Publications

Displaying 201 - 300 of 613
  • Frost, R. L. A., Isbilen, E. S., Christiansen, M. H., & Monaghan, P. (2019). Testing the limits of non-adjacent dependency learning: Statistical segmentation and generalisation across domains. In A. K. Goel, C. M. Seifert, & C. Freksa (Eds.), Proceedings of the 41st Annual Meeting of the Cognitive Science Society (CogSci 2019) (pp. 1787-1793). Montreal, QB: Cognitive Science Society.

    Abstract

    Achieving linguistic proficiency requires identifying words from speech, and discovering the constraints that govern the way those words are used. In a recent study of non-adjacent dependency learning, Frost and Monaghan (2016) demonstrated that learners may perform these tasks together, using similar statistical processes - contrary to prior suggestions. However, in their study, non-adjacent dependencies were marked by phonological cues (plosive-continuant-plosive structure), which may have influenced learning. Here, we test the necessity of these cues by comparing learning across three conditions; fixed phonology, which contains these cues, varied phonology, which omits them, and shapes, which uses visual shape sequences to assess the generality of statistical processing for these tasks. Participants segmented the sequences and generalized the structure in both auditory conditions, but learning was best when phonological cues were present. Learning was around chance on both tasks for the visual shapes group, indicating statistical processing may critically differ across domains.
  • Gaby, A., & Faller, M. (2003). Reciprocity questionnaire. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 77-80). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877641.

    Abstract

    This project is part of a collaborative project with the research group “Reciprocals across languages” led by Nick Evans. One goal of this project is to develop a typology of reciprocals. This questionnaire is designed to help field workers get an overview over the type of markers used in the expression of reciprocity in the language studied.
  • Galke, L., Vagliano, I., & Scherp, A. (2019). Can graph neural networks go „online“? An analysis of pretraining and inference. In Proceedings of the Representation Learning on Graphs and Manifolds: ICLR2019 Workshop.

    Abstract

    Large-scale graph data in real-world applications is often not static but dynamic,
    i. e., new nodes and edges appear over time. Current graph convolution approaches
    are promising, especially, when all the graph’s nodes and edges are available dur-
    ing training. When unseen nodes and edges are inserted after training, it is not
    yet evaluated whether up-training or re-training from scratch is preferable. We
    construct an experimental setup, in which we insert previously unseen nodes and
    edges after training and conduct a limited amount of inference epochs. In this
    setup, we compare adapting pretrained graph neural networks against retraining
    from scratch. Our results show that pretrained models yield high accuracy scores
    on the unseen nodes and that pretraining is preferable over retraining from scratch.
    Our experiments represent a first step to evaluate and develop truly online variants
    of graph neural networks.
  • Galke, L., Melnychuk, T., Seidlmayer, E., Trog, S., Foerstner, K., Schultz, C., & Tochtermann, K. (2019). Inductive learning of concept representations from library-scale bibliographic corpora. In K. David, K. Geihs, M. Lange, & G. Stumme (Eds.), Informatik 2019: 50 Jahre Gesellschaft für Informatik - Informatik für Gesellschaft (pp. 219-232). Bonn: Gesellschaft für Informatik e.V. doi:10.18420/inf2019_26.
  • Galke, L., Ram, Y., & Raviv, L. (2024). Learning pressures and inductive biases in emergent communication: Parallels between humans and deep neural networks. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 197-201). Nijmegen: The Evolution of Language Conferences.
  • Ghaleb, E., Rasenberg, M., Pouw, W., Toni, I., Holler, J., Özyürek, A., & Fernandez, R. (2024). Analysing cross-speaker convergence through the lens of automatically detected shared linguistic constructions. In L. K. Samuelson, S. L. Frank, A. Mackey, & E. Hazeltine (Eds.), Proceedings of the 46th Annual Meeting of the Cognitive Science Society (CogSci 2024) (pp. 1717-1723).

    Abstract

    Conversation requires a substantial amount of coordination between dialogue participants, from managing turn taking to negotiating mutual understanding. Part of this coordination effort surfaces as the reuse of linguistic behaviour across speakers, a process often referred to as alignment. While the presence of linguistic alignment is well documented in the literature, several questions remain open, including the extent to which patterns of reuse across speakers have an impact on the emergence of labelling conventions for novel referents. In this study, we put forward a methodology for automatically detecting shared lemmatised constructions---expressions with a common lexical core used by both speakers within a dialogue---and apply it to a referential communication corpus where participants aim to identify novel objects for which no established labels exist. Our analyses uncover the usage patterns of shared constructions in interaction and reveal that features such as their frequency and the amount of different constructions used for a referent are associated with the degree of object labelling convergence the participants exhibit after social interaction. More generally, the present study shows that automatically detected shared constructions offer a useful level of analysis to investigate the dynamics of reference negotiation in dialogue.

    Additional information

    link to eScholarship
  • Ghaleb, E., Burenko, I., Rasenberg, M., Pouw, W., Uhrig, P., Holler, J., Toni, I., Ozyurek, A., & Fernandez, R. (2024). Cospeech gesture detection through multi-phase sequence labeling. In Proceedings of IEEE/CVF Winter Conference on Applications of Computer Vision (WACV 2024) (pp. 4007-4015).

