Publications

Displaying 201 - 243 of 243
  • Seuren, P. A. M. (2006). Multivalued logics. In K. Brown (Ed.), Encyclopedia of Language and Linguistics (vol. 8) (pp. 387-390). Amsterdam: Elsevier.

    Abstract

    The widely prevailing view that standard bivalent logic is the only possible sound logical system, imposed by metaphysical necessity, has been shattered by the development of multivalent logics during the 20th century. It is now clear that standard bivalent logic is merely the minimal representative of a wide variety of viable logics with any number of truth values. These viable logics can be subdivided into families. In this article, the Kleene family and the PPCn family are subjected to special examination, as they appear to be most relevant for the study of the logical properties of human language.
  • Seuren, P. A. M. (1994). Factivity. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 3) (pp. 1205). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Function, set-theoretical. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 3) (pp. 1314). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Incrementation. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 3) (pp. 1646). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Lexical conditions. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 4) (pp. 2140-2141). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Existence predicate (discourse semantics). In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 3) (pp. 1190-1191). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Existential presupposition. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 3) (pp. 1191-1192). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Presupposition. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 6) (pp. 3311-3320). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Projection problem. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 6) (pp. 3358-3360). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1990). Serial verb constructions. In B. D. Joseph, & A. M. Zwicky (Eds.), When verbs collide: Papers from the 1990 Ohio State Mini-Conference on Serial Verbs (pp. 14-33). Columbus, OH: The Ohio State University, Department of Linguistics.
  • Seuren, P. A. M. (1994). Sign. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 7) (pp. 3885-3888). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Syntax and semantics: Relationship. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 8) (pp. 4494-4500). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1994). Prediction and retrodiction. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 6) (pp. 3302-3303). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1998). Towards a discourse-semantic account of donkey anaphora. In S. Botley, & T. McEnery (Eds.), New Approaches to Discourse Anaphora: Proceedings of the Second Colloquium on Discourse Anaphora and Anaphor Resolution (DAARC2) (pp. 212-220). Lancaster: Universiy Centre for Computer Corpus Research on Language, Lancaster University.
  • Silva, S., Petersson, K. M., & Castro, S. (2016). Rhythm in the brain: Is music special? In D. Da Silva Marques, & J. Avila-Toscano (Eds.), Neuroscience to neuropsychology: The study of the human brain (pp. 29-54). Barranquilla, Colombia: Ediciones CUR.
  • Sjerps, M. J., & Chang, E. F. (2019). The cortical processing of speech sounds in the temporal lobe. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 361-379). Cambridge, MA: MIT Press.
  • Skiba, R. (2006). Computeranalyse/Computer Analysis. In U. Amon, N. Dittmar, K. Mattheier, & P. Trudgill (Eds.), Sociolinguistics: An international handbook of the science of language and society [2nd completely revised and extended edition] (pp. 1187-1197). Berlin, New York: de Gruyter.
  • Skiba, R. (1990). Steinbruch-Datenbanken: Materialien für „Deutsch als Zweitsprache für Kinder und Jugendliche" und „Deutsch als Fachsprache". In Lehr- und Lernmittel-Datenbanken für den Fremdsprachenunterricht (pp. 15-20). Zürich: Eurocentres - Learning Service.
  • Smith, A. C., Monaghan, P., & Huettig, F. (2016). Complex word recognition behaviour emerges from the richness of the word learning environment. In K. Twomey, A. C. Smith, G. Westermann, & P. Monaghan (Eds.), Neurocomputational Models of Cognitive Development and Processing: Proceedings of the 14th Neural Computation and Psychology Workshop (pp. 99-114). Singapore: World Scientific. doi:10.1142/9789814699341_0007.

    Abstract

    Computational models can reflect the complexity of human behaviour by implementing multiple constraints within their architecture, and/or by taking into account the variety and richness of the environment to which the human is responding. We explore the second alternative in a model of word recognition that learns to map spoken words to visual and semantic representations of the words’ concepts. Critically, we employ a phonological representation utilising coarse-coding of the auditory stream, to mimic early stages of language development that are not dependent on individual phonemes to be isolated in the input, which may be a consequence of literacy development. The model was tested at different stages during training, and was able to simulate key behavioural features of word recognition in children: a developing effect of semantic information as a consequence of language learning, and a small but earlier effect of phonological information on word processing. We additionally tested the role of visual information in word processing, generating predictions for behavioural studies, showing that visual information could have a larger effect than semantics on children’s performance, but that again this affects recognition later in word processing than phonological information. The model also provides further predictions for performance of a mature word recognition system in the absence of fine-coding of phonology, such as in adults who have low literacy skills. The model demonstrated that such phonological effects may be reduced but are still evident even when multiple distractors from various modalities are present in the listener’s environment. The model demonstrates that complexity in word recognition can emerge from a simple associative system responding to the interactions between multiple sources of information in the language learner’s environment.
  • Stivers, T. (2006). Treatment decisions: negotiations between doctors and parents in acute care encounters. In J. Heritage, & D. W. Maynard (Eds.), Communication in medical care: Interaction between primary care physicians and patients (pp. 279-312). Cambridge: Cambridge University Press.
  • Stolker, C. J. J. M., & Poletiek, F. H. (1998). Smartengeld - Wat zijn we eigenlijk aan het doen? Naar een juridische en psychologische evaluatie. In F. Stadermann (Ed.), Bewijs en letselschade (pp. 71-86). Lelystad, The Netherlands: Koninklijke Vermande.
  • Sumer, B., & Ozyurek, A. (2016). İşitme Engelli Çocukların Dil Edinimi [Sign language acquisition by deaf children]. In C. Aydin, T. Goksun, A. Kuntay, & D. Tahiroglu (Eds.), Aklın Çocuk Hali: Zihin Gelişimi Araştırmaları [Research on Cognitive Development] (pp. 365-388). Istanbul: Koc University Press.
  • Sumer, B. (2016). Scene-setting and reference introduction in sign and spoken languages: What does modality tell us? In B. Haznedar, & F. N. Ketrez (Eds.), The acquisition of Turkish in childhood (pp. 193-220). Amsterdam: Benjamins.

