Publications

Displaying 201 - 300 of 356
  • Krott, A., Schreuder, R., & Baayen, R. H. (2002). Analogical hierarchy: Exemplar-based modeling of linkers in Dutch noun-noun compounds. In R. Skousen (Ed.), Analogical modeling: An exemplar-based approach to language (pp. 181-206). Amsterdam: Benjamins.
  • Kruspe, N., Burenhult, N., & Wnuk, E. (2015). Northern Aslian. In P. Sidwell, & M. Jenny (Eds.), Handbook of Austroasiatic Languages (pp. 419-474). Leiden: Brill.
  • Kuijpers, C. T., Coolen, R., Houston, D., & Cutler, A. (1998). Using the head-turning technique to explore cross-linguistic performance differences. In C. Rovee-Collier, L. Lipsitt, & H. Hayne (Eds.), Advances in infancy research: Vol. 12 (pp. 205-220). Stamford: Ablex.
  • Kuzla, C., Ernestus, M., & Mitterer, H. (2010). Compensation for assimilatory devoicing and prosodic structure in German fricative perception. In C. Fougeron, B. Kühnert, M. D'Imperio, & N. Vallée (Eds.), Laboratory Phonology 10 (pp. 731-757). Berlin: De Gruyter.
  • Ladd, D. R., & Cutler, A. (1983). Models and measurements in the study of prosody. In A. Cutler, & D. R. Ladd (Eds.), Prosody: Models and measurements (pp. 1-10). Heidelberg: Springer.
  • Lai, V. T., & Narasimhan, B. (2015). Verb representation and thinking-for-speaking effects in Spanish-English bilinguals. In R. G. De Almeida, & C. Manouilidou (Eds.), Cognitive science perspectives on verb representation and processing (pp. 235-256). Cham: Springer.

    Abstract

    Speakers of English habitually encode motion events using manner-of-motion verbs (e.g., spin, roll, slide) whereas Spanish speakers rely on path-of-motion verbs (e.g., enter, exit, approach). Here, we ask whether the language-specific verb representations used in encoding motion events induce different modes of “thinking-for-speaking” in Spanish–English bilinguals. That is, assuming that the verb encodes the most salient information in the clause, do bilinguals find the path of motion to be more salient than manner of motion if they had previously described the motion event using Spanish versus English? In our study, Spanish–English bilinguals described a set of target motion events in either English or Spanish and then participated in a nonlinguistic similarity judgment task in which they viewed the target motion events individually (e.g., a ball rolling into a cave) followed by two variants a “same-path” variant such as a ball sliding into a cave or a “same-manner” variant such as a ball rolling away from a cave). Participants had to select one of the two variants that they judged to be more similar to the target event: The event that shared the same path of motion as the target versus the one that shared the same manner of motion. Our findings show that bilingual speakers were more likely to classify two motion events as being similar if they shared the same path of motion and if they had previously described the target motion events in Spanish versus in English. Our study provides further evidence for the “thinking-for-speaking” hypothesis by demonstrating that bilingual speakers can flexibly shift between language-specific construals of the same event “on-the-fly.”
  • Lecumberri, M. L. G., Cooke, M., & Cutler, A. (Eds.). (2010). Non-native speech perception in adverse conditions [Special Issue]. Speech Communication, 52(11/12).
  • Lehecka, T. (2015). Collocation and colligation. In J.-O. Östman, & J. Verschueren (Eds.), Handbook of Pragmatics Online. Amsterdam: Benjamins. doi:10.1075/hop.19.col2.
  • De León, L., & Levinson, S. C. (Eds.). (1992). Space in Mesoamerican languages [Special Issue]. Zeitschrift für Phonetik, Sprachwissenschaft und Kommunikationsforschung, 45(6).
  • Lev-Ari, S. (2015). Adjusting the manner of language processing to the social context: Attention allocation during interactions with non-native speakers. In R. K. Mishra, N. Srinivasan, & F. Huettig (Eds.), Attention and Vision in Language Processing (pp. 185-195). New York: Springer. doi:10.1007/978-81-322-2443-3_11.
  • Lev-Ari, S. (2019). The influence of social network properties on language processing and use. In M. S. Vitevitch (Ed.), Network Science in Cognitive Psychology (pp. 10-29). New York, NY: Routledge.