    Abstract

    Gestures are integral components of face-to-face communication. They unfold over time, often following predictable movement phases of preparation, stroke, and re-
    traction. Yet, the prevalent approach to automatic gesture detection treats the problem as binary classification, classifying a segment as either containing a gesture or not, thus failing to capture its inherently sequential and contextual nature. To address this, we introduce a novel framework that reframes the task as a multi-phase sequence labeling problem rather than binary classification. Our model processes sequences of skeletal movements over time windows, uses Transformer encoders to learn contextual embeddings, and leverages Conditional Random Fields to perform sequence labeling. We evaluate our proposal on a large dataset of diverse co-speech gestures in task-oriented face-to-face dialogues. The results consistently demonstrate that our method significantly outperforms strong baseline models in detecting gesture strokes. Furthermore, applying Transformer encoders to learn contextual embeddings from movement sequences substantially improves gesture unit detection. These results highlight our framework’s capacity to capture the fine-grained dynamics of co-speech gesture phases, paving the way for more nuanced and accurate gesture detection and analysis.
  • Goldrick, M., Brehm, L., Pyeong Whan, C., & Smolensky, P. (2019). Transient blend states and discrete agreement-driven errors in sentence production. In G. J. Snover, M. Nelson, B. O'Connor, & J. Pater (Eds.), Proceedings of the Society for Computation in Linguistics (SCiL 2019) (pp. 375-376). doi:10.7275/n0b2-5305.
  • Gretsch, P. (2003). Omission impossible?: Topic and Focus in Focal Ellipsis. In K. Schwabe, & S. Winkler (Eds.), The Interfaces: Deriving and interpreting omitted structures (pp. 341-365). Amsterdam: John Benjamins.
  • Grosseck, O., Perlman, M., Ortega, G., & Raviv, L. (2024). The iconic affordances of gesture and vocalization in emerging languages in the lab. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 223-225). Nijmegen: The Evolution of Language Conferences.
  • Guirardello-Damian, R., & Skiba, R. (2002). Trumai Corpus: An example of presenting multi-media data in the IMDI-browser. In P. Austin, H. Dry, & P. Wittenburg (Eds.), Proceedings of the international LREC workshop on resources and tools in field linguistics (pp. 16-1-16-8). Paris: European Language Resources Association.

    Abstract

    Trumai, a genetically isolated language spoken in Brazil (Xingu reserve), is an example of an endangered language. Although the Trumai population consists of more than 100 individuals, only 51 people speak the language. The oral traditions are progressively dying. Given the current scenario, the documentation of this language and its cultural aspects is of great importance. In the framework of the DoBeS program (Documentation of Endangered Languages), the project "Documentation of Trumai" has selected and organized a collection of Trumai texts, with a multi-media representation of the corpus. Several kinds of information and data types are being included in the archive of the language: texts with audio and video recordings; written texts from educational materials; drawings; photos; songs; annotations in different formats; lexicon; field notes; results from scientific studies of the language (sound system, sketch grammar, comparative studies with other Xinguan languages), etc. All materials are integrated into the IMDI-Browser, a specialized tool for presenting and searching for linguistic data. This paper explores the processing phases and the results of the Trumai project taking into consideration the issue of how to combine the needs and wishes of field linguistics (content and research aspects) and the needs of archiving (structure and workflow aspects) in a well-organized corpus.
  • Gullberg, M., & Holmqvist, K. (2002). Visual attention towards gestures in face-to-face interaction vs. on screen. In I. Wachsmuth, & T. Sowa (Eds.), Gesture and sign languages in human-computer interaction (pp. 206-214). Berlin: Springer.
  • Gullberg, M. (2003). Eye movements and gestures in human face-to-face interaction. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind's eyes: Cognitive and applied aspects of eye movements (pp. 685-703). Oxford: Elsevier.

    Abstract

    Gestures are visuospatial events, meaning carriers, and social interactional phenomena. As such they constitute a particularly favourable area for investigating visual attention in a complex everyday situation under conditions of competitive processing. This chapter discusses visual attention to spontaneous gestures in human face-to-face interaction as explored with eye-tracking. Some basic fixation patterns are described, live and video-based settings are compared, and preliminary results on the relationship between fixations and information processing are outlined.
  • Gullberg, M., & Kita, S. (2003). Das Beachten von Gesten: Eine Studie zu Blickverhalten und Integration gestisch ausgedrückter Informationen. In Max-Planck-Gesellschaft (Ed.), Jahrbuch der Max Planck Gesellschaft 2003 (pp. 949-953). Göttingen: Vandenhoeck & Ruprecht.
  • Gullberg, M. (2002). Gestures, languages, and language acquisition. In S. Strömqvist (Ed.), The diversity of languages and language learning (pp. 45-56). Lund: Lund University.
  • Gullberg, M. (2003). Gestures, referents, and anaphoric linkage in learner varieties. In C. Dimroth, & M. Starren (Eds.), Information structure, linguistic structure and the dynamics of language acquisition. (pp. 311-328). Amsterdam: Benjamins.

    Abstract

    This paper discusses how the gestural modality can contribute to our understanding of anaphoric linkage in learner varieties, focusing on gestural anaphoric linkage marking the introduction, maintenance, and shift of reference in story retellings by learners of French and Swedish. The comparison of gestural anaphoric linkage in native and non-native varieties reveals what appears to be a particular learner variety of gestural cohesion, which closely reflects the characteristics of anaphoric linkage in learners' speech. Specifically, particular forms co-occur with anaphoric gestures depending on the information organisation in discourse. The typical nominal over-marking of maintained referents or topic elements in speech is mirrored by gestural (over-)marking of the same items. The paper discusses two ways in which this finding may further the understanding of anaphoric over-explicitness of learner varieties. An addressee-based communicative perspective on anaphoric linkage highlights how over-marking in gesture and speech may be related to issues of hyper-clarity and ambiguity. An alternative speaker-based perspective is also explored in which anaphoric over-marking is seen as related to L2 speech planning.
  • Gulrajani, G., & Harrison, D. (2002). SHAWEL: Sharable and interactive web-lexicons. In P. Austin, H. Dry, & P. Wittenburg (Eds.), Proceedings of the international LREC workshop on resources and tools in field linguistics (pp. 9-1-9-4). Paris: European Language Resources Association.

