Publications

Displaying 201 - 298 of 298
  • Mak, M., & Willems, R. M. (2021). Mental simulation during literary reading. In D. Kuiken, & A. M. Jacobs (Eds.), Handbook of empirical literary studies (pp. 63-84). Berlin: De Gruyter.

    Abstract

    Readers experience a number of sensations during reading. They do
    not – or do not only – process words and sentences in a detached, abstract
    manner. Instead they “perceive” what they read about. They see descriptions of
    scenery, feel what characters feel, and hear the sounds in a story. These sensa-
    tions tend to be grouped under the umbrella terms “mental simulation” and
    “mental imagery.” This chapter provides an overview of empirical research on
    the role of mental simulation during literary reading. Our chapter also discusses
    what mental simulation is and how it relates to mental imagery. Moreover, it
    explores how mental simulation plays a role in leading models of literary read-
    ing and investigates under what circumstances mental simulation occurs dur-
    ing literature reading. Finally, the effect of mental simulation on the literary
    reader’s experience is discussed, and suggestions and unresolved issues in this
    field are formulated.
  • McDonough, L., Choi, S., Bowerman, M., & Mandler, J. M. (1998). The use of preferential looking as a measure of semantic development. In C. Rovee-Collier, L. P. Lipsitt, & H. Hayne (Eds.), Advances in Infancy Research. Volume 12. (pp. 336-354). Stamford, CT: Ablex Publishing.
  • McQueen, J. M., Dahan, D., & Cutler, A. (2003). Continuity and gradedness in speech processing. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 39-78). Berlin: Mouton de Gruyter.
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • McQueen, J. M., & Meyer, A. S. (2019). Key issues and future directions: Towards a comprehensive cognitive architecture for language use. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 85-96). Cambridge, MA: MIT Press.
  • Meira, S. (2003). 'Addressee effects' in demonstrative systems: The cases of Tiriyó and Brazilian Portugese. In F. Lenz (Ed.), Deictic conceptualization of space, time and person (pp. 3-12). Amsterdam/Philadelphia: John Benjamins.
  • Meyer, A. S., & Dobel, C. (2003). Application of eye tracking in speech production research. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind’s eye: Cognitive and applied aspects of eye movement research (pp. 253-272). Amsterdam: Elsevier.
  • Meyer, A. S. (2004). The use of eye tracking in studies of sentence generation. In J. M. Henderson, & F. Ferreira (Eds.), The interface of language, vision, and action: Eye movements and the visual world (pp. 191-212). Hove: Psychology Press.
  • Naffah, N., Kempen, G., Rohmer, J., Steels, L., Tsichritzis, D., & White, G. (1985). Intelligent Workstation in the office: State of the art and future perspectives. In J. Roukens, & J. Renuart (Eds.), Esprit '84: Status report of ongoing work (pp. 365-378). Amsterdam: Elsevier Science Publishers.
  • Narasimhan, B., Bowerman, M., Brown, P., Eisenbeiss, S., & Slobin, D. I. (2004). "Putting things in places": Effekte linguisticher Typologie auf die Sprachentwicklung. In G. Plehn (Ed.), Jahrbuch der Max-Planck Gesellschaft (pp. 659-663). Göttingen: Vandenhoeck & Ruprecht.

    Abstract

    Effekte linguisticher Typologie auf die Sprach-entwicklung. In G. Plehn (Ed.), Jahrbuch der Max-Planck Gesellsch
  • Neijt, A., Schreuder, R., & Baayen, R. H. (2004). Seven years later: The effect of spelling on interpretation. In L. Cornips, & J. Doetjes (Eds.), Linguistics in the Netherlands 2004 (pp. 134-145). Amsterdam: Benjamins.
  • Neijt, A., Schreuder, R., & Baayen, R. H. (2003). Verpleegsters, ambassadrices, and masseuses: Stratum differences in the comprehension of Dutch words with feminine agent suffixes. In L. Cornips, & P. Fikkert (Eds.), Linguistics in the Netherlands 2003. (pp. 117-127). Amsterdam: Benjamins.
  • Noordman, L. G., & Vonk, W. (1998). Discourse comprehension. In A. D. Friederici (Ed.), Language comprehension: a biological perspective (pp. 229-262). Berlin: Springer.

