Publications

Displaying 201 - 220 of 220
  • Verdonschot, R. G., & Tamaoka, K. (Eds.). (2015). The production of speech sounds across languages [Special Issue]. Japanese Psychological Research, 57(1).
  • Verhoef, T., Roberts, S. G., & Dingemanse, M. (2015). Emergence of systematic iconicity: Transmission, interaction and analogy. In D. Noelle, R. Dale, A. S. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (Eds.), Proceedings of the 37th Annual Meeting of the Cognitive Science Society (CogSci 2015) (pp. 2481-2486). Austin, Tx: Cognitive Science Society.

    Abstract

    Languages combine arbitrary and iconic signals. How do iconic signals emerge and when do they persist? We present an experimental study of the role of iconicity in the emergence of structure in an artificial language. Using an iterated communication game in which we control the signalling medium as well as the meaning space, we study the evolution of communicative signals in transmission chains. This sheds light on how affordances of the communication medium shape and constrain the mappability and transmissibility of form-meaning pairs. We find that iconic signals can form the building blocks for wider compositional patterns
  • Versteegh, M., Ten Bosch, L., & Boves, L. (2011). Modelling novelty preference in word learning. In Proceedings of the 12th Annual Conference of the International Speech Communication Association (Interspeech 2011), Florence, Italy (pp. 761-764).

    Abstract

    This paper investigates the effects of novel words on a cognitively plausible computational model of word learning. The model is first familiarized with a set of words, achieving high recognition scores and subsequently offered novel words for training. We show that the model is able to recognize the novel words as different from the previously seen words, based on a measure of novelty that we introduce. We then propose a procedure analogous to novelty preference in infants. Results from simulations of word learning show that adding this procedure to our model speeds up training and helps the model attain higher recognition rates.
  • Verweij, H., Windhouwer, M., & Wittenburg, P. (2011). Knowledge management for small languages. In V. Luzar-Stiffler, I. Jarec, & Z. Bekic (Eds.), Proceedings of the ITI 2011 33rd Int. Conf. on Information Technology Interfaces, June 27-30, 2011, Cavtat, Croatia (pp. 213-218). Zagreb, Croatia: University Computing Centre, University of Zagreb.

    Abstract

    In this paper an overview of the knowledge components needed for extensive documentation of small languages is given. The Language Archive is striving to offer all these tools to the linguistic community. The major tools in relation to the knowledge components are described. Followed by a discussion on what is currently lacking and possible strategies to move forward.
  • Vosse, T., & Kempen, G. (1991). A hybrid model of human sentence processing: Parsing right-branching, center-embedded and cross-serial dependencies. In M. Tomita (Ed.), Proceedings of the Second International Workshop on Parsing Technologies.
  • Vuong, L., Meyer, A. S., & Christiansen, M. H. (2011). Simultaneous online tracking of adjacent and non-adjacent dependencies in statistical learning. In L. Carlson, C. Hölscher, & T. Shipley (Eds.), Proceedings of the 33rd Annual Conference of the Cognitive Science Society (pp. 964-969). Austin, TX: Cognitive Science Society.
  • Wagner, A., & Braun, A. (2003). Is voice quality language-dependent? Acoustic analyses based on speakers of three different languages. In Proceedings of the 15th International Congress of Phonetic Sciences (ICPhS 2003) (pp. 651-654). Adelaide: Causal Productions.
  • Wagner, M., Tran, D., Togneri, R., Rose, P., Powers, D., Onslow, M., Loakes, D., Lewis, T., Kuratate, T., Kinoshita, Y., Kemp, N., Ishihara, S., Ingram, J., Hajek, J., Grayden, D., Göcke, R., Fletcher, J., Estival, D., Epps, J., Dale, R. and 11 moreWagner, M., Tran, D., Togneri, R., Rose, P., Powers, D., Onslow, M., Loakes, D., Lewis, T., Kuratate, T., Kinoshita, Y., Kemp, N., Ishihara, S., Ingram, J., Hajek, J., Grayden, D., Göcke, R., Fletcher, J., Estival, D., Epps, J., Dale, R., Cutler, A., Cox, F., Chetty, G., Cassidy, S., Butcher, A., Burnham, D., Bird, S., Best, C., Bennamoun, M., Arciuli, J., & Ambikairajah, E. (2011). The Big Australian Speech Corpus (The Big ASC). In M. Tabain, J. Fletcher, D. Grayden, J. Hajek, & A. Butcher (Eds.), Proceedings of the Thirteenth Australasian International Conference on Speech Science and Technology (pp. 166-170). Melbourne: ASSTA.
  • Wanrooij, K., De Vos, J., & Boersma, P. (2015). Distributional vowel training may not be effective for Dutch adults. In Scottish consortium for ICPhS 2015, M. Wolters, J. Livingstone, B. Beattie, R. Smith, M. MacMahon, J. Stuart-Smith, & J. Scobbie (Eds.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015). Glasgow: University of Glasgow.

