van Gijn, I., & van der Hulst, H. (1998). Movement phases in signs and co-speech gestures, and their transcription by human coders. In Gesture and Sign-Language in Human-Computer Interaction (Lecture Notes in Artificial Intelligence - LNCS Subseries, Vol. 1371) (pp. 23-35). Berlin, Germany: Springer-Verlag.

    Abstract

    The previous literature has suggested that the hand movement in co-speech gestures and signs consists of a series of phases with qualitatively different dynamic characteristics. In this paper, we propose a syntagmatic rule system for movement phases that applies to both co-speech gestures and signs. Descriptive criteria for the rule system were developed for the analysis video-recorded continuous production of signs and gesture. It involves segmenting a stream of body movement into phases and identifying different phase types. Two human coders used the criteria to analyze signs and cospeech gestures that are produced in natural discourse. It was found that the criteria yielded good inter-coder reliability. These criteria can be used for the technology of automatic recognition of signs and co-speech gestures in order to segment continuous production and identify the potentially meaningbearing phase.
  • Kita, S., & Ozyurek, A. (1999). Semantische Koordination zwischen Sprache und spontanen ikonischen Gesten: Eine sprachvergleichende Untersuchung. In Max-Planck-Gesellschaft (Ed.), Jahrbuch 1998 (pp. 388-391). Göttingen: Vandenhoeck & Ruprecht.
  • Klaas, G. (2009). Hints and recommendations concerning field equipment. In A. Majid (Ed.), Field manual volume 12 (pp. VI-VII). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Klein, W. (2000). Changing concepts of the nature-nurture debate. In R. Hide, J. Mittelstrass, & W. Singer (Eds.), Changing concepts of nature at the turn of the millenium: Proceedings plenary session of the Pontifical academy of sciences, 26-29 October 1998 (pp. 289-299). Vatican City: Pontificia Academia Scientiarum.
  • Klein, W. (2009). Concepts of time. In W. Klein, & P. Li (Eds.), The expression of time (pp. 5-38). Berlin: Mouton de Gruyter.
  • Klein, W. (2000). Der Mythos vom Sprachverfall. In Berlin-Brandenburgische Akademie der Wissenschaften (Ed.), Jahrbuch 1999: Berlin-Brandenburgische Akademie der Wissenschaften (pp. 139-158). Berlin: Akademie Verlag.
  • Klein, W. (1998). Ein Blick zurück auf die Varietätengrammatik. In U. Ammon, K. Mattheier, & P. Nelde (Eds.), Sociolinguistica: Internationales Jahrbuch für europäische Soziolinguistik (pp. 22-38). Tübingen: Niemeyer.
  • Klein, W. (1985). Ellipse, Fokusgliederung und thematischer Stand. In R. Meyer-Hermann, & H. Rieser (Eds.), Ellipsen und fragmentarische Ausdrücke (pp. 1-24). Tübingen: Niemeyer.
  • Klein, W. (1999). Die Lehren des Zweitspracherwerbs. In N. Dittmar, & A. Ramat (Eds.), Grammatik und Diskurs: Studien zum Erwerb des Deutschen und des Italienischen (pp. 279-290). Tübingen: Stauffenberg.
  • Klein, W., & Perdue, C. (1986). Comment résourdre une tache verbale complexe avec peu de moyens linguistiques? In A. Giacomi, & D. Véronique (Eds.), Acquisition d'une langue étrangère (pp. 306-330). Aix-en-Provence: Service des Publications de l'Universite de Provence.
  • Klein, W. (1985). Argumentationsanalyse: Ein Begriffsrahmen und ein Beispiel. In W. Kopperschmidt, & H. Schanze (Eds.), Argumente - Argumentationen (pp. 208-260). München: Fink.
  • Klein, W., & Heidelberger Forschungsprojekt "Pidgin - Deutsch" (1978). Aspekte der ungesteuerten Erlernung des Deutschen durch ausländische Arbeiter. In C. Molony, H. Zobl, & W. Stölting (Eds.), German in contact with other languages / Deutsch im Kontakt mit anderen Sprachen (pp. 147-183). Wiesbaden: Scriptor.