    Abstract

    The human language processor is conceived as a system that consists of several interrelated subsystems. Each subsystem performs a specific task in the complex process of language comprehension and production. A subsystem receives a particular input, performs certain specific operations on this input and yields a particular output. The subsystems can be characterized in terms of the transformations that relate the input representations to the output representations. An important issue in describing the language processing system is to identify the subsystems and to specify the relations between the subsystems. These relations can be conceived in two different ways. In one conception the subsystems are autonomous. They are related to each other only by the input-output channels. The operations in one subsystem are not affected by another system. The subsystems are modular, that is they are independent. In the other conception, the different subsystems influence each other. A subsystem affects the processes in another subsystem. In this conception there is an interaction between the subsystems.
  • O'Connor, L. (2004). Going getting tired: Associated motion through space and time in Lowland Chontal. In M. Achard, & S. Kemmer (Eds.), Language, culture and mind (pp. 181-199). Stanford: CSLI.
  • O'Meara, C., Speed, L. J., San Roque, L., & Majid, A. (2019). Perception Metaphors: A view from diversity. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. 1-16). Amsterdam: Benjamins.

    Abstract

    Our bodily experiences play an important role in the way that we think and speak. Abstract language is, however, difficult to reconcile with this body-centred view, unless we appreciate the role metaphors play. To explore the role of the senses across semantic domains, we focus on perception metaphors, and examine their realisation across diverse languages, methods, and approaches. To what extent do mappings in perception metaphor adhere to predictions based on our biological propensities; and to what extent is there space for cross-linguistic and cross-cultural variation? We find that while some metaphors have widespread commonality, there is more diversity attested than should be comfortable for universalist accounts.
  • Otake, T., & Cutler, A. (2003). Evidence against "units of perception". In S. Shohov (Ed.), Advances in psychology research (pp. 57-82). Hauppauge, NY: Nova Science.
  • Ozyurek, A. (2000). Differences in spatial conceptualization in Turkish and English discourse: Evidence from both speech and gesture. In A. Goksel, & C. Kerslake (Eds.), Studies on Turkish and Turkic languages (pp. 263-272). Wiesbaden: Harrassowitz.
  • Ozyurek, A., & Woll, B. (2019). Language in the visual modality: Cospeech gesture and sign language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 67-83). Cambridge, MA: MIT Press.
  • Ozyurek, A. (2000). The influence of addressee location on spatial language and representational gestures of direction. In D. McNeill (Ed.), Language and gesture (pp. 64-83). Cambridge: Cambridge University Press.
  • Piai, V., & Zheng, X. (2019). Speaking waves: Neuronal oscillations in language production. In K. D. Federmeier (Ed.), Psychology of Learning and Motivation (pp. 265-302). Elsevier.

    Abstract

    Language production involves the retrieval of information from memory, the planning of an articulatory program, and executive control and self-monitoring. These processes can be related to the domains of long-term memory, motor control, and executive control. Here, we argue that studying neuronal oscillations provides an important opportunity to understand how general neuronal computational principles support language production, also helping elucidate relationships between language and other domains of cognition. For each relevant domain, we provide a brief review of the findings in the literature with respect to neuronal oscillations. Then, we show how similar patterns are found in the domain of language production, both through review of previous literature and novel findings. We conclude that neurophysiological mechanisms, as reflected in modulations of neuronal oscillations, may act as a fundamental basis for bringing together and enriching the fields of language and cognition.
  • Poletiek, F. H., & Stolker, C. J. J. M. (2004). Who decides the worth of an arm and a leg? Assessing the monetary value of nonmonetary damage. In E. Kurz-Milcke, & G. Gigerenzer (Eds.), Experts in science and society (pp. 201-213). New York: Kluwer Academic/Plenum Publishers.
  • Randall, J., Van Hout, A., Weissenborn, J., & Baayen, R. H. (2004). Acquiring unaccusativity: A cross-linguistic look. In A. Alexiadou (Ed.), The unaccusativity puzzle (pp. 332-353). Oxford: Oxford University Press.
  • Ravignani, A., Chiandetti, C., & Kotz, S. (2019). Rhythm and music in animal signals. In J. Choe (Ed.), Encyclopedia of Animal Behavior (vol. 1) (2nd ed., pp. 615-622). Amsterdam: Elsevier.
  • Reesink, G. (2004). Interclausal relations. In G. Booij (Ed.), Morphologie / morphology (pp. 1202-1207). Berlin: Mouton de Gruyter.
  • Roelofs, A. (2004). The seduced speaker: Modeling of cognitive control. In A. Belz, R. Evans, & P. Piwek (Eds.), Natural language generation. (pp. 1-10). Berlin: Springer.