    Abstract

    Language is a social phenomenon. The author learns, processes, and uses it in social contexts. In other words, the social environment shapes the linguistic knowledge and use of the knowledge. To a degree, this is trivial. A child exposed to Japanese will become fluent in Japanese, whereas a child exposed to only Spanish will not understand Japanese but will master the sounds, vocabulary, and grammar of Spanish. Language is a structured system. Sounds and words do not occur randomly but are characterized by regularities. Learners are sensitive to these regularities and exploit them when learning language. People differ in the sizes of their social networks. Some people tend to interact with only a few people, whereas others might interact with a wide range of people. This is reflected in people’s holiday greeting habits: some people might send cards to only a few people, whereas other would send greeting cards to more than 350 people.
  • Levelt, W. J. M. (2002). Phonological encoding in speech production: Comments on Jurafsky et al., Schiller et al., and van Heuven & Haan. In C. Gussenhoven, & N. Warner (Eds.), Laboratory phonology VII (pp. 87-99). Berlin: Mouton de Gruyter.
  • Levelt, W. J. M., Roelofs, A., & Meyer, A. S. (2002). A theory of lexical access in speech production. In G. T. Altmann (Ed.), Psycholinguistics: critical concepts in psychology (pp. 278-377). London: Routledge.
  • Levelt, W. J. M. (1984). Geesteswetenschappelijke theorie als kompas voor de gangbare mening. In S. Dresden, & D. Van de Kaa (Eds.), Wetenschap ten goede en ten kwade (pp. 42-52). Amsterdam: North Holland.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M. (2015). Levensbericht George Armitage Miller 1920 - 2012. In KNAW levensberichten en herdenkingen 2014 (pp. 38-42). Amsterdam: KNAW.
  • Levelt, W. J. M. (1992). Psycholinguistics: An overview. In W. Bright (Ed.), International encyclopedia of linguistics (Vol. 3) (pp. 290-294). Oxford: Oxford University Press.
  • Levelt, W. J. M. (2015). Sleeping Beauties. In I. Toivonen, P. Csúrii, & E. Van der Zee (Eds.), Structures in the Mind: Essays on Language, Music, and Cognition in Honor of Ray Jackendoff (pp. 235-255). Cambridge, MA: MIT Press.
  • Levelt, W. J. M. (1984). Some perceptual limitations on talking about space. In A. J. Van Doorn, W. A. Van de Grind, & J. J. Koenderink (Eds.), Limits in perception (pp. 323-358). Utrecht: VNU Science Press.
  • Levinson, S. C. (1992). Space in Australian Languages Questionnaire. In S. C. Levinson (Ed.), Space stimuli kit 1.2 (pp. 29-40). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    This questionnaire is designed to explore how spatial relations are encoded in Australian language, but may be of interest to researchers further afield.
  • Levinson, S. C. (1992). Space in Australian Languages Questionnaire. In S. C. Levinson (Ed.), Space stimuli kit 1.2 (pp. 29-40). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3512641.

    Abstract

    This questionnaire is designed to explore how spatial relations are encoded in Australian language, but may be of interest to researchers further afield.
  • Levinson, S. C. (1992). Activity types and language. In P. Drew, & J. Heritage (Eds.), Talk at work: Interaction in institutional settings (pp. 66-100). Cambridge University Press.
  • Levinson, S. C. (1998). Deixis. In J. L. Mey (Ed.), Concise encyclopedia of pragmatics (pp. 200-204). Amsterdam: Elsevier.
  • Levinson, S. C. (2002). Appendix to the 2002 Supplement, version 1, for the “Manual” for the field season 2001. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 62-64). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C. (2010). Generalized conversational implicature. In L. Cummings (Ed.), The pragmatics encyclopedia (pp. 201-203). London: Routledge.
  • Levinson, S. C., Brown, P., Danzinger, E., De León, L., Haviland, J. B., Pederson, E., & Senft, G. (1992). Man and Tree & Space Games. In S. C. Levinson (Ed.), Space stimuli kit 1.2 (pp. 7-14). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.2458804.