    Abstract

    Previous studies show that children do not become adult-like in learning to set the scene and introduce referents in their narrations until 9 years of age and even beyond. However, they investigated spoken languages, thus we do not know much about how these skills are acquired in sign languages, where events are expressed in visually similar ways to the real world events, unlike in spoken languages. The results of the current study demonstrate that deaf children (3;5–9;10 years) acquiring Turkish Sign Language, and hearing children (3;8–9;11 years) acquiring spoken Turkish both acquire scene-setting and referent introduction skills at similar ages. Thus the modality of the language being acquired does not have facilitating or hindering effects in the development of these skills.
  • Sumer, B., Zwitserlood, I., Perniss, P., & Ozyurek, A. (2016). Yer Bildiren İfadelerin Türkçe ve Türk İşaret Dili’nde (TİD) Çocuklar Tarafından Edinimi [The acqusition of spatial relations by children in Turkish and Turkish Sign Language (TID)]. In E. Arik (Ed.), Ellerle Konuşmak: Türk İşaret Dili Araştırmaları [Speaking with hands: Studies on Turkish Sign Language] (pp. 157-182). Istanbul: Koç University Press.
  • Suppes, P., Böttner, M., & Liang, L. (1998). Machine Learning of Physics Word Problems: A Preliminary Report. In A. Aliseda, R. van Glabbeek, & D. Westerståhl (Eds.), Computing Natural Language (pp. 141-154). Stanford, CA, USA: CSLI Publications.
  • Terrill, A., & Dunn, M. (2006). Semantic transference: Two preliminary case studies from the Solomon Islands. In C. Lefebvre, L. White, & C. Jourdan (Eds.), L2 acquisition and Creole genesis: Dialogues (pp. 67-85). Amsterdam: Benjamins.
  • Terrill, A. (2006). Central Solomon languages. In K. Brown (Ed.), Encyclopedia of language and linguistics (vol. 2) (pp. 279-280). Amsterdam: Elsevier.