  • Klein, W. (1998). Assertion and finiteness. In N. Dittmar, & Z. Penner (Eds.), Issues in the theory of language acquisition: Essays in honor of Jürgen Weissenborn (pp. 225-245). Bern: Peter Lang.
  • Klein, W. (2004). Das Digitale Wörterbuch der deutschen Sprache des 20. Jahrhunderts (DWDS). In J. Scharnhorst (Ed.), Sprachkultur und Lexikographie (pp. 281-311). Berlin: Peter Lang.
  • Klein, W. (2009). Finiteness, universal grammar, and the language faculty. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Ozcaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 333-344). New York: Psychology Press.
  • Klein, W. (2009). How time is encoded. In W. Klein, & P. Li (Eds.), The expression of time (pp. 39-82). Berlin: Mouton de Gruyter.
  • Klein, W. (1982). Local deixis in route directions. In R. Jarvella, & W. Klein (Eds.), Speech, place, and action: Studies in deixis and related topics (pp. 161-182). New York: Wiley.
  • Klein, W. (1986). Intonation und Satzmodalität in einfachen Fällen: Einige Beobachtungen. In E. Slembek (Ed.), Miteinander sprechen und handeln: Festschrift für Hellmut Geissner (pp. 161-177). Königstein Ts.: Scriptor.
  • Klein, W., & Li, P. (2009). Introduction. In W. Klein, & P. Li (Eds.), The expression of time (pp. 1-4). Berlin: Mouton de Gruyter.
  • Klein, W. (2000). Prozesse des Zweitspracherwerbs. In H. Grimm (Ed.), Enzyklopädie der Psychologie: Vol. 3 (pp. 538-570). Göttingen: Hogrefe.
  • Klein, W. (1978). The aquisition of German syntax by foreign migrant workers. In D. Sankoff (Ed.), Linguistic variation: models and methods (pp. 1-22). New York: Academic Press.
  • Klein, W. (1991). Seven trivia of language acquisition. In L. Eubank (Ed.), Point counterpoint: Universal grammar in the second language (pp. 49-70). Amsterdam: Benjamins.
  • Klein, W. (1991). SLA theory: Prolegomena to a theory of language acquisition and implications for Theoretical Linguistics. In T. Huebner, & C. Ferguson (Eds.), Crosscurrents in second language acquisition and linguistic theories (pp. 169-194). Amsterdam: Benjamins.
  • Klein, W. (1978). Soziolinguistik. In H. Balmer (Ed.), Die Psychologie des 20. Jahrhunderts: Vol. 7. Piaget und die Folgen (pp. 1130-1147). Zürich: Kindler.
  • Klein, W. (1985). Sechs Grundgrößen des Spracherwerbs. In R. Eppeneder (Ed.), Lernersprache: Thesen zum Erwerb einer Fremdsprache (pp. 67-106). München: Goethe Institut.
  • Klein, W., & Extra, G. (1982). Second language acquisition by adult immigrants: A European Science Foundation project. In R. E. V. Stuip, & W. Zwanenburg (Eds.), Handelingen van het zevenendertigste Nederlandse Filologencongres (pp. 127-136). Amsterdam: APA-Holland Universiteitspers.
  • Klein, W., & Vater, H. (1998). The perfect in English and German. In L. Kulikov, & H. Vater (Eds.), Typology of verbal categories: Papers presented to Vladimir Nedjalkov on the occasion of his 70th birthday (pp. 215-235). Tübingen: Niemeyer.
  • Klein, W., & Musan, R. (2009). Werden. In W. Eins, & F. Schmoë (Eds.), Wie wir sprechen und schreiben: Festschrift für Helmut Glück zum 60. Geburtstag (pp. 45-61). Wiesbaden: Harrassowitz Verlag.
  • Klein, W., & Dimroth, C. (2009). Untutored second language acquisition. In W. C. Ritchie, & T. K. Bhatia (Eds.), The new handbook of second language acquisition (2nd rev. ed., pp. 503-522). Bingley: Emerald.
  • Koenig, A., Ringersma, J., & Trilsbeek, P. (2009). The Language Archiving Technology domain. In Z. Vetulani (Ed.), Human Language Technologies as a Challenge for Computer Science and Linguistics (pp. 295-299).