    Abstract

    A prototypical lexicon tool was implemented which was intended to allow researchers to collaboratively create lexicons of endangered languages. Increasingly often researchers documenting or analyzing a language work at different locations. Lexicons that evolve through continuous interaction between the collaborators can only be efficiently produced when it can be accessed and manipulated via the Internet. The SHAWEL tool was developed to address these needs; it makes use of a thin Java client and a central database solution.
  • De Haan, E., & Hagoort, P. (2004). Het brein in beeld. In B. Deelman, P. Eling, E. De Haan, & E. Van Zomeren (Eds.), Klinische neuropsychologie (pp. 82-98). Amsterdam: Boom.
  • Hagoort, P. (2002). Het unieke menselijke taalvermogen: Van PAUS naar [paus] in een halve seconde. In J. G. van Hell, A. de Klerk, D. E. Strauss, & T. Torremans (Eds.), Taalontwikkeling en taalstoornissen: Theorie, diagnostiek en behandeling (pp. 51-67). Leuven/Apeldoorn: Garant.
  • Hagoort, P., & Indefrey, P. (1997). De neurale architectuur van het menselijk taalvermogen. In H. Peters (Ed.), Handboek stem-, spraak-, en taalpathologie (pp. 1-36). Houten: Bohn Stafleu Van Loghum.
  • Hagoort, P. (2003). De verloving tussen neurowetenschap en psychologie. In K. Hilberdink (Ed.), Interdisciplinariteit in de geesteswetenschappen (pp. 73-81). Amsterdam: KNAW.
  • Hagoort, P. (2003). Die einzigartige, grösstenteils aber unbewusste Fähigkeit der Menschen zu sprachlicher Kommunikation. In G. Kaiser (Ed.), Jahrbuch 2002-2003 / Wissenschaftszentrum Nordrhein-Westfalen (pp. 33-46). Düsseldorf: Wissenschaftszentrum Nordrhein-Westfalen.
  • Hagoort, P. (2004). Er is geen behoefte aan trompetten als gordijnen. In H. Procee, H. Meijer, P. Timmerman, & R. Tuinsma (Eds.), Bij die wereld wil ik horen! Zesendertig columns en drie essays over de vorming tot academicus (pp. 78-80). Amsterdam: Boom.
  • Hagoort, P. (2003). Functional brain imaging. In W. J. Frawley (Ed.), International encyclopedia of linguistics (pp. 142-145). New York: Oxford University Press.
  • Hagoort, P. (2004). Het zwarte gat tussen brein en bewustzijn. In N. Korteweg (Ed.), De oorsprong: Over het ontstaan van het leven en alles eromheen (pp. 107-124). Amsterdam: Boom.
  • Hagoort, P., & Beckmann, C. F. (2019). Key issues and future directions: The neural architecture for language. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 527-532). Cambridge, MA: MIT Press.
  • Hagoort, P. (2019). Introduction. In P. Hagoort (Ed.), Human language: From genes and brains to behavior (pp. 1-6). Cambridge, MA: MIT Press.
  • Hagoort, P., & Van Turennout, M. (1997). The electrophysiology of speaking: Possibilities of event-related potential research for speech production. In W. Hulstijn, H. Peters, & P. Van Lieshout (Eds.), Speech motor production and fluency disorders: Brain research in speech production (pp. 351-361). Amsterdam: Elsevier.
  • Hagoort, P., & Wassenaar, M. (1997). Taalstoornissen: Van theorie tot therapie. In B. Deelman, P. Eling, E. De Haan, A. Jennekens, & A. Van Zomeren (Eds.), Klinische Neuropsychologie (pp. 232-248). Meppel: Boom.
  • Hagoort, P., Brown, C. M., & Osterhout, L. (1999). The neurocognition of syntactic processing. In C. M. Brown, & P. Hagoort (Eds.), The neurocognition of language (pp. 273-317). Oxford: Oxford University Press.
  • Hagoort, P. (1998). The shadows of lexical meaning in patients with semantic impairments. In B. Stemmer, & H. Whitaker (Eds.), Handbook of neurolinguistics (pp. 235-248). New York: Academic Press.
  • Hagoort, P. (1999). The uniquely human capacity for language communication: from 'pope' to [po:p] in half a second. In J. Russell, M. Murphy, T. Meyering, & M. Arbib (Eds.), Neuroscience and the person: Scientific perspectives on divine action (pp. 45-56). California: Berkeley.
  • Hagoort, P. (1997). Zonder fosfor geen gedachten: Gagarin, geest en brein. In Brain & Mind (pp. 6-14). Utrecht: Reünistenvereniging Veritas.
  • Hahn, L. E., Ten Buuren, M., De Nijs, M., Snijders, T. M., & Fikkert, P. (2019). Acquiring novel words in a second language through mutual play with child songs - The Noplica Energy Center. In L. Nijs, H. Van Regenmortel, & C. Arculus (Eds.), MERYC19 Counterpoints of the senses: Bodily experiences in musical learning (pp. 78-87). Ghent, Belgium: EuNet MERYC 2019.