    Abstract

    The Papuan languages of the central Solomon Islands are a negatively defined areal grouping: They are those four or possibly five languages in the central Solomon Islands that do not belong to the Austronesian family. Bilua (Vella Lavella), Touo (Rendova), Lavukaleve (Russell Islands), Savosavo (Savo Island) and possibly Kazukuru (New Georgia) have been identified as non-Austronesian since the early 20th century. However, their affiliations both to each other and to other languages still remain a mystery. Heterogeneous and until recently largely undescribed, they present an interesting departure from what is known both of Austronesian languages in the region and of the Papuan languages of the mainland of New Guinea.
  • Thomaz, A. L., Lieven, E., Cakmak, M., Chai, J. Y., Garrod, S., Gray, W. D., Levinson, S. C., Paiva, A., & Russwinkel, N. (2019). Interaction for task instruction and learning. In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 91-110). Cambridge, MA: MIT Press.
  • Trabasso, T., & Ozyurek, A. (1997). Communicating evaluation in narrative understanding. In T. Givon (Ed.), Conversation: Cognitive, communicative and social perspectives (pp. 268-302). Philadelphia, PA: Benjamins.
  • Van Staden, M., Bowerman, M., & Verhelst, M. (2006). Some properties of spatial description in Dutch. In S. C. Levinson, & D. Wilkins (Eds.), Grammars of Space (pp. 475-511). Cambridge: Cambridge University Press.
  • Van Valin Jr., R. D. (2016). An overview of information structure in three Amazonian languages. In M. Fernandez-Vest, & R. D. Van Valin Jr. (Eds.), Information structure and spoken language from a cross-linguistic perspective (pp. 77-92). Berlin: Mouton de Gruyter.
  • Van Berkum, J. J. A., & Nieuwland, M. S. (2019). A cognitive neuroscience perspective on language comprehension in context. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 429-442). Cambridge, MA: MIT Press.
  • Van Wijk, C., & Kempen, G. (1985). From sentence structure to intonation contour: An algorithm for computing pitch contours on the basis of sentence accents and syntactic structure. In B. Müller (Ed.), Sprachsynthese: Zur Synthese von natürlich gesprochener Sprache aus Texten und Konzepten (pp. 157-182). Hildesheim: Georg Olms.
  • Van Valin Jr., R. D. (1994). Extraction restrictions, competing theories and the argument from the poverty of the stimulus. In S. D. Lima, R. Corrigan, & G. K. Iverson (Eds.), The reality of linguistic rules (pp. 243-259). Amsterdam: Benjamins.
  • Van Geenhoven, V. (1998). On the Argument Structure of some Noun Incorporating Verbs in West Greenlandic. In M. Butt, & W. Geuder (Eds.), The Projection of Arguments - Lexical and Compositional Factors (pp. 225-263). Stanford, CA, USA: CSLI Publications.
  • Van Valin Jr., R. D. (1998). The acquisition of WH-questions and the mechanisms of language acquisition. In M. Tomasello (Ed.), The new psychology of language: Cognitive and functional approaches to language structure (pp. 221-249). Mahwah, New Jersey: Erlbaum.
  • Van Valin Jr., R. D. (2006). Some universals of verb semantics. In R. Mairal, & J. Gil (Eds.), Linguistic universals (pp. 155-178). Cambridge: Cambridge University Press.
  • Van Valin Jr., R. D. (2006). Semantic macroroles and language processing. In I. Bornkessel, M. Schlesewsky, B. Comrie, & A. Friederici (Eds.), Semantic role universals and argument linking: Theoretical, typological and psycho-/neurolinguistic perspectives (pp. 263-302). Berlin: Mouton de Gruyter.
  • Vernes, S. C. (2019). Neuromolecular approaches to the study of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 577-593). Cambridge, MA: MIT Press.
  • Zeshan, U. (2006). Sign language of the world. In K. Brown (Ed.), Encyclopedia of language and linguistics (vol. 11) (pp. 358-365). Amsterdam: Elsevier.

    Abstract

    Although sign language-using communities exist in all areas of the world, few sign languages have been documented in detail. Sign languages occur in a variety of sociocultural contexts, ranging from sign languages used in closed village communities to officially recognized national sign languages. They may be grouped into language families on historical grounds or may participate in various language contact situations. Systematic cross-linguistic comparison reveals both significant structural similarities and important typological differences between sign languages. Focusing on information from non-Western countries, this article provides an overview of the sign languages of the world.
  • Zhang, Y., Chen, C.-h., & Yu, C. (2019). Mechanisms of cross-situational learning: Behavioral and computational evidence. In Advances in Child Development and Behavior; vol. 56 (pp. 37-63).

    Abstract

    Word learning happens in everyday contexts with many words and many potential referents for those words in view at the same time. It is challenging for young learners to find the correct referent upon hearing an unknown word at the moment. This problem of referential uncertainty has been deemed as the crux of early word learning (Quine, 1960). Recent empirical and computational studies have found support for a statistical solution to the problem termed cross-situational learning. Cross-situational learning allows learners to acquire word meanings across multiple exposures, despite each individual exposure is referentially uncertain. Recent empirical research shows that infants, children and adults rely on cross-situational learning to learn new words (Smith & Yu, 2008; Suanda, Mugwanya, & Namy, 2014; Yu & Smith, 2007). However, researchers have found evidence supporting two very different theoretical accounts of learning mechanisms: Hypothesis Testing (Gleitman, Cassidy, Nappa, Papafragou, & Trueswell, 2005; Markman, 1992) and Associative Learning (Frank, Goodman, & Tenenbaum, 2009; Yu & Smith, 2007). Hypothesis Testing is generally characterized as a form of learning in which a coherent hypothesis regarding a specific word-object mapping is formed often in conceptually constrained ways. The hypothesis will then be either accepted or rejected with additional evidence. However, proponents of the Associative Learning framework often characterize learning as aggregating information over time through implicit associative mechanisms. A learner acquires the meaning of a word when the association between the word and the referent becomes relatively strong. In this chapter, we consider these two psychological theories in the context of cross-situational word-referent learning. By reviewing recent empirical and cognitive modeling studies, our goal is to deepen our understanding of the underlying word learning mechanisms by examining and comparing the two theoretical learning accounts.
  • Zuidema, W., & Fitz, H. (2019). Key issues and future directions: Models of human language and speech processing. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 353-358). Cambridge, MA: MIT Press.
  • Zwitserlood, I., & Van Gijn, I. (2006). Agreement phenomena in Sign Language of the Netherlands. In P. Ackema (Ed.), Arguments and Agreement (pp. 195-229). Oxford: Oxford University Press.

Share this page