    Abstract

    Although humans are the ultimate “natural language generators”, the area of psycholinguistic modeling has been somewhat underrepresented in recent approaches to Natural Language Generation in computer science. To draw attention to the area and illustrate its potential relevance to Natural Language Generation, I provide an overview of recent work on psycholinguistic modeling of language production together with some key empirical findings, state-of-the-art experimental techniques, and their historical roots. The techniques include analyses of speech-error corpora, chronometric analyses, eyetracking, and neuroimaging.
    The overview is built around the issue of cognitive control in natural language generation, concentrating on the production of single words, which is an essential ingredient of the generation of larger utterances. Most of the work exploited the fact that human speakers are good but not perfect at resisting temptation, which has provided some critical clues about the nature of the underlying system.
  • Roelofs, A. (2003). Modeling the relation between the production and recognition of spoken word forms. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 115-158). Berlin: Mouton de Gruyter.
  • Roelofs, A., & Schiller, N. (2004). Produzieren von Ein- und Mehrwortäusserungen. In G. Plehn (Ed.), Jahrbuch der Max-Planck Gesellschaft (pp. 655-658). Göttingen: Vandenhoeck & Ruprecht.
  • Rojas-Berscia, L. M. (2019). Nominalization in Shawi/Chayahuita. In R. Zariquiey, M. Shibatani, & D. W. Fleck (Eds.), Nominalization in languages of the Americas (pp. 491-514). Amsterdam: Benjamins.

    Abstract

    This paper deals with the Shawi nominalizing suffixes -su’~-ru’~-nu’ ‘general nominalizer’, -napi/-te’/-tun‘performer/agent nominalizer’, -pi’‘patient nominalizer’, and -nan ‘instrument nominalizer’. The goal of this article is to provide a description of nominalization in Shawi. Throughout this paper I apply the Generalized Scale Model (GSM) (Malchukov, 2006) to Shawi verbal nominalizations, with the intention of presenting a formal representation that will provide a basis for future areal and typological studies of nominalization. In addition, I dialogue with Shibatani’s model to see how the loss or gain of categories correlates with the lexical or grammatical nature of nominalizations. strong nominalization in Shawi correlates with lexical nominalization, whereas weak nominalizations correlate with grammatical nominalization. A typology which takes into account the productivity of the nominalizers is also discussed.
  • Rossi, G. (2021). Conversation analysis (CA). In J. Stanlaw (Ed.), The International Encyclopedia of Linguistic Anthropology. Wiley-Blackwell. doi:10.1002/9781118786093.iela0080.