    Abstract

    Child songs are a great source for linguistic learning. Here we explore whether children can acquire novel words in a second language by playing a game featuring child songs in a playhouse. We present data from three studies that serve as scientific proof for the functionality of one game of the playhouse: the Energy Center. For this game, three hand-bikes were mounted on a panel. When children start moving the hand-bikes, child songs start playing simultaneously. Once the children produce enough energy with the hand-bikes, the songs are additionally accompanied with the sounds of musical instruments. In our studies, children executed a picture-selection task to evaluate whether they acquired new vocabulary from the songs presented during the game. Two of our studies were run in the field, one at a Dutch and one at an Indian pre-school. The third study features data from a more controlled laboratory setting. Our results partly confirm that the Energy Center is a successful means to support vocabulary acquisition in a second language. More research with larger sample sizes and longer access to the Energy Center is needed to evaluate the overall functionality of the game. Based on informal observations at our test sites, however, we are certain that children do pick up linguistic content from the songs during play, as many of the children repeat words and phrases from songs they heard. We will pick up upon these promising observations during future studies
  • Hammarström, H. (2019). An inventory of Bantu languages. In M. Van de Velde, K. Bostoen, D. Nurse, & G. Philippson (Eds.), The Bantu languages (2nd). London: Routledge.

    Abstract

    This chapter aims to provide an updated list of all Bantu languages known at present and to provide individual pointers to further information on the inventory. The area division has some correlation with what are perceived genealogical relations between Bantu languages, but they are not defined as such and do not change whenever there is an update in our understanding of genealogical relations. Given the popularity of Guthrie codes in Bantu linguistics, our listing also features a complete mapping to Guthrie codes. The language inventory listed excludes sign languages used in the Bantu area, speech registers, pidgins, drummed/whistled languages and urban youth languages. Pointers to such languages in the Bantu area are included in the continent-wide overview in Hammarstrom. The most important alternative names, subvarieties and spelling variants are given for each language, though such lists are necessarily incomplete and reflect some degree of arbitrary selection.
  • Harbusch, K., & Kempen, G. (2002). A quantitative model of word order and movement in English, Dutch and German complement constructions. In Proceedings of the 19th international conference on Computational linguistics. San Francisco: Morgan Kaufmann.

    Abstract

    We present a quantitative model of word order and movement constraints that enables a simple and uniform treatment of a seemingly heterogeneous collection of linear order phenomena in English, Dutch and German complement constructions (Wh-extraction, clause union, extraposition, verb clustering, particle movement, etc.). Underlying the scheme are central assumptions of the psycholinguistically motivated Performance Grammar (PG). Here we describe this formalism in declarative terms based on typed feature unification. PG allows a homogenous treatment of both the within- and between-language variations of the ordering phenomena under discussion, which reduce to different settings of a small number of quantitative parameters.
  • Haun, D. B. M., & Waller, D. (2003). Alignment task. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 39-48). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Haun, D. B. M. (2003). Path integration. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 33-38). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877644.
  • Haun, D. B. M. (2003). Spatial updating. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 49-56). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Heeschen, V., Eibl-Eibesfeldt, I., Grammer, K., Schiefenhövel, W., & Senft, G. (1986). Sprachliches Verhalten. In Generalverwaltung der MPG (Ed.), Max-Planck-Gesellschaft Jahrbuch 1986 (pp. 394-396). Göttingen: Vandenhoeck and Ruprecht.
  • Heilbron, M., Ehinger, B., Hagoort, P., & De Lange, F. P. (2019). Tracking naturalistic linguistic predictions with deep neural language models. In Proceedings of the 2019 Conference on Cognitive Computational Neuroscience (pp. 424-427). doi:10.32470/CCN.2019.1096-0.

    Abstract

    Prediction in language has traditionally been studied using
    simple designs in which neural responses to expected
    and unexpected words are compared in a categorical
    fashion. However, these designs have been contested
    as being ‘prediction encouraging’, potentially exaggerating
    the importance of prediction in language understanding.
    A few recent studies have begun to address
    these worries by using model-based approaches to probe
    the effects of linguistic predictability in naturalistic stimuli
    (e.g. continuous narrative). However, these studies
    so far only looked at very local forms of prediction, using
    models that take no more than the prior two words into
    account when computing a word’s predictability. Here,
    we extend this approach using a state-of-the-art neural
    language model that can take roughly 500 times longer
    linguistic contexts into account. Predictability estimates
    fromthe neural network offer amuch better fit to EEG data
    from subjects listening to naturalistic narrative than simpler
    models, and reveal strong surprise responses akin to
    the P200 and N400. These results show that predictability
    effects in language are not a side-effect of simple designs,
    and demonstrate the practical use of recent advances
    in AI for the cognitive neuroscience of language.
  • Hintz, F., & Meyer, A. S. (Eds.). (2024). Individual differences in language skills [Special Issue]. Journal of Cognition, 7(1).
  • Hoiting, N., & Slobin, D. I. (2002). Transcription as a tool for understanding: The Berkeley Transcription System for sign language research (BTS). In G. Morgan, & B. Woll (Eds.), Directions in sign language acquisition (pp. 55-75). Amsterdam: John Benjamins.
  • Hoiting, N., & Slobin, D. I. (2002). What a deaf child needs to see: Advantages of a natural sign language over a sign system. In R. Schulmeister, & H. Reinitzer (Eds.), Progress in sign language research. In honor of Siegmund Prillwitz / Fortschritte in der Gebärdensprach-forschung. Festschrift für Siegmund Prillwitz (pp. 267-277). Hamburg: Signum.
  • Holler, J., & Beattie, G. (2004). The interaction of iconic gesture and speech. In A. Cammurri, & G. Volpe (Eds.), Lecture Notes in Computer Science, 5th International Gesture Workshop, Genova, Italy, 2003; Selected Revised Papers (pp. 63-69). Heidelberg: Springer Verlag.
  • Huettig, F., & Altmann, G. T. M. (2004). The online processing of ambiguous and unambiguous words in context: Evidence from head-mounted eye-tracking. In M. Carreiras, & C. Clifton (Eds.), The on-line study of sentence comprehension: Eyetracking, ERP and beyond (pp. 187-207). New York: Psychology Press.
  • Indefrey, P., & Cutler, A. (2004). Prelexical and lexical processing in listening. In M. Gazzaniga (Ed.), The cognitive neurosciences III. (pp. 759-774). Cambridge, MA: MIT Press.