    Abstract

    The Max Planck Institute for Psycholinguistics (MPI) manages an archive of linguistic research data with a current size of almost 20 Terabytes. Apart from in-house researchers other projects also store their data in the archive, most notably the Documentation of Endangered Languages (DoBeS) projects. The archive is available online and can be accessed by anybody with Internet access. To be able to manage this large amount of data the MPI's technical group has developed a software suite called Language Archiving Technology (LAT) that on the one hand helps researchers and archive managers to manage the data and on the other hand helps users in enriching their primary data with additional layers. All the MPI software is Java-based and developed according to open source principles (GNU, 2007). All three major operating systems (Windows, Linux, MacOS) are supported and the software works similarly on all of them. As the archive is online, many of the tools, especially the ones for accessing the data, are browser based. Some of these browser-based tools make use of Adobe Flex to create nice-looking GUIs. The LAT suite is a complete set of management and enrichment tools, and given the interaction between the tools the result is a complete LAT software domain. Over the last 10 years, this domain has proven its functionality and use, and is being deployed to servers in other institutions. This deployment is an important step in getting the archived resources back to the members of the speech communities whose languages are documented. In the paper we give an overview of the tools of the LAT suite and we describe their functionality and role in the integrated process of archiving, management and enrichment of linguistic data.
  • Kopecka, A. (2009). Continuity and change in the representation of motion events in French. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Özçaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 415-426). New York: Psychology Press.
  • Kuijpers, C. T., Coolen, R., Houston, D., & Cutler, A. (1998). Using the head-turning technique to explore cross-linguistic performance differences. In C. Rovee-Collier, L. Lipsitt, & H. Hayne (Eds.), Advances in infancy research: Vol. 12 (pp. 205-220). Stamford: Ablex.
  • Lai, V. T., & Frajzyngier, Z. (2009). Change of functions of the first person pronouns in Chinese. In M. Dufresne, M. Dupuis, & E. Vocaj (Eds.), Historical Linguistics 2007: Selected papers from the 18th International Conference on Historical Linguistics Montreal, 6-11 August 2007 (pp. 223-232). Amsterdam: John Benjamins.

    Abstract

    Selected papers from the 18th International Conference on Historical Linguistics, Montreal, 6-11 August 2007
  • Lansner, A., Sandberg, A., Petersson, K. M., & Ingvar, M. (2000). On forgetful attractor network memories. In H. Malmgren, M. Borga, & L. Niklasson (Eds.), Artificial neural networks in medicine and biology: Proceedings of the ANNIMAB-1 Conference, Göteborg, Sweden, 13-16 May 2000 (pp. 54-62). Heidelberg: Springer Verlag.

    Abstract

    A recurrently connected attractor neural network with a Hebbian learning rule is currently our best ANN analogy for a piece cortex. Functionally biological memory operates on a spectrum of time scales with regard to induction and retention, and it is modulated in complex ways by sub-cortical neuromodulatory systems. Moreover, biological memory networks are commonly believed to be highly distributed and engage many co-operating cortical areas. Here we focus on the temporal aspects of induction and retention of memory in a connectionist type attractor memory model of a piece of cortex. A continuous time, forgetful Bayesian-Hebbian learning rule is described and compared to the characteristics of LTP and LTD seen experimentally. More generally, an attractor network implementing this learning rule can operate as a long-term, intermediate-term, or short-term memory. Modulation of the print-now signal of the learning rule replicates some experimental memory phenomena, like e.g. the von Restorff effect.
  • Lausberg, H., & Sloetjes, H. (2009). NGCS/ELAN - Coding movement behaviour in psychotherapy [Meeting abstract]. PPmP - Psychotherapie · Psychosomatik · Medizinische Psychologie, 59: A113, 103.

    Abstract

    Individual and interactive movement behaviour (non-verbal behaviour / communication) specifically reflects implicit processes in psychotherapy [1,4,11]. However, thus far, the registration of movement behaviour has been a methodological challenge. We will present a coding system combined with an annotation tool for the analysis of movement behaviour during psychotherapy interviews [9]. The NGCS coding system enables to classify body movements based on their kinetic features alone [5,7]. The theoretical assumption behind the NGCS is that its main kinetic and functional movement categories are differentially associated with specific psychological functions and thus, have different neurobiological correlates [5-8]. ELAN is a multimodal annotation tool for digital video media [2,3,12]. The NGCS / ELAN template enables to link any movie to the same coding system and to have different raters independently work on the same file. The potential of movement behaviour analysis as an objective tool for psychotherapy research and for supervision in the psychosomatic practice is discussed by giving examples of the NGCS/ELAN analyses of psychotherapy sessions. While the quality of kinetic turn-taking and the therapistrsquor;s (implicit) adoption of the patientrsquor;s movements may predict therapy outcome, changes in the patientrsquor;s movement behaviour pattern may indicate changes in cognitive concepts and emotional states and thus, may help to identify therapeutically relevant processes [10].
  • Lenkiewicz, P., Pereira, M., Freire, M. M., & Fernandes, J. (2009). A new 3D image segmentation method for parallel architectures. In Proceedings of the 2009 IEEE International Conference on Multimedia and Expo [ICME 2009] June 28 – July 3, 2009, New York (pp. 1813-1816).