    Abstract

    These classic tasks can be used to explore spatial reference in field settings. They provide a language-independent metric for eliciting spatial language, using a “director-matcher” paradigm. The Man and Tree task deals with location on the horizontal plane with both featured (man) and non-featured (e.g., tree) objects. The Space Games depict various objects (e.g. bananas, lemons) and elicit spatial contrasts not obviously lexicalisable in English.
  • Levinson, S. C. (1998). Minimization and conversational inference. In A. Kasher (Ed.), Pragmatics: Vol. 4 Presupposition, implicature and indirect speech acts (pp. 545-612). London: Routledge.
  • Levinson, S. C., & Toni, I. (2019). Key issues and future directions: Interactional foundations of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 257-261). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2002). Landscape terms and place names in Yélî Dnye, the language of Rossel Island, PNG. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 8-13). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C. (2019). Interactional foundations of language: The interaction engine hypothesis. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 189-200). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2019). Natural forms of purposeful interaction among humans: What makes interaction effective? In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 111-126). Cambridge, MA: MIT Press.
  • Levinson, S. C., & Annamalai, E. (1992). Why presuppositions aren't conventional. In R. N. Srivastava (Ed.), Language and text: Studies in honour of Ashok R. Kelkar (pp. 227-242). Dehli: Kalinga Publications.
  • Liszkowski, U. (2010). Before L1: A differentiated perspective on infant gestures. In M. Gullberg, & K. De Bot (Eds.), Gestures in language development (pp. 35-51). Amsterdam: Benjamins.
  • Magyari, L. (2005). A nyelv miért nem olyan, mint a szem? (Why is language not like vertebrate eye?). In J. Gervain, K. Kovács, Á. Lukács, & M. Racsmány (Eds.), Az ezer arcú elme (The mind with thousand faces) (first edition, pp. 452-460). Budapest: Akadémiai Kiadó.
  • Majid, A. (2015). Comparing lexicons cross-linguistically. In J. R. Taylor (Ed.), The Oxford Handbook of the Word (pp. 364-379). Oxford: Oxford University Press. doi:10.1093/oxfordhb/9780199641604.013.020.

    Abstract

    The lexicon is central to the concerns of disparate disciplines and has correspondingly elicited conflicting proposals about some of its foundational properties. Some suppose that word meanings and their associated concepts are largely universal, while others note that local cultural interests infiltrate every category in the lexicon. This chapter reviews research in two semantic domains—perception and the body—in order to illustrate crosslinguistic similarities and differences in semantic fields. Data is considered from a wide array of languages, especially those from small-scale indigenous communities which are often overlooked. In every lexical field we find considerable variation across cultures, raising the question of where this variation comes from. Is it the result of different ecological or environmental niches, cultural practices, or accidents of historical pasts? Current evidence suggests that diverse pressures differentially shape lexical fields.
  • Majid, A., Jordan, F., & Dunn, M. (Eds.). (2015). Semantic systems in closely related languages [Special Issue]. Language Sciences, 49.
  • Majid, A. (2019). Preface. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. vii-viii). Amsterdam: Benjamins.
  • Majid, A. (2010). Words for parts of the body. In B. C. Malt, & P. Wolff (Eds.), Words and the Mind: How words capture human experience (pp. 58-71). New York: Oxford University Press.
  • Malt, B. C., Gennari, S., Imai, M., Ameel, E., Saji, N., & Majid, A. (2015). Where are the concepts? What words can and can’t reveal. In E. Margolis, & S. Laurence (Eds.), The conceptual Mind: New directions in the study of concepts (pp. 291-326). Cambridge, MA: MIT Press.

    Abstract

    Concepts are so fundamental to human cognition that Fodor declared the heart of a cognitive science to be its theory of concepts. To study concepts, though, cognitive scientists need to be able to identify some. The prevailing assumption has been that they are revealed by words such as triangle, table, and robin. But languages vary dramatically in how they carve up the world with names. Either ordinary concepts must be heavily language dependent, or names cannot be a direct route to concepts. We asked speakers of English, Dutch, Spanish, and Japanese to name a set of 36 video clips of human locomotion and to judge the similarities among them. We investigated what name inventories, name extensions, scaling solutions on name similarity, and scaling solutions on nonlinguistic similarity from the groups, individually and together, suggest about the underlying concepts. Aggregated naming data and similarity solutions converged on results distinct from individual languages.
  • Martin, A., & Van Turennout, M. (2002). Searching for the neural correlates of object priming. In L. R. Squire, & D. L. Schacter (Eds.), The Neuropsychology of Memory (pp. 239-247). New York: Guilford Press.
  • Martin, R. C., & Tan, Y. (2015). Sentence comprehension deficits: Independence and interaction of syntax, semantics, and working memory. In A. E. Hillis (Ed.), Handbook of adult language disorders (2nd ed., pp. 303-327). Boca Raton: CRC Press.
  • Massaro, D. W., & Jesse, A. (2005). The magic of reading: Too many influences for quick and easy explanations. In T. Trabasso, J. Sabatini, D. W. Massaro, & R. C. Calfee (Eds.), From orthography to pedagogy: Essays in honor of Richard L. Venezky. (pp. 37-61). Mahwah, NJ: Lawrence Erlbaum Associates.