    Abstract

    Conversation analysis (CA) is an approach to the study of language and social interaction that puts at center stage its sequential development. The chain of initiating and responding actions that characterizes any interaction is a source of internal evidence for the meaning of social behavior as it exposes the understandings that participants themselves give of what one another is doing. Such an analysis requires the close and repeated inspection of audio and video recordings of naturally occurring interaction, supported by transcripts and other forms of annotation. Distributional regularities are complemented by a demonstration of participants' orientation to deviant behavior. CA has long maintained a constructive dialogue and reciprocal influence with linguistic anthropology. This includes a recent convergence on the cross-linguistic and cross-cultural study of social interaction.
  • Rowland, C. F., & Kidd, E. (2019). Key issues and future directions: How do children acquire language? In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 181-185). Cambridge, MA: MIT Press.
  • Rubio-Fernández, P. (2019). Theory of mind. In C. Cummins, & N. Katsos (Eds.), The Handbook of Experimental Semantics and Pragmatics (pp. 524-536). Oxford: Oxford University Press.
  • De Ruiter, J. P. (2003). The function of hand gesture in spoken conversation. In M. Bickenbach, A. Klappert, & H. Pompe (Eds.), Manus Loquens: Medium der Geste, Gesten der Medien (pp. 338-347). Cologne: DuMont.
  • De Ruiter, J. P. (2003). A quantitative model of Störung. In A. Kümmel, & E. Schüttpelz (Eds.), Signale der Störung (pp. 67-81). München: Wilhelm Fink Verlag.
  • De Ruiter, J. P. (2004). Response systems and signals of recipiency. In A. Majid (Ed.), Field Manual Volume 9 (pp. 53-55). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.506961.

    Abstract

    Listeners’ signals of recipiency, such as “Mm-hm” or “uh-huh” in English, are the most elementary or minimal “conversational turns” possible. Minimal, because apart from acknowledging recipiency and inviting the speaker to continue with his/her next turn, they do not add any new information to the discourse of the conversation. The goal of this project is to gather cross cultural information on listeners’ feedback behaviour during conversation. Listeners in a conversation usually provide short signals that indicate to the speaker that they are still “with the speaker”. These signals could be verbal (like for instance “mm hm” in English or “hm hm” in Dutch) or nonverbal (visual), like nodding. Often, these signals are produced in overlap with the speaker’s vocalisation. If listeners do not produce these signals, speakers often invite them explicitly (e.g. “are you still there?” in a telephone conversation). Our goal is to investigate what kind of signals are used by listeners of different languages to signal “recipiency” to the speaker.
  • Sandberg, A., Lansner, A., Petersson, K. M., & Ekeberg, Ö. (2000). A palimpsest memory based on an incremental Bayesian learning rule. In J. M. Bower (Ed.), Computational Neuroscience: Trends in Research 2000 (pp. 987-994). Amsterdam: Elsevier.
  • Schiller, N. O., & Meyer, A. S. (2003). Introduction to the relation between speech comprehension and production. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 1-8). Berlin: Mouton de Gruyter.
  • Schmiedtová, B. (2003). The use of aspect in Czech L2. In D. Bittner, & N. Gagarina (Eds.), ZAS Papers in Linguistics (pp. 177-194). Berlin: Zentrum für Allgemeine Sprachwissenschaft.
  • Schmiedtová, B. (2003). Aspekt und Tempus im Deutschen und Tschechischen: Eine vergleichende Studie. In S. Höhne (Ed.), Germanistisches Jahrbuch Tschechien - Slowakei: Schwerpunkt Sprachwissenschaft (pp. 185-216). Praha: Lidové noviny.
  • Schmitt, B. M., Schiller, N. O., Rodriguez-Fornells, A., & Münte, T. F. (2004). Elektrophysiologische Studien zum Zeitverlauf von Sprachprozessen. In H. H. Müller, & G. Rickheit (Eds.), Neurokognition der Sprache (pp. 51-70). Tübingen: Stauffenburg.
  • Schreuder, R., Burani, C., & Baayen, R. H. (2003). Parsing and semantic opacity. In E. M. Assink, & D. Sandra (Eds.), Reading complex words (pp. 159-189). Dordrecht: Kluwer.
  • Seifart, F. (2003). Encoding shape: Formal means and semantic distinctions. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 57-59). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877660.