    Abstract

    This paper presents a novel model for 3D image segmentation and reconstruction. It has been designed with the aim to be implemented over a computer cluster or a multi-core platform. The required features include a nearly absolute independence between the processes participating in the segmentation task and providing amount of work as equal as possible for all the participants. As a result, it is avoid many drawbacks often encountered when performing a parallelization of an algorithm that was constructed to operate in a sequential manner. Furthermore, the proposed algorithm based on the new segmentation model is efficient and shows a very good, nearly linear performance growth along with the growing number of processing units.
  • Lenkiewicz, P., Pereira, M., Freire, M., & Fernandes, J. (2009). The dynamic topology changes model for unsupervised image segmentation. In Proceedings of the 11th IEEE International Workshop on Multimedia Signal Processing (MMSP'09) (pp. 1-5).

    Abstract

    Deformable models are a popular family of image segmentation techniques, which has been gaining significant focus in the last two decades, serving both for real-world applications as well as the base for research work. One of the features that the deformable models offer and that is considered a much desired one, is the ability to change their topology during the segmentation process. Using this characteristic it is possible to perform segmentation of objects with discontinuities in their bodies or to detect an undefined number of objects in the scene. In this paper we present our model for handling the topology changes in image segmentation methods based on the Active Volumes solution. The said model is capable of performing the changes in the structure of objects while the segmentation progresses, what makes it efficient and suitable for implementations over powerful execution environment, like multi-core architectures or computer clusters.
  • Lenkiewicz, P., Pereira, M., Freire, M., & Fernandes, J. (2009). The whole mesh Deformation Model for 2D and 3D image segmentation. In Proceedings of the 2009 IEEE International Conference on Image Processing (ICIP 2009) (pp. 4045-4048).

    Abstract

    In this paper we present a novel approach for image segmentation using Active Nets and Active Volumes. Those solutions are based on the Deformable Models, with slight difference in the method for describing the shapes of interests - instead of using a contour or a surface they represented the segmented objects with a mesh structure, which allows to describe not only the surface of the objects but also to model their interiors. This is obtained by dividing the nodes of the mesh in two categories, namely internal and external ones, which will be responsible for two different tasks. In our new approach we propose to negate this separation and use only one type of nodes. Using that assumption we manage to significantly shorten the time of segmentation while maintaining its quality.
  • Levelt, W. J. M. (1999). Language. In G. Adelman, & B. H. Smith (Eds.), Elsevier's encyclopedia of neuroscience (2nd enlarged and revised edition) (pp. 1005-1008). Amsterdam: Elsevier Science.
  • Levelt, W. J. M., Sinclair, A., & Jarvella, R. J. (1978). Causes and functions of linguistic awareness in language acquisition: Some introductory remarks. In A. Sinclair, R. Jarvella, & W. J. M. Levelt (Eds.), The child's conception of language (pp. 1-14). Heidelberg: Springer.
  • Levelt, W. J. M. (1978). A survey of studies in sentence perception: 1970-1976. In W. J. M. Levelt, & G. Flores d'Arcais (Eds.), Studies in the perception of language (pp. 1-74). New York: Wiley.
  • Levelt, W. J. M. (1982). Cognitive styles in the use of spatial direction terms. In R. Jarvella, & W. Klein (Eds.), Speech, place, and action: Studies in deixis and related topics (pp. 251-268). Chichester: Wiley.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M., & Plomp, R. (1962). Musical consonance and critical bandwidth. In Proceedings of the 4th International Congress Acoustics (pp. 55-55).
  • Levelt, W. J. M. (2004). Language. In G. Adelman, & B. H. Smith (Eds.), Elsevier's encyclopedia of neuroscience [CD-ROM] (3rd). Amsterdam: Elsevier.
  • Levelt, W. J. M. (1986). Herdenking van Joseph Maria Franciscus Jaspars (16 maart 1934 - 31 juli 1985). In Jaarboek 1986 Koninklijke Nederlandse Akademie van Wetenschappen (pp. 187-189). Amsterdam: North Holland.
  • Levelt, W. J. M. (1991). Lexical access in speech production: Stages versus cascading. In H. Peters, W. Hulstijn, & C. Starkweather (Eds.), Speech motor control and stuttering (pp. 3-10). Amsterdam: Excerpta Medica.
  • Levelt, W. J. M. (1982). Linearization in describing spatial networks. In S. Peters, & E. Saarinen (Eds.), Processes, beliefs, and questions (pp. 199-220). Dordrecht - Holland: D. Reidel.