    Abstract

    Words are fundamental to reading and yet over a century of research has not masked the controversies around how words are recognized. We review some old and new research that disproves simple ideas such as words are read as wholes or are simply mapped directly to spoken language. We also review theory and research relevant to the question of sublexical influences in word recognition. We describe orthography and phonology, how they are related to each other and describe a series of new experiments on how these sources of information are processed. Tasks include lexical decision, perceptual identification, and naming. Dependent measures are reaction time, accuracy of performance, and a new measure, initial phoneme duration, that refers to the duration of the first phoneme when the target word is pronounced. Important factors in resolving the controversies include the realization that reading has multiple determinants, as well as evaluating the type of task, proper controls such as familiarity of the test items and accuracy of measurement of the response. We also address potential limitations with measures related to the mapping between orthography and phonology, and show that the existence of a sound-to-spelling consistency effect does not require interactive activation, but can be explained and predicted by a feedforward model, the Fuzzy logical model of perception.
  • Matic, D. (2010). Discourse and syntax in linguistic change: Decline of postverbal topical subjects in Serbo-Croat. In G. Ferraresi, & R. Lühr (Eds.), Diachronic studies on information structure: Language acquisition and change (pp. 117-142). Berlin: Mouton de Gruyter.
  • Matić, D. (2015). Information structure in linguistics. In J. D. Wright (Ed.), The International Encyclopedia of Social and Behavioral Sciences (2nd ed.) Vol. 12 (pp. 95-99). Amsterdam: Elsevier. doi:10.1016/B978-0-08-097086-8.53013-X.

    Abstract

    Information structure is a subfield of linguistic research dealing with the ways speakers encode instructions to the hearer on how to process the message relative to their temporary mental states. To this end, sentences are segmented into parts conveying known and yet-unknown information, usually labeled ‘topic’ and ‘focus.’ Many languages have developed specialized grammatical and lexical means of indicating this segmentation.
  • Mauner, G., Koenig, J.-P., Melinger, A., & Bienvenue, B. (2002). The lexical source of unexpressed participants and their role in sentence and discourse understanding. In P. Merlo, & S. Stevenson (Eds.), The Lexical Basis of Sentence Processing: Formal, Computational and Experimental Issues (pp. 233-254). Amsterdam: John Benjamins.
  • McDonough, L., Choi, S., Bowerman, M., & Mandler, J. M. (1998). The use of preferential looking as a measure of semantic development. In C. Rovee-Collier, L. P. Lipsitt, & H. Hayne (Eds.), Advances in Infancy Research. Volume 12. (pp. 336-354). Stamford, CT: Ablex Publishing.
  • McQueen, J. M. (2005). Speech perception. In K. Lamberts, & R. Goldstone (Eds.), The Handbook of Cognition (pp. 255-275). London: Sage Publications.
  • McQueen, J. M. (2005). Spoken word recognition and production: Regular but not inseparable bedfellows. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 229-244). Mahwah, NJ: Erlbaum.
  • McQueen, J. M., & Cutler, A. (2010). Cognitive processes in speech perception. In W. J. Hardcastle, J. Laver, & F. E. Gibbon (Eds.), The handbook of phonetic sciences (2nd ed., pp. 489-520). Oxford: Blackwell.
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • McQueen, J. M., & Meyer, A. S. (2019). Key issues and future directions: Towards a comprehensive cognitive architecture for language use. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 85-96). Cambridge, MA: MIT Press.
  • Muysken, P., Hammarström, H., Birchall, J., van Gijn, R., Krasnoukhova, O., & Müller, N. (2015). Linguistic Areas, bottom up or top down? The case of the Guaporé-Mamoré region. In B. Comrie, & L. Golluscio (Eds.), Language Contact and Documentation / Contacto lingüístico y documentación (pp. 205-238). Berlin: De Gruyter.
  • Naffah, N., Kempen, G., Rohmer, J., Steels, L., Tsichritzis, D., & White, G. (1985). Intelligent Workstation in the office: State of the art and future perspectives. In J. Roukens, & J. Renuart (Eds.), Esprit '84: Status report of ongoing work (pp. 365-378). Amsterdam: Elsevier Science Publishers.
  • Nas, G., Kempen, G., & Hudson, P. (1984). De rol van spelling en klank bij woordherkenning tijdens het lezen. In A. Thomassen, L. Noordman, & P. Elling (Eds.), Het leesproces. Lisse: Swets & Zeitlinger.
  • Noordman, L. G. M., Vonk, W., Cozijn, R., & Frank, S. (2015). Causal inferences and world knowledge. In E. J. O'Brien, A. E. Cook, & R. F. Lorch (Eds.), Inferences during reading (pp. 260-289). Cambridge, UK: Cambridge University Press.
  • Noordman, L. G., & Vonk, W. (1998). Discourse comprehension. In A. D. Friederici (Ed.), Language comprehension: a biological perspective (pp. 229-262). Berlin: Springer.