    Abstract

    Distributional vowel training for adults has been reported as “effective” for Spanish and Bulgarian learners of Dutch vowels, in studies using a behavioural task. A recent study did not yield a similar clear learning effect for Dutch learners of the English vowel contrast /æ/~/ε/, as measured with event-related potentials (ERPs). The present study aimed to examine the possibility that the latter result was related to the method. As in the ERP study, we tested whether distributional training improved Dutch adult learners’ perception of English /æ/~/ε/. However, we measured behaviour instead of ERPs, in a design identical to that used in the previous studies with Spanish learners. The results do not support an effect of distributional training and thus “replicate” the ERP study. We conclude that it remains unclear whether distributional vowel training is effective for Dutch adults.
  • Weber, A., & Smits, R. (2003). Consonant and vowel confusion patterns by American English listeners. In M. J. Solé, D. Recasens, & J. Romero (Eds.), Proceedings of the 15th International Congress of Phonetic Sciences.

    Abstract

    This study investigated the perception of American English phonemes by native listeners. Listeners identified either the consonant or the vowel in all possible English CV and VC syllables. The syllables were embedded in multispeaker babble at three signal-to-noise ratios (0 dB, 8 dB, and 16 dB). Effects of syllable position, signal-to-noise ratio, and articulatory features on vowel and consonant identification are discussed. The results constitute the largest source of data that is currently available on phoneme confusion patterns of American English phonemes by native listeners.
  • Weber, A., & Smits, R. (2003). Consonant and vowel confusion patterns by American English listeners. In Proceedings of the 15th International Congress of Phonetic Sciences (ICPhS 2003) (pp. 1437-1440). Adelaide: Causal Productions.

    Abstract

    This study investigated the perception of American English phonemes by native listeners. Listeners identified either the consonant or the vowel in all possible English CV and VC syllables. The syllables were embedded in multispeaker babble at three signalto-noise ratios (0 dB, 8 dB, and 16 dB). Effects of syllable position, signal-to-noise ratio, and articulatory features on vowel and consonant identification are discussed. The results constitute the largest source of data that is currently available on phoneme confusion patterns of American English phonemes by native listeners.
  • Weber, A., & Paris, G. (2004). The origin of the linguistic gender effect in spoken-word recognition: Evidence from non-native listening. In K. Forbus, D. Gentner, & T. Tegier (Eds.), Proceedings of the 26th Annual Meeting of the Cognitive Science Society. Mahwah, NJ: Erlbaum.

    Abstract

    Two eye-tracking experiments examined linguistic gender effects in non-native spoken-word recognition. French participants, who knew German well, followed spoken instructions in German to click on pictures on a computer screen (e.g., Wo befindet sich die Perle, “where is the pearl”) while their eye movements were monitored. The name of the target picture was preceded by a gender-marked article in the instructions. When a target and a competitor picture (with phonologically similar names) were of the same gender in both German and French, French participants fixated competitor pictures more than unrelated pictures. However, when target and competitor were of the same gender in German but of different gender in French, early fixations to the competitor picture were reduced. Competitor activation in the non-native language was seemingly constrained by native gender information. German listeners showed no such viewing time difference. The results speak against a form-based account of the linguistic gender effect. They rather support the notion that the effect originates from the grammatical level of language processing.
  • Weber, A., & Mueller, K. (2004). Word order variation in German main clauses: A corpus analysis. In Proceedings of the 20th International Conference on Computational Linguistics.

    Abstract

    In this paper, we present empirical data from a corpus study on the linear order of subjects and objects in German main clauses. The aim was to establish the validity of three well-known ordering constraints: given complements tend to occur before new complements, definite before indefinite, and pronoun before full noun phrase complements. Frequencies of occurrences were derived for subject-first and object-first sentences from the German Negra corpus. While all three constraints held on subject-first sentences, results for object-first sentences varied. Our findings suggest an influence of grammatical functions on the ordering of verb complements.
  • Witteman, M. J., Bardhan, N. P., Weber, A., & McQueen, J. M. (2011). Adapting to foreign-accented speech: The role of delay in testing. Journal of the Acoustical Society of America. Program abstracts of the 162nd Meeting of the Acoustical Society of America, 130(4), 2443.