    Abstract

    The topic of this paper is the way in which speakers order information in discourse. I will refer to this issue with the term "linearization", and will begin with two types of general remarks. The first one concerns the scope and relevance of the problem with reference to some existing literature. The second set of general remarks will be about the place of linearization in a theory of the speaker. The following, and main part of this paper, will be a summary report of research of linearization in a limited, but well-defined domain of discourse, namely the description of spatial networks.
  • Levelt, W. J. M. (2000). Introduction Section VII: Language. In M. S. Gazzaniga (Ed.), The new cognitive neurosciences; 2nd ed. (pp. 843-844). Cambridge: MIT Press.
  • Levelt, W. J. M. (1999). Producing spoken language: A blueprint of the speaker. In C. M. Brown, & P. Hagoort (Eds.), The neurocognition of language (pp. 83-122). Oxford University Press.
  • Levelt, W. J. M. (2000). Psychology of language. In K. Pawlik, & M. R. Rosenzweig (Eds.), International handbook of psychology (pp. 151-167). London: SAGE publications.
  • Levelt, W. J. M. (2000). Speech production. In A. E. Kazdin (Ed.), Encyclopedia of psychology (pp. 432-433). Oxford University Press.
  • Levelt, W. J. M., Schreuder, R., & Hoenkamp, E. (1978). Structure and use of verbs of motion. In R. N. Campbell, & P. T. Smith (Eds.), Recent advances in the psychology of language: Vol 2. Formal and experimental approaches (pp. 137-162). New York: Plenum Press.
  • Levelt, W. J. M., & Indefrey, P. (2000). The speaking mind/brain: Where do spoken words come from? In A. Marantz, Y. Miyashita, & W. O'Neil (Eds.), Image, language, brain: Papers from the First Mind Articulation Project Symposium (pp. 77-94). Cambridge, Mass.: MIT Press.
  • Levelt, W. J. M. (1986). Zur sprachlichen Abbildung des Raumes: Deiktische und intrinsische Perspektive. In H. Bosshardt (Ed.), Perspektiven auf Sprache. Interdisziplinäre Beiträge zum Gedenken an Hans Hörmann (pp. 187-211). Berlin: De Gruyter.
  • Levinson, S. C. (1982). Caste rank and verbal interaction in Western Tamilnadu. In D. B. McGilvray (Ed.), Caste ideology and interaction (pp. 98-203). Cambridge University Press.
  • Levinson, S. C. (1999). Deixis. In K. Brown, & J. Miller (Eds.), Concise encyclopedia of grammatical categories (pp. 132-136). Oxford: Elsevier.
  • Levinson, S. C. (1998). Deixis. In J. L. Mey (Ed.), Concise encyclopedia of pragmatics (pp. 200-204). Amsterdam: Elsevier.
  • Levinson, S. C. (1991). Deixis. In W. Bright (Ed.), Oxford international encyclopedia of linguistics (pp. 343-344). Oxford University Press.
  • Levinson, S. C. (1999). Deixis and Demonstratives. In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 29-40). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.2573810.