    Abstract

    The basic idea behind this task is to find out how languages encode basic shape distinctions such as dimensionality, axial geometry, relative size, etc. More specifically, we want to find out (i) which formal means are used cross linguistically to encode basic shape distinctions, and (ii) which are the semantic distinctions that are made in this domain. In languages with many shape-classifiers, these distinctions are encoded (at least partially) in classifiers. In other languages, positional verbs, descriptive modifiers, such as “flat”, “round”, or nouns such as “cube”, “ball”, etc. might be the preferred means. In this context, we also want to investigate what other “grammatical work” shapeencoding expressions possibly do in a given language, e.g. unitization of mass nouns, or anaphoric uses of shape-encoding classifiers, etc. This task further seeks to determine the role of shape-related parameters which underlie the design of objects in the semantics of the system under investigation.
  • Senft, G. (2004). Sprache, Kognition und Konzepte des Raumes in verschiedenen Kulturen - Zum Problem der Interdependenz sprachlicher und mentaler Strukturen. In L. Jäger (Ed.), Medialität und Mentalität (pp. 163-176). Paderborn: Wilhelm Fink.
  • Senft, G. (2004). What do we really know about serial verb constructions in Austronesian and Papuan languages? In I. Bril, & F. Ozanne-Rivierre (Eds.), Complex predicates in Oceanic languages (pp. 49-64). Berlin: Mouton de Gruyter.
  • Senft, G. (2003). Wosi Milamala: Weisen von Liebe und Tod auf den Trobriand Inseln. In I. Bobrowski (Ed.), Anabasis: Prace Ofiarowane Professor Krystynie Pisarkowej (pp. 289-295). Kraków: LEXIS.
  • Senft, G. (2003). Zur Bedeutung der Sprache für die Feldforschung. In B. Beer (Ed.), Methoden und Techniken der Feldforschung (pp. 55-70). Berlin: Reimer.
  • Senft, G. (2004). Wosi tauwau topaisewa - songs about migrant workers from the Trobriand Islands. In A. Graumann (Ed.), Towards a dynamic theory of language. Festschrift for Wolfgang Wildgen on occasion of his 60th birthday (pp. 229-241). Bochum: Universitätsverlag Dr. N. Brockmeyer.
  • Senft, G. (2021). A very special letter. In T. Szczerbowski (Ed.), Language "as round as an orange".. In memory of Professor Krystyna Pisarkowa on the 90th anniversary of her birth (pp. 367). Krakow: Uniwersytetu Pedagogicznj.
  • Senft, G. (1998). 'Noble Savages' and the 'Islands of Love': Trobriand Islanders in 'Popular Publications'. In J. Wassmann (Ed.), Pacific answers to Western hegemony: Cultural practices of identity construction (pp. 119-140). Oxford: Berg Publishers.
  • Senft, G. (2003). Ethnographic Methods. In W. Deutsch, T. Hermann, & G. Rickheit (Eds.), Psycholinguistik - Ein internationales Handbuch [Psycholinguistics - An International Handbook] (pp. 106-114). Berlin: Walter de Gruyter.
  • Senft, G. (2003). Ethnolinguistik. In B. Beer, & H. Fischer (Eds.), Ethnologie: Einführung und Überblick. 5. Aufl., Neufassung (pp. 255-270). Berlin: Reimer.
  • Senft, G. (2004). Aspects of spatial deixis in Kilivila. In G. Senft (Ed.), Deixis and demonstratives in Oceanic languages (pp. 59-80). Canberra: Pacific Linguistics.
  • Senft, G. (2004). Introduction. In G. Senft (Ed.), Deixis and demonstratives in Oceanic languages (pp. 1-13). Canberra: Pacific Linguistics.
  • Senft, G. (2000). Introduction. In G. Senft (Ed.), Systems of nominal classification (pp. 1-10). Cambridge University Press.
  • Senft, G. (2004). Participation and posture. In A. Majid (Ed.), Field Manual Volume 9 (pp. 80-82). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.506964.

    Abstract

    Human ethologists have shown that humans are both attracted to others and at the same time fear them. They refer to this kind of fear with the technical term ‘social fear’ and claim that “it is alleviated with personal acquaintance but remains a principle characteristic of interpersonal behaviour. As a result, we maintain various degrees of greater distance between ourselves and others depending on the amount of confidence we have in the other” (Eibl-Eibesfeldt 1989: 335). The goal of this task is to conduct exploratory, heuristic research to establish a new subproject that – based on a corpus of video data – will investigate various forms of human spatial behaviour cross-culturally.
  • Senft, G. (2003). Reasoning in language. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 28-30). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877663.