    Abstract

    The human language processor is conceived as a system that consists of several interrelated subsystems. Each subsystem performs a specific task in the complex process of language comprehension and production. A subsystem receives a particular input, performs certain specific operations on this input and yields a particular output. The subsystems can be characterized in terms of the transformations that relate the input representations to the output representations. An important issue in describing the language processing system is to identify the subsystems and to specify the relations between the subsystems. These relations can be conceived in two different ways. In one conception the subsystems are autonomous. They are related to each other only by the input-output channels. The operations in one subsystem are not affected by another system. The subsystems are modular, that is they are independent. In the other conception, the different subsystems influence each other. A subsystem affects the processes in another subsystem. In this conception there is an interaction between the subsystems.
  • Noordman, L. G. M., & Vonk, W. (2015). Inferences in Discourse, Psychology of. In J. D. Wright (Ed.), International Encyclopedia of the Social & Behavioral Sciences (2nd ed.) Vol. 12 (pp. 37-44). Amsterdam: Elsevier. doi:10.1016/B978-0-08-097086-8.57012-3.

    Abstract

    An inference is defined as the information that is not expressed explicitly by the text but is derived on the basis of the understander's knowledge and is encoded in the mental representation of the text. Inferencing is considered as a central component in discourse understanding. Experimental methods to detect inferences, established findings, and some developments are reviewed. Attention is paid to the relation between inference processes and the brain.
  • Norcliffe, E., Enfield, N. J., Majid, A., & Levinson, S. C. (2010). The grammar of perception. In E. Norcliffe, & N. J. Enfield (Eds.), Field manual volume 13 (pp. 7-16). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Norcliffe, E., & Konopka, A. E. (2015). Vision and language in cross-linguistic research on sentence production. In R. K. Mishra, N. Srinivasan, & F. Huettig (Eds.), Attention and vision in language processing (pp. 77-96). New York: Springer. doi:10.1007/978-81-322-2443-3_5.

    Abstract

    To what extent are the planning processes involved in producing sentences fine-tuned to grammatical properties of specific languages? In this chapter we survey the small body of cross-linguistic research that bears on this question, focusing in particular on recent evidence from eye-tracking studies. Because eye-tracking methods provide a very fine-grained temporal measure of how conceptual and linguistic planning unfold in real time, they serve as an important complement to standard psycholinguistic methods. Moreover, the advent of portable eye-trackers in recent years has, for the first time, allowed eye-tracking techniques to be used with language populations that are located far away from university laboratories. This has created the exciting opportunity to extend the typological base of vision-based psycholinguistic research and address key questions in language production with new language comparisons.
  • O'Meara, C., Speed, L. J., San Roque, L., & Majid, A. (2019). Perception Metaphors: A view from diversity. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. 1-16). Amsterdam: Benjamins.

    Abstract

    Our bodily experiences play an important role in the way that we think and speak. Abstract language is, however, difficult to reconcile with this body-centred view, unless we appreciate the role metaphors play. To explore the role of the senses across semantic domains, we focus on perception metaphors, and examine their realisation across diverse languages, methods, and approaches. To what extent do mappings in perception metaphor adhere to predictions based on our biological propensities; and to what extent is there space for cross-linguistic and cross-cultural variation? We find that while some metaphors have widespread commonality, there is more diversity attested than should be comfortable for universalist accounts.
  • Ozyurek, A., & Woll, B. (2019). Language in the visual modality: Cospeech gesture and sign language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 67-83). Cambridge, MA: MIT Press.
  • Perdue, C., & Klein, W. (1992). Conclusions. In W. Klein, & C. Perdue (Eds.), Utterance structure: Developing grammars again (pp. 301-337). Amsterdam: Benjamins.
  • Perdue, C., & Klein, W. (1992). Introduction. In W. Klein, & C. Perdue (Eds.), Utterance structure: Developing grammars again (pp. 1-10). Amsterdam: Benjamins.
  • Perniss, P. M., Ozyurek, A., & Morgan, G. (Eds.). (2015). The influence of the visual modality on language structure and conventionalization: Insights from sign language and gesture [Special Issue]. Topics in Cognitive Science, 7(1). doi:10.1111/tops.12113.
  • Petrich, P., Piedrasanta, R., Figuerola, H., & Le Guen, O. (2010). Variantes y variaciones en la percepción de los antepasados entre los Mayas. In A. Monod Becquelin, A. Breton, & M. H. Ruz (Eds.), Figuras Mayas de la diversidad (pp. 255-275). Mérida, Mexico: Universidad autónoma de México.
  • Piai, V., & Zheng, X. (2019). Speaking waves: Neuronal oscillations in language production. In K. D. Federmeier (Ed.), Psychology of Learning and Motivation (pp. 265-302). Elsevier.