    Abstract

    Demonstratives are key items in understanding how a language constructs and interprets spatial relationships. They are also multi-functional, with applications to non-spatial deictic fields such as time, perception, person and discourse, and uses in anaphora and affect marking. This item consists of an overview of theoretical distinctions in demonstrative systems, followed by a set of practical queries and elicitation suggestions for demonstratives in “table top” space, wider spatial fields, and naturalistic data.
  • Levinson, S. C. (2009). Cognitive anthropology. In G. Senft, J. O. Östman, & J. Verschueren (Eds.), Culture and language use (pp. 50-57). Amsterdam: Benjamins.
  • Levinson, S. C. (2004). Deixis. In L. Horn (Ed.), The handbook of pragmatics (pp. 97-121). Oxford: Blackwell.
  • Levinson, S. C. (2009). Foreword. In J. Liep (Ed.), A Papuan plutocracy: Ranked exchange on Rossel Island (pp. ix-xxiii). Copenhagen: Aarhus University Press.
  • Levinson, S. C. (1999). General Questions About Topological Relations in Adpositions and Cases. In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 57-68). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.2615829.

    Abstract

    The world’s languages encode a diverse range of topological relations. However, cross-linguistic investigation suggests that the relations IN, AT and ON are especially fundamental to the grammaticised expression of space. The purpose of this questionnaire is to collect information about adpositions, case markers, and spatial nominals that are involved in the expression of core IN/AT/ON meanings. The task explores the more general parts of a language’s topological system, with a view to testing certain hypotheses about the packaging of spatial concepts. The questionnaire consists of target translation sentences that focus on a number of dimensions including animacy, caused location and motion.
  • Levinson, S. C. (1999). Hypotheses concerning basic locative constructions and the verbal elements within them. In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 55-56). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3002711.

    Abstract

    Languages differ widely in terms of how they encode the fundamental concepts of location and position. For some languages, verbs have an important role to play in describing situations (e.g., whether a bottle is standing or lying on the table); for others, verbs are not used in describing location at all. This item outlines certain hypotheses concerning four “types” of languages: those that have verbless basic locatives; those that use a single verb; those that have several verbs available to express location; and those that use positional verbs. The document was originally published as an appendix to the 'Picture series for positional verbs' (https://doi.org/10.17617/2.2573831).
  • Levinson, S. C. (1998). Minimization and conversational inference. In A. Kasher (Ed.), Pragmatics: Vol. 4 Presupposition, implicature and indirect speech acts (pp. 545-612). London: Routledge.
  • Levinson, S. C. (1999). Language and culture. In R. Wilson, & F. Keil (Eds.), MIT encyclopedia of the cognitive sciences (pp. 438-440). Cambridge: MIT press.
  • Levinson, S. C. (2009). Language and mind: Let's get the issues straight! In S. D. Blum (Ed.), Making sense of language: Readings in culture and communication (pp. 95-104). Oxford: Oxford University Press.
  • Levinson, S. C. (2000). Language as nature and language as art. In J. Mittelstrass, & W. Singer (Eds.), Proceedings of the Symposium on ‘Changing concepts of nature and the turn of the Millennium (pp. 257-287). Vatican City: Pontificae Academiae Scientiarium Scripta Varia.
  • Levinson, S. C. (2000). H.P. Grice on location on Rossel Island. In S. S. Chang, L. Liaw, & J. Ruppenhofer (Eds.), Proceedings of the 25th Annual Meeting of the Berkeley Linguistic Society (pp. 210-224). Berkeley: Berkeley Linguistic Society.
  • Levinson, S. C. (1982). Speech act theory: The state of the art. In V. Kinsella (Ed.), Surveys 2. Eight state-of-the-art articles on key areas in language teaching. Cambridge University Press.
  • Levinson, S. C., & Majid, A. (2009). Preface and priorities. In A. Majid (Ed.), Field manual volume 12 (pp. III). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C., & Majid, A. (2009). The role of language in mind. In S. Nolen-Hoeksema, B. Fredrickson, G. Loftus, & W. Wagenaar (Eds.), Atkinson and Hilgard's introduction to psychology (15th ed., pp. 352). London: Cengage learning.
  • Lindström, E. (2004). Melanesian kinship and culture. In A. Majid (Ed.), Field Manual Volume 9 (pp. 70-73). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.1552190.
  • Majid, A., van Leeuwen, T., & Dingemanse, M. (2009). Synaesthesia: A cross-cultural pilot. In A. Majid (Ed.), Field manual volume 12 (pp. 8-13). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.883570.