    Abstract

    This project aims to investigate how speakers of various languages in indigenous cultures verbally reason about moral issues. The ways in which a solution for a moral problem is found, phrased and justified will be taken as the basis for researching reasoning processes that manifest themselves verbally in the speakers’ arguments put forward to solve a number of moral problems which will be presented to them in the form of unfinished story plots or scenarios that ask for a solution. The plots chosen attempt to present common problems in human society and human behaviour. They should function to elicit moral discussion and/or moral arguments in groups of consultants of at least three persons.
  • Senft, G. (2019). Rituelle Kommunikation. In F. Liedtke, & A. Tuchen (Eds.), Handbuch Pragmatik (pp. 423-430). Stuttgart: J. B. Metzler. doi:10.1007/978-3-476-04624-6_41.

    Abstract

    Die Sprachwissenschaft hat den Begriff und das Konzept ›Rituelle Kommunikation‹ von der vergleichenden Verhaltensforschung übernommen. Humanethologen unterscheiden eine Reihe von sogenannten ›Ausdrucksbewegungen‹, die in der Mimik, der Gestik, der Personaldistanz (Proxemik) und der Körperhaltung (Kinesik) zum Ausdruck kommen. Viele dieser Ausdrucksbewegungen haben sich zu spezifischen Signalen entwickelt. Ethologen definieren Ritualisierung als Veränderung von Verhaltensweisen im Dienst der Signalbildung. Die zu Signalen ritualisierten Verhaltensweisen sind Rituale. Im Prinzip kann jede Verhaltensweise zu einem Signal werden, entweder im Laufe der Evolution oder durch Konventionen, die in einer bestimmten Gemeinschaft gültig sind, die solche Signale kulturell entwickelt hat und die von ihren Mitgliedern tradiert und gelernt werden.
  • Senft, G. (2000). What do we really know about nominal classification systems? In Conference handbook. The 18th national conference of the English Linguistic Society of Japan. 18-19 November, 2000, Konan University (pp. 225-230). Kobe: English Linguistic Society of Japan.
  • Senft, G. (2000). What do we really know about nominal classification systems? In G. Senft (Ed.), Systems of nominal classification (pp. 11-49). Cambridge University Press.
  • Senft, G. (1998). Zeichenkonzeptionen in Ozeanien. In R. Posner, T. Robering, & T.. Sebeok (Eds.), Semiotics: A handbook on the sign-theoretic foundations of nature and culture (Vol. 2) (pp. 1971-1976). Berlin: de Gruyter.
  • Senghas, A., Ozyurek, A., & Kita, S. (2003). Encoding motion events in an emerging sign language: From Nicaraguan gestures to Nicaraguan signs. In A. E. Baker, B. van den Bogaerde, & O. A. Crasborn (Eds.), Crosslinguistic perspectives in sign language research (pp. 119-130). Hamburg: Signum Press.
  • Seuren, P. A. M. (2003). Verb clusters and branching directionality in German and Dutch. In P. A. M. Seuren, & G. Kempen (Eds.), Verb Constructions in German and Dutch (pp. 247-296). Amsterdam: John Benjamins.
  • Seuren, P. A. M. (1983). Auxiliary system in Sranan. In F. Heny, & B. Richards (Eds.), Linguistic categories: Auxiliaries and related puzzles / Vol. two, The scope, order, and distribution of English auxiliary verbs (pp. 219-251). Dordrecht: Reidel.
  • Seuren, P. A. M. (2000). A discourse-semantic account of topic and comment. In N. Nicolov, & R. Mitkov (Eds.), Recent advances in natural language processing II. Selected papers from RANLP '97 (pp. 179-190). Amsterdam: Benjamins.
  • Seuren, P. A. M. (2004). How the cognitive revolution passed linguistics by. In F. Brisard (Ed.), Language and revolution: Language and time. (pp. 63-77). Antwerpen: Universiteit van Antwerpen.
  • Seuren, P. A. M. (2003). Logic, language and thought. In H. J. Ribeiro