    Abstract

    Language production involves the retrieval of information from memory, the planning of an articulatory program, and executive control and self-monitoring. These processes can be related to the domains of long-term memory, motor control, and executive control. Here, we argue that studying neuronal oscillations provides an important opportunity to understand how general neuronal computational principles support language production, also helping elucidate relationships between language and other domains of cognition. For each relevant domain, we provide a brief review of the findings in the literature with respect to neuronal oscillations. Then, we show how similar patterns are found in the domain of language production, both through review of previous literature and novel findings. We conclude that neurophysiological mechanisms, as reflected in modulations of neuronal oscillations, may act as a fundamental basis for bringing together and enriching the fields of language and cognition.
  • Pluymaekers, M., Ernestus, M., Baayen, R. H., & Booij, G. (2010). Morphological effects on fine phonetic detail: The case of Dutch -igheid. In C. Fougeron, B. Kühnert, M. D'Imperio, & N. Vallée (Eds.), Laboratory Phonology 10 (pp. 511-532). Berlin: De Gruyter.
  • Poletiek, F. H., & Rassin E. (Eds.). (2005). Het (on)bewuste [Special Issue]. De Psycholoog.
  • Poletiek, F. H. (2005). The proof of the pudding is in the eating: Translating Popper's philosophy into a model for testing behaviour. In K. I. Manktelow, & M. C. Chung (Eds.), Psychology of reasoning: Theoretical and historical perspectives (pp. 333-347). Hove: Psychology Press.
  • Rapold, C. J. (2010). Beneficiary and other roles of the dative in Tashelhiyt. In F. Zúñiga, & S. Kittilä (Eds.), Benefactives and malefactives: Typological perspectives and case studies (pp. 351-376). Amsterdam: Benjamins.

    Abstract

    This paper explores the semantics of the dative in Tashelhiyt, a Berber language from Morocco. After a brief morphosyntactic overview of the dative in this language, I identify a wide range of its semantic roles, including possessor, experiencer, distributive and unintending causer. I arrange these roles in a semantic map and propose semantic links between the roles such as metaphorisation and generalisation. In the light of the Tashelhiyt data, the paper also proposes additions to previous semantic maps of the dative (Haspelmath 1999, 2003) and to Kittilä’s 2005 typology of beneficiary coding.
  • Rapold, C. J. (2010). Defining converbs ten years on - A hitchhikers'guide. In S. Völlmin, A. Amha, C. J. Rapold, & S. Zaugg-Coretti (Eds.), Converbs, medial verbs, clause chaining and related issues (pp. 7-30). Köln: Rüdiger Köppe Verlag.
  • Ravignani, A., Chiandetti, C., & Kotz, S. (2019). Rhythm and music in animal signals. In J. Choe (Ed.), Encyclopedia of Animal Behavior (vol. 1) (2nd ed., pp. 615-622). Amsterdam: Elsevier.
  • Reesink, G. (2002). The Eastern bird's head languages. In G. Reesink (Ed.), Languages of the Eastern Bird's Head (pp. 1-44). Canberra: Pacific Linguistics.
  • Reesink, G. (2002). A grammar sketch of Sougb. In G. Reesink (Ed.), Languages of the Eastern Bird's Head (pp. 181-275). Canberra: Pacific Linguistics.
  • Reesink, G. (2002). Mansim, a lost language of the Bird's Head. In G. Reesink (Ed.), Languages of the Eastern Bird's Head (pp. 277-340). Canberra: Pacific Linguistics.
  • Reesink, G. (2010). The difference a word makes. In K. A. McElhannon, & G. Reesink (Eds.), A mosaic of languages and cultures: Studies celebrating the career of Karl J. Franklin (pp. 434-446). Dallas, TX: SIL International.

    Abstract

    This paper offers some thoughts on the question what effect language has on the understanding and hence behavior of a human being. It reviews some issues of linguistic relativity, known as the “Sapir-Whorf hypothesis,” suggesting that the culture we grow up in is reflected in the language and that our cognition (and our worldview) is shaped or colored by the conventions developed by our ancestors and peers. This raises questions for the degree of translatability, illustrated by the comparison of two poems by a Dutch poet who spent most of his life in the USA. Mutual understanding, I claim, is possible because we have the cognitive apparatus that allows us to enter different emic systems.
  • Reesink, G. (2010). Prefixation of arguments in West Papuan languages. In M. Ewing, & M. Klamer (Eds.), East Nusantara, typological and areal analyses (pp. 71-95). Canberra: Pacific Linguistics.
  • Reis, A., Petersson, K. M., & Faísca, L. (2010). Neuroplasticidade: Os efeitos de aprendizagens específicas no cérebro humano. In C. Nunes, & S. N. Jesus (Eds.), Temas actuais em Psicologia (pp. 11-26). Faro: Universidade do Algarve.
  • Roberts, L. (2010). Parsing the L2 input, an overview: Investigating L2 learners’ processing of syntactic ambiguities and dependencies in real-time comprehension. In G. D. Véronique (Ed.), Language, Interaction and Acquisition [Special issue] (pp. 189-205). Amsterdam: Benjamins.