    Abstract

    Synaesthesia is a condition in which stimulation of one sensory modality (e.g. hearing) causes additional experiences in a second, unstimulated modality (e.g. seeing colours). The goal of this task is to explore the types (and incidence) of synaesthesia in different cultures. Two simple tests can ascertain the existence of synaesthesia in your community.

    Additional information

    2009_Synaesthesia_audio_files.zip
  • Majid, A., Van Staden, M., & Enfield, N. J. (2004). The human body in cognition, brain, and typology. In K. Hovie (Ed.), Forum Handbook, 4th International Forum on Language, Brain, and Cognition - Cognition, Brain, and Typology: Toward a Synthesis (pp. 31-35). Sendai: Tohoku University.

    Abstract

    The human body is unique: it is both an object of perception and the source of human experience. Its universality makes it a perfect resource for asking questions about how cognition, brain and typology relate to one another. For example, we can ask how speakers of different languages segment and categorize the human body. A dominant view is that body parts are “given” by visual perceptual discontinuities, and that words are merely labels for these visually determined parts (e.g., Andersen, 1978; Brown, 1976; Lakoff, 1987). However, there are problems with this view. First it ignores other perceptual information, such as somatosensory and motoric representations. By looking at the neural representations of sesnsory representations, we can test how much of the categorization of the human body can be done through perception alone. Second, we can look at language typology to see how much universality and variation there is in body-part categories. A comparison of a range of typologically, genetically and areally diverse languages shows that the perceptual view has only limited applicability (Majid, Enfield & van Staden, in press). For example, using a “coloring-in” task, where speakers of seven different languages were given a line drawing of a human body and asked to color in various body parts, Majid & van Staden (in prep) show that languages vary substantially in body part segmentation. For example, Jahai (Mon-Khmer) makes a lexical distinction between upper arm, lower arm, and hand, but Lavukaleve (Papuan Isolate) has just one word to refer to arm, hand, and leg. This shows that body part categorization is not a straightforward mapping of words to visually determined perceptual parts.
  • Majid, A., Van Staden, M., Boster, J. S., & Bowerman, M. (2004). Event categorization: A cross-linguistic perspective. In K. Forbus, D. Gentner, & T. Tegier (Eds.), Proceedings of the 26th Annual Meeting of the Cognitive Science Society (pp. 885-890). Mahwah, NJ: Erlbaum.

    Abstract

    Many studies in cognitive science address how people categorize objects, but there has been comparatively little research on event categorization. This study investigated the categorization of events involving material destruction, such as “cutting” and “breaking”. Speakers of 28 typologically, genetically, and areally diverse languages described events shown in a set of video-clips. There was considerable cross-linguistic agreement in the dimensions along which the events were distinguished, but there was variation in the number of categories and the placement of their boundaries.
  • Matsuo, A. (2004). Young children's understanding of ongoing vs. completion in present and perfective participles. In J. v. Kampen, & S. Baauw (Eds.), Proceedings of GALA 2003 (pp. 305-316). Utrecht: Netherlands Graduate School of Linguistics (LOT).
  • McDonough, J., Lehnert-LeHouillier, H., & Bardhan, N. P. (2009). The perception of nasalized vowels in American English: An investigation of on-line use of vowel nasalization in lexical access. In Nasal 2009.

    Abstract

    The goal of the presented study was to investigate the use of coarticulatory vowel nasalization in lexical access by native speakers of American English. In particular, we compare the use of coart culatory place of articulation cues to that of coarticulatory vowel nasalization. Previous research on lexical access has shown that listeners use cues to the place of articulation of a postvocalic stop in the preceding vowel. However, vowel nasalization as cue to an upcoming nasal consonant has been argued to be a more complex phenomenon. In order to establish whether coarticulatory vowel nasalization aides in the process of lexical access in the same way as place of articulation cues do, we conducted two perception experiments: an off-line 2AFC discrimination task and an on-line eyetracking study using the visual world paradigm. The results of our study suggest that listeners are indeed able to use vowel nasalization in similar ways to place of articulation information, and that both types of cues aide in lexical access.
  • McDonough, L., Choi, S., Bowerman, M., & Mandler, J. M. (1998). The use of preferential looking as a measure of semantic development. In C. Rovee-Collier, L. P. Lipsitt, & H. Hayne (Eds.), Advances in Infancy Research. Volume 12. (pp. 336-354). Stamford, CT: Ablex Publishing.
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.

Share this page