    Abstract

    This paper presents a meta-analysis of hemodynamic studies on passive auditory language processing. We assess the overlap of hemodynamic activation areas and activation maxima reported in experiments involving the presentation of sentences, words, pseudowords, or sublexical or non-linguistic auditory stimuli. Areas that have been reliably replicated are identified. The results of the meta-analysis are compared to electrophysiological, magnetencephalic (MEG), and clinical findings. It is concluded that auditory language input is processed in a left posterior frontal and bilateral temporal cortical network. Within this network, no processing leve l is related to a single cortical area. The temporal lobes seem to differ with respect to their involvement in post-lexical processing, in that the left temporal lobe has greater involvement than the right, and also in the degree of anatomical specialization for phonological, lexical, and sentence -level processing, with greater overlap on the right contrasting with a higher degree of differentiation on the left.
  • Indefrey, P. (2004). Hirnaktivierungen bei syntaktischer Sprachverarbeitung: Eine Meta-Analyse. In H. Müller, & G. Rickheit (Eds.), Neurokognition der Sprache (pp. 31-50). Tübingen: Stauffenburg.
  • Indefrey, P. (1997). PET research in language production. In W. Hulstijn, H. F. M. Peters, & P. H. H. M. Van Lieshout (Eds.), Speech production: motor control, brain research and fluency disorders (pp. 269-278). Amsterdam: Elsevier.

    Abstract

    The aim of this paper is to discuss an inherent difficulty of PET (and fMRI) research in language production. On the one hand, language production presupposes some degree of freedom for the subject, on the other hand, interpretability of results presupposes restrictions of this freedom. This difficulty is reflected in the existing PET literature in some neglect of the general principle to design experiments in such a way that the results do not allow for alternative interpretations. It is argued that by narrowing down the scope of experiments a gain in interpretability can be achieved.
  • Janse, E., & Quené, H. (1999). On the suitability of the cross-modal semantic priming task. In Proceedings of the XIVth International Congress of Phonetic Sciences (pp. 1937-1940).
  • Janse, E. (2002). Time-compressing natural and synthetic speech. In Proceedings of 7th International Conference on Spoken Language Processing (pp. 1645-1648).
  • Janse, E. (2003). Word perception in natural-fast and artificially time-compressed speech. In M. SolÉ, D. Recasens, & J. Romero (Eds.), Proceedings of the 15th International Congress of the Phonetic Sciences (pp. 3001-3004).
  • Janzen, G., & Weststeijn, C. (2004). Neural representation of object location and route direction: An fMRI study. NeuroImage, 22(Supplement 1), e634-e635.
  • Janzen, G., & Van Turennout, M. (2004). Neuronale Markierung navigationsrelevanter Objekte im räumlichen Gedächtnis: Ein fMRT Experiment. In D. Kerzel (Ed.), Beiträge zur 46. Tagung experimentell arbeitender Psychologen (pp. 125-125). Lengerich: Pabst Science Publishers.
  • Johns, T. G., Perera, R. M., Vitali, A. A., Vernes, S. C., & Scott, A. (2004). Phosphorylation of a glioma-specific mutation of the EGFR [Abstract]. Neuro-Oncology, 6, 317.