    Abstract

    The acquisition of second language (L2) syntax has been central to the study of L2 acquisition, but recently there has been an interest in how learners apply their L2 syntactic knowledge to the input in real-time comprehension. Investigating L2 learners’ moment-by-moment syntactic analysis during listening or reading of sentence as it unfolds — their parsing of the input — is important, because language learning involves both the acquisition of knowledge and the ability to use it in real time. Using methods employed in monolingual processing research, investigations often focus on the processing of temporary syntactic ambiguities and structural dependencies. Investigating ambiguities involves examining parsing decisions at points in a sentence where there is a syntactic choice and this can offer insights into the nature of the parsing mechanism, and in particular, its processing preferences. Studying the establishment of syntactic dependencies at the critical point in the input allows for an investigation of how and when different kinds of information (e.g., syntactic, semantic, pragmatic) are put to use in real-time interpretation. Within an L2 context, further questions are of interest and familiar from traditional L2 acquisition research. Specifically, how native-like are the parsing procedures that L2 learners apply when processing the L2 input? What is the role of the learner’s first language (L1)? And, what are the effects of individual factors such as age, proficiency/dominance and working memory on L2 parsing? In the current paper I will provide an overview of the findings of some experimental research designed to investigate these questions.
  • Roelofs, A. (2005). Spoken word planning, comprehending, and self-monitoring: Evaluation of WEAVER++. In R. Hartsuiker, R. Bastiaanse, A. Postma, & F. Wijnen (Eds.), Phonological encoding and monitoring in normal and pathological speech (pp. 42-63). Hove: Psychology press.
  • Roelofs, A. (2002). Storage and computation in spoken word production. In S. Nooteboom, F. Weerman, & F. Wijnen (Eds.), Storage and computation in the language faculty (pp. 183-216). Dordrecht: Kluwer.
  • Roelofs, A. (2005). From Popper to Lakatos: A case for cumulative computational modeling. In A. Cutler (Ed.), Twenty-first century psycholinguistics: Four cornerstones (pp. 313-330). Mahwah,NJ: Erlbaum.
  • Roelofs, A. (2002). Modeling of lexical access in speech production: A psycholinguistic perspective on the lexicon. In L. Behrens, & D. Zaefferer (Eds.), The lexicon in focus: Competition and convergence in current lexicology (pp. 75-92). Frankfurt am Main: Lang.
  • Rojas-Berscia, L. M. (2019). Nominalization in Shawi/Chayahuita. In R. Zariquiey, M. Shibatani, & D. W. Fleck (Eds.), Nominalization in languages of the Americas (pp. 491-514). Amsterdam: Benjamins.