    Abstract

    Understanding speech usually seems easy, but it can become noticeably harder when the speaker has a foreign accent. This is because foreign accents add considerable variation to speech. Research on foreign-accented speech shows that participants are able to adapt quickly to this type of variation. Less is known, however, about longer-term maintenance of adaptation. The current study focused on long-term adaptation by exposing native listeners to foreign-accented speech on Day 1, and testing them on comprehension of the accent one day later. Comprehension was thus not tested immediately, but only after a 24 hour period. On Day 1, native Dutch listeners listened to the speech of a Hebrew learner of Dutch while performing a phoneme monitoring task that did not depend on the talker’s accent. In particular, shortening of the long vowel /i/ into /ɪ/ (e.g., lief [li:f], ‘sweet’, pronounced as [lɪf]) was examined. These mispronunciations did not create lexical ambiguities in Dutch. On Day 2, listeners participated in a cross-modal priming task to test their comprehension of the accent. The results will be contrasted with results from an experiment without delayed testing and related to accounts of how listeners maintain adaptation to foreign-accented speech.
  • Witteman, M. J., Weber, A., & McQueen, J. M. (2011). On the relationship between perceived accentedness, acoustic similarity, and processing difficulty in foreign-accented speech. In Proceedings of the 12th Annual Conference of the International Speech Communication Association (Interspeech 2011), Florence, Italy (pp. 2229-2232).

    Abstract

    Foreign-accented speech is often perceived as more difficult to understand than native speech. What causes this potential difficulty, however, remains unknown. In the present study, we compared acoustic similarity and accent ratings of American-accented Dutch with a cross-modal priming task designed to measure online speech processing. We focused on two Dutch diphthongs: ui and ij. Though both diphthongs deviated from standard Dutch to varying degrees and perceptually varied in accent strength, native Dutch listeners recognized words containing the diphthongs easily. Thus, not all foreign-accented speech hinders comprehension, and acoustic similarity and perceived accentedness are not always predictive of processing difficulties.
  • Wittenburg, P. (2004). The IMDI metadata concept. In S. F. Ferreira (Ed.), Workingmaterial on Building the LR&E Roadmap: Joint COCOSDA and ICCWLRE Meeting, (LREC2004). Paris: ELRA - European Language Resources Association.
  • Wittenburg, P., Brugman, H., Broeder, D., & Russel, A. (2004). XML-based language archiving. In Workshop Proceedings on XML-based Richly Annotaded Corpora (LREC2004) (pp. 63-69). Paris: ELRA - European Language Resources Association.
  • Wittenburg, P., Gulrajani, G., Broeder, D., & Uneson, M. (2004). Cross-disciplinary integration of metadata descriptions. In M. Lino, M. Xavier, F. Ferreira, R. Costa, & R. Silva (Eds.), Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC2004) (pp. 113-116). Paris: ELRA - European Language Resources Association.
  • Wittenburg, P., Johnson, H., Buchhorn, M., Brugman, H., & Broeder, D. (2004). Architecture for distributed language resource management and archiving. In M. Lino, M. Xavier, F. Ferreira, R. Costa, & R. Silva (Eds.), Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC2004) (pp. 361-364). Paris: ELRA - European Language Resources Association.
  • Zhang, Y., Yurovsky, D., & Yu, C. (2015). Statistical word learning is a continuous process: Evidence from the human simulation paradigm. In D. Noelle, R. Dale, A. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (Eds.), Proceedings of the 37th Annual Meeting of the Cognitive Science Society (CogSci 2015) (pp. 2422-2427). Austin: Cognitive Science Society.

    Abstract

    In the word-learning domain, both adults and young children are able to find the correct referent of a word from highly ambiguous contexts that involve many words and objects by computing distributional statistics across the co-occurrences of words and referents at multiple naming moments (Yu & Smith, 2007; Smith & Yu, 2008). However, there is still debate regarding how learners accumulate distributional information to learn object labels in natural learning environments, and what underlying learning mechanism learners are most likely to adopt. Using the Human Simulation Paradigm (Gillette, Gleitman, Gleitman & Lederer, 1999), we found that participants’ learning performance gradually improved and that their ability to remember and carry over partial knowledge from past learning instances facilitated subsequent learning. These results support the statistical learning model that word learning is a continuous process.

Share this page