    Abstract

    Mutations of the epidermal growth factor receptor (EGFR) gene are found at a relatively high frequency in glioma, with the most common being the de2-7 EGFR (or EGFRvIII). This mutation arises from an in-frame deletion of exons 2-7, which removes 267 amino acids from the extracellular domain of the receptor. Despite being unable to bind ligand, the de2-7 EGFR is constitutively active at a low level. Transfection of human glioma cells with the de2-7 EGFR has little effect in vitro, but when grown as tumor xenografts this mutated receptor imparts a dramatic growth advantage. We mapped the phosphorylation pattern of de2-7 EGFR, both in vivo and in vitro, using a panel of antibodies specific for different phosphorylated tyrosine residues. Phosphorylation of de2-7 EGFR was detected constitutively at all tyrosine sites surveyed in vitro and in vivo, including tyrosine 845, a known target in the wild-type EGFR for src kinase. There was a substantial upregulation of phosphorylation at every yrosine residue of the de2-7 EGFR when cells were grown in vivo compared to the receptor isolated from cells cultured in vitro. Upregulation of phosphorylation at tyrosine 845 could be stimulated in vitro by the addition of specific components of the ECM via an integrindependent mechanism. These observations may partially explain why the growth enhancement mediated by de2-7 EGFR is largely restricted to the in vivo environment
  • Johnson, E. K. (2003). Speaker intent influences infants' segmentation of potentially ambiguous utterances. In Proceedings of the 15th International Congress of Phonetic Sciences (PCPhS 2003) (pp. 1995-1998). Adelaide: Causal Productions.
  • De Jong, N. H., Schreuder, R., & Baayen, R. H. (2003). Morphological resonance in the mental lexicon. In R. Baayen, & R. Schreuder (Eds.), Morphological structure in language processing (pp. 65-88). Berlin: Mouton de Gruyter.
  • Joo, H., Jang, J., Kim, S., Cho, T., & Cutler, A. (2019). Prosodic structural effects on coarticulatory vowel nasalization in Australian English in comparison to American English. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 20195) (pp. 835-839). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    This study investigates effects of prosodic factors (prominence, boundary) on coarticulatory Vnasalization in Australian English (AusE) in CVN and NVC in comparison to those in American English
    (AmE). As in AmE, prominence was found to
    lengthen N, but to reduce V-nasalization, enhancing N’s nasality and V’s orality, respectively (paradigmatic contrast enhancement). But the prominence effect in CVN was more robust than that in AmE. Again similar to findings in AmE, boundary
    induced a reduction of N-duration and V-nasalization phrase-initially (syntagmatic contrast enhancement), and increased the nasality of both C and V phrasefinally.
    But AusE showed some differences in terms
    of the magnitude of V nasalization and N duration. The results suggest that the linguistic contrast enhancements underlie prosodic-structure modulation of coarticulatory V-nasalization in
    comparable ways across dialects, while the fine phonetic detail indicates that the phonetics-prosody interplay is internalized in the individual dialect’s phonetic grammar.
  • Jordens, P. (1998). Defaultformen des Präteritums. Zum Erwerb der Vergangenheitsmorphologie im Niederlänidischen. In H. Wegener (Ed.), Eine zweite Sprache lernen (pp. 61-88). Tübingen, Germany: Verlag Gunter Narr.
  • Jordens, P. (2003). Constraints on the shape of second language learner varieties. In G. Rickheit, T. Herrmann, & W. Deutsch (Eds.), Psycholinguistik/Psycholinguistics: Ein internationales Handbuch. [An International Handbook] (pp. 819-833). Berlin: Mouton de Gruyter.
  • Jordens, P. (2004). Morphology in Second Language Acquisition. In G. Booij (Ed.), Morphologie: Ein internationales Handbuch zur Flexion und Wortbildung (pp. 1806-1816). Berlin: Walter de Gruyter.
  • Joshi, A., Mohanty, R., Kanakanti, M., Mangla, A., Choudhary, S., Barbate, M., & Modi, A. (2024). iSign: A benchmark for Indian Sign Language processing. In L.-W. Ku, A. Martins, & V. Srikumar (Eds.), Findings of the Association for Computational Linguistics ACL 2024 (pp. 10827-10844). Bangkok, Thailand: Association for Computational Linguistics.

    Abstract

    Indian Sign Language has limited resources for developing machine learning and data-driven approaches for automated language processing. Though text/audio-based language processing techniques have shown colossal research interest and tremendous improvements in the last few years, Sign Languages still need to catch up due to the need for more resources. To bridge this gap, in this work, we propose iSign: a benchmark for Indian Sign Language (ISL) Processing. We make three primary contributions to this work. First, we release one of the largest ISL-English datasets with more than video-sentence/phrase pairs. To the best of our knowledge, it is the largest sign language dataset available for ISL. Second, we propose multiple NLP-specific tasks (including SignVideo2Text, SignPose2Text, Text2Pose, Word Prediction, and Sign Semantics) and benchmark them with the baseline models for easier access to the research community. Third, we provide detailed insights into the proposed benchmarks with a few linguistic insights into the working of ISL. We streamline the evaluation of Sign Language processing, addressing the gaps in the NLP research community for Sign Languages. We release the dataset, tasks and models via the following website: https://exploration-lab.github.io/iSign/

    Additional information

    dataset, tasks, models
  • Josserand, M., Pellegrino, F., Grosseck, O., Dediu, D., & Raviv, L. (2024). Adapting to individual differences: An experimental study of variation in language evolution. In J. Nölle, L. Raviv, K. E. Graham, S. Hartmann, Y. Jadoul, M. Josserand, T. Matzinger, K. Mudd, M. Pleyer, A. Slonimska, & S. Wacewicz (Eds.), The Evolution of Language: Proceedings of the 15th International Conference (EVOLANG XV) (pp. 286-289). Nijmegen: The Evolution of Language Conferences.
  • Kearns, R. K., Norris, D., & Cutler, A. (2002). Syllable processing in English. In Proceedings of the 7th International Conference on Spoken Language Processing [ICSLP 2002] (pp. 1657-1660).

    Abstract

    We describe a reaction time study in which listeners detected word or nonword syllable targets (e.g. zoo, trel) in sequences consisting of the target plus a consonant or syllable residue (trelsh, trelshek). The pattern of responses differed from an earlier word-spotting study with the same material, in which words were always harder to find if only a consonant residue remained. The earlier results should thus not be viewed in terms of syllabic parsing, but in terms of a universal role for syllables in speech perception; words which are accidentally present in spoken input (e.g. sell in self) can be rejected when they leave a residue of the input which could not itself be a word.
  • Keating, P., Cho, T., Fougeron, C., & Hsu, C.-S. (2003). Domain-initial strengthening in four languages. In J. Local, R. Ogden, & R. Temple (Eds.), Laboratory phonology VI: Phonetic interpretation (pp. 145-163). Cambridge: Cambridge University Press.
  • Kempen, G. (2004). Terug naar Wundt: Pleidooi voor integraal onderzoek van taal, taalkennis en taalgedrag. In Koninklijke Nederlandse Akademie van Wetenschappen (Ed.), Gij letterdames en gij letterheren': Nieuwe mogelijkheden voor taalkundig en letterkundig onderzoek in Nederland. (pp. 174-188). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.
  • Kempen, G., & Harbusch, K. (2002). Performance Grammar: A declarative definition. In A. Nijholt, M. Theune, & H. Hondorp (Eds.), Computational linguistics in the Netherlands 2001: Selected papers from the Twelfth CLIN Meeting (pp. 148-162). Amsterdam: Rodopi.