    Abstract

    This paper deals with the Shawi nominalizing suffixes -su’~-ru’~-nu’ ‘general nominalizer’, -napi/-te’/-tun‘performer/agent nominalizer’, -pi’‘patient nominalizer’, and -nan ‘instrument nominalizer’. The goal of this article is to provide a description of nominalization in Shawi. Throughout this paper I apply the Generalized Scale Model (GSM) (Malchukov, 2006) to Shawi verbal nominalizations, with the intention of presenting a formal representation that will provide a basis for future areal and typological studies of nominalization. In addition, I dialogue with Shibatani’s model to see how the loss or gain of categories correlates with the lexical or grammatical nature of nominalizations. strong nominalization in Shawi correlates with lexical nominalization, whereas weak nominalizations correlate with grammatical nominalization. A typology which takes into account the productivity of the nominalizers is also discussed.
  • Rowland, C. F., & Kidd, E. (2019). Key issues and future directions: How do children acquire language? In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 181-185). Cambridge, MA: MIT Press.
  • Rubio-Fernández, P. (2019). Theory of mind. In C. Cummins, & N. Katsos (Eds.), The Handbook of Experimental Semantics and Pragmatics (pp. 524-536). Oxford: Oxford University Press.
  • Saito, H., & Kita, S. (2002). "Jesuchaa, kooi, imi" no hennshuu ni atat te [On the occasion of editing "Jesuchaa, Kooi, imi"]. In H. Saito, & S. Kita (Eds.), Kooi, jesuchaa, imi [Action, gesture, meaning] (pp. v-xi). Tokyo: Kyooritsu Shuppan.
  • San Roque, L., & Bergvist, H. (Eds.). (2015). Epistemic marking in typological perspective [Special Issue]. STUF -Language typology and universals, 68(2).
  • San Roque, L., & Norcliffe, E. (2010). Knowledge asymmetries in grammar and interaction. In E. Norcliffe, & N. J. Enfield (Eds.), Field manual volume 13 (pp. 37-44). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.529153.
  • Schäfer, M., & Haun, D. B. M. (2010). Sharing among children across cultures. In E. Norcliffe, & N. J. Enfield (Eds.), Field manual volume 13 (pp. 45-49). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.529154.
  • Schiller, N. O., Costa, A., & Colomé, A. (2002). Phonological encoding of single words: In search of the lost syllable. In C. Gussenhoven, & N. Warner (Eds.), Laboratory Phonology VII (pp. 35-59). Berlin: Mouton de Gruyter.
  • Schiller, N. O. (2005). Verbal self-monitoring. In A. Cutler (Ed.), Twenty-first Century Psycholinguistics: Four cornerstones (pp. 245-261). Lawrence Erlbaum: Mahwah [etc.].
  • Schiller, N. O., & Verdonschot, R. G. (2015). Accessing words from the mental lexicon. In J. Taylor (Ed.), The Oxford handbook of the word (pp. 481-492). Oxford: Oxford University Press.

    Abstract

    This chapter describes how speakers access words from the mental lexicon. Lexical access is a crucial
    component in the process of transforming thoughts into speech. Some theories consider lexical access to be
    strictly serial and discrete, while others view this process as being cascading or even interactive, i.e. the different
    sub-levels influence each other. We discuss some of the evidence in favour and against these viewpoints, and
    also present arguments regarding the ongoing debate on how words are selected for production. Another important
    issue concerns the access to morphologically complex words such as derived and inflected words, as well as
    compounds. Are these accessed as whole entities from the mental lexicon or are the parts assembled online? This
    chapter tries to provide an answer to that question as well.
  • Schiller, N. O. (2002). From phonetics to cognitive psychology: Psycholinguistics has it all. In A. Braun, & H. Masthoff (Eds.), Phonetics and its Applications. Festschrift for Jens-Peter Köster on the Occasion of his 60th Birthday. [Beihefte zur Zeitschrift für Dialektologie und Linguistik; 121] (pp. 13-24). Stuttgart: Franz Steiner Verlag.
  • Schriefers, H., Meyer, A. S., & Levelt, W. J. M. (2002). Exploring the time course of lexical access in language production: Picture word interference studies. In G. Altmann (Ed.), Psycholinguistics: Critical Concepts in Psychology [vol. 5] (pp. 168-191). London: Routledge.
  • Schriefers, H., & Vigliocco, G. (2015). Speech Production, Psychology of [Repr.]. In J. D. Wright (Ed.), International Encyclopedia of the Social & Behavioral Sciences (2nd ed) Vol. 23 (pp. 255-258). Amsterdam: Elsevier. doi:10.1016/B978-0-08-097086-8.52022-4.

    Abstract

    This article is reproduced from the previous edition, volume 22, pp. 14879–14882, © 2001, Elsevier Ltd.
  • Schubotz, L., Oostdijk, N., & Ernestus, M. (2015). Y’know vs. you know: What phonetic reduction can tell us about pragmatic function. In S. Lestrade, P. De Swart, & L. Hogeweg (Eds.), Addenda: Artikelen voor Ad Foolen (pp. 361-380). Njimegen: Radboud University.
  • Seifart, F. (2002). Shape-distinctions picture-object matching task, with 2002 supplement. In S. Kita (Ed.), 2002 Supplement (version 3) for the “Manual” for the field season 2001 (pp. 15-17). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Senft, G. (2010). Culture change - language change: Missionaries and moribund varieties of Kilivila. In G. Senft (Ed.), Endangered Austronesian and Australian Aboriginal languages: Essays on language documentation, archiving, and revitalization (pp. 69-95). Canberra: Pacific Linguistics.
  • Senft, G. (1992). As time goes by..: Changes observed in Trobriand Islanders' culture and language, Milne Bay Province, Papua New Guinea. In T. Dutton (Ed.), Culture change, language change: Case studies from Melanesia (pp. 67-89). Canberra: Pacific Linguistics.

Share this page