    Abstract

    In this paper we present a definition of Performance Grammar (PG), a psycholinguistically motivated syntax formalism, in declarative terms. PG aims not only at describing and explaining intuitive judgments and other data concerning the well–formedness of sentences of a language, but also at contributing to accounts of syntactic processing phenomena observable in language comprehension and language production. We highlight two general properties of human sentence generation, incrementality and late linearization,which make special demands on the design of grammar formalisms claiming psychological plausibility. In order to meet these demands, PG generates syntactic structures in a two-stage process. In the first and most important ‘hierarchical’ stage, unordered hierarchical structures (‘mobiles’) are assembled out of lexical building blocks. The key operation at work here is typed feature unification, which also delimits the positional options of the syntactic constituents in terms of so-called topological features. The second, much simpler stage takes care of arranging the branches of the mobile from left to right by ‘reading–out’ one positional option of every constituent. In this paper we concentrate on the structure assembly formalism in PG’s hierarchical component. We provide a declarative definition couched in an HPSG–style notation based on typed feature unification. Our emphasis throughout is on linear order constraints.
  • Kempen, G. (1986). Beyond word processing. In E. Cluff, & G. Bunting (Eds.), Information management yearbook 1986 (pp. 178-181). London: IDPM Publications.
  • Kempen, G., & Harbusch, K. (2003). A corpus study into word order variation in German subordinate clauses: Animacy affects linearization independently of function assignment. In Proceedings of AMLaP 2003 (pp. 153-154). Glasgow: Glasgow University.
  • Kempen, G., & Van Breugel, C. (2002). A workbench for visual-interactive grammar instruction at the secondary education level. In Proceedings of the 10th International CALL Conference (pp. 157-158). Antwerp: University of Antwerp.
  • Kempen, G. (1997). De ontdubbelde taalgebruiker: Maken taalproductie en taalperceptie gebruik van één en dezelfde syntactische processor? [Abstract]. In 6e Winter Congres NvP. Programma and abstracts (pp. 31-32). Nederlandse Vereniging voor Psychonomie.
  • Kempen, G., Kooij, A., & Van Leeuwen, T. (1997). Do skilled readers exploit inflectional spelling cues that do not mirror pronunciation? An eye movement study of morpho-syntactic parsing in Dutch. In Abstracts of the Orthography Workshop "What spelling changes". Nijmegen: Max Planck Institute for Psycholinguistics.
  • Kempen, G., & Harbusch, K. (1998). A 'tree adjoining' grammar without adjoining: The case of scrambling in German. In Fourth International Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+4).
  • Kempen, G., & Harbusch, K. (2003). Dutch and German verb clusters in performance grammar. In P. A. Seuren, & G. Kempen (Eds.), Verb constructions in German and Dutch (pp. 185-221). Amsterdam: Benjamins.
  • Kempen, G., & Harbusch, K. (2004). A corpus study into word order variation in German subordinate clauses: Animacy affects linearization independently of grammatical function assignment. In T. Pechmann, & C. Habel (Eds.), Multidisciplinary approaches to language production (pp. 173-181). Berlin: Mouton de Gruyter.
  • Kempen, G., & Harbusch, K. (2004). Generating natural word orders in a semi-free word order language: Treebank-based linearization preferences for German. In A. Gelbukh (Ed.), Computational Linguistics and Intelligent Text Processing (pp. 350-354). Berlin: Springer.

    Abstract

    We outline an algorithm capable of generating varied but natural sounding sequences of argument NPs in subordinate clauses of German, a semi-free word order language. In order to attain the right level of output flexibility, the algorithm considers (1) the relevant lexical properties of the head verb (not only transitivity type but also reflexivity, thematic relations expressed by the NPs, etc.), and (2) the animacy and definiteness values of the arguments, and their length. The relevant statistical data were extracted from the NEGRA–II treebank and from hand-coded features for animacy and definiteness. The algorithm maps the relevant properties onto “primary” versus “secondary” placement options in the generator. The algorithm is restricted in that it does not take into account linear order determinants related to the sentence’s information structure and its discourse context (e.g. contrastiveness). These factors may modulate the above preferences or license “tertiary” linear orders beyond the primary and secondary options considered here.
  • Kempen, G., & Harbusch, K. (2004). How flexible is constituent order in the midfield of German subordinate clauses? A corpus study revealing unexpected rigidity. In S. Kepser, & M. Reis (Eds.), Pre-Proceedings of the International Conference on Linguistic Evidence (pp. 81-85). Tübingen: Niemeyer.
  • Kempen, G. (2004). Interactive visualization of syntactic structure assembly for grammar-intensive first- and second-language instruction. In R. Delmonte, P. Delcloque, & S. Tonelli (Eds.), Proceedings of InSTIL/ICALL2004 Symposium on NLP and speech technologies in advanced language learning systems (pp. 183-186). Venice: University of Venice.
  • Kempen, G. (2003). Language generation. In W. Frawley (Ed.), International encyclopedia of linguistics (pp. 362-364). New York: Oxford University Press.
  • Kempen, G., & Harbusch, K. (2004). How flexible is constituent order in the midfield of German subordinate clauses?: A corpus study revealing unexpected rigidity. In Proceedings of the International Conference on Linguistic Evidence (pp. 81-85). Tübingen: University of Tübingen.
  • Kempen, G. (2004). Human grammatical coding: Shared structure formation resources for grammatical encoding and decoding. In Cuny 2004 - The 17th Annual CUNY Conference on Human Sentence Processing. March 25-27, 2004. University of Maryland (pp. 66).
  • Kempen, G. (1986). Kunstmatige intelligentie en gezond verstand. In P. Hagoort, & R. Maessen (Eds.), Geest, computer, kunst (pp. 118-123). Utrecht: Stichting Grafiet.
  • Kempen, G. (1998). Sentence parsing. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 213-228). Berlin: Springer.
  • Kempen, G. (1997). Taalpsychologie week. In Wetenschappelijke Scheurkalender 1998. Beek: Natuur & Techniek.

    Abstract

    [Seven one-page psycholinguistic sketches]
  • Kempen, G., & Harbusch, K. (2002). Rethinking the architecture of human syntactic processing: The relationship between grammatical encoding and decoding. In Proceedings of the 35th Meeting of the Societas Linguistica Europaea. University of Potsdam.
  • Kempen, G., & Harbusch, K. (2003). Word order scrambling as a consequence of incremental sentence production. In H. Härtl, & H. Tappe (Eds.), Mediating between concepts and grammar (pp. 141-164). Berlin: Mouton de Gruyter.
  • Kempen, G. (1999). Visual Grammar: Multimedia for grammar and spelling instruction in primary education. In K. Cameron (Ed.), CALL: Media, design, and applications (pp. 223-238). Lisse: Swets & Zeitlinger.
  • Kita, S. (2003). Pointing: A foundational building block in human communication. In S. Kita (Ed.), Pointing: Where language, culture, and cognition meet (pp. 1-8). Mahwah, NJ: Erlbaum.
  • Kita, S. (1997). Miburi to Kotoba [gesture and speech]. In H. Kobayashi, & M. Sasaki (Eds.), Kodomotachi no gengokakutoku [Child language development] (pp. 68-84). Tokyo, Japan: Taishukan.
  • Kita, S. (2003). Interplay of gaze, hand, torso orientation and language in pointing. In S. Kita (Ed.), Pointing: Where language, culture, and cognition meet (pp. 307-328). Mahwah, NJ: Erlbaum.
  • Kita, S., & Essegbey, J. (2003). Left-hand taboo on direction-indicating gestures in Ghana: When and why people still use left-hand gestures. In M. Rector, I. Poggi, & N. Trigo (Eds.), Gesture: Meaning and use (pp. 301-306). Oporto: Edições Universidade Fernando Pessoa, Fundação Fernado Pessoa.
  • Kita, S., van Gijn, I., & van der Hulst, H. (1998). Movement phases in signs and co-speech gestures, and their transcription by human coders. In Gesture and Sign-Language in Human-Computer Interaction (Lecture Notes in Artificial Intelligence - LNCS Subseries, Vol. 1371) (pp. 23-35). Berlin, Germany: Springer-Verlag.

    Abstract

    The previous literature has suggested that the hand movement in co-speech gestures and signs consists of a series of phases with qualitatively different dynamic characteristics. In this paper, we propose a syntagmatic rule system for movement phases that applies to both co-speech gestures and signs. Descriptive criteria for the rule system were developed for the analysis video-recorded continuous production of signs and gesture. It involves segmenting a stream of body movement into phases and identifying different phase types. Two human coders used the criteria to analyze signs and cospeech gestures that are produced in natural discourse. It was found that the criteria yielded good inter-coder reliability. These criteria can be used for the technology of automatic recognition of signs and co-speech gestures in order to segment continuous production and identify the potentially meaningbearing phase.
  • Kita, S., & Enfield, N. J. (2003). Recording recommendations for video research. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 8-9). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Kita, S., & Ozyurek, A. (1999). Semantische Koordination zwischen Sprache und spontanen ikonischen Gesten: Eine sprachvergleichende Untersuchung. In Max-Planck-Gesellschaft (Ed.), Jahrbuch 1998 (pp. 388-391). Göttingen: Vandenhoeck & Ruprecht.
  • Kita, S. (2002). Preface and priorities. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 3-4). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Klein, W. (Ed.). (2004). Philologie auf neuen Wegen [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, 136.
  • Klein, W., & Von Stutterheim, C. (2002). Quaestio and L-perspectivation. In C. F. Graumann, & W. Kallmeyer (Eds.), Perspective and perspectivation in discourse (pp. 59-88). Amsterdam: Benjamins.
  • Klein, W. (Ed.). (2002). Sprache des Rechts II [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik, 128.
  • Klein, W. (2002). The argument-time structure of recipient constructions in German. In W. Abraham, & J.-W. Zwart (Eds.), Issues in formal german(ic) typology (pp. 141-178). Amsterdam: Benjamins.

    Abstract

    It is generally assumed that verbs have an ‘argument structure’, which imposes various constraints on the noun phrases that can or must go with the verb, and an ‘event structure’, which characterises the particular temporal characteristics of the ‘event’ which the verb relates to: this event may be a state, a process, an activity, an ‘event in the narrow sense’, and others. In this paper, it is argued that that argument structure and event structure should be brought together. The lexical content of a verb assigns descriptive properties to one or more arguments at one or more times, hence verbs have an ‘argument time-structure’ (AT-structure). Numerous morphological and syntactical operations, such as participle formation or complex verb constructions, modify this AT-structure. This is illustrated with German recipient constructions such as ein Buch geschenkt bekommen or das Fenster geöffnet kriegen.
  • Klein, W. (Ed.). (2004). Universitas [Special Issue]. Zeitschrift für Literaturwissenschaft und Linguistik (LiLi), 134.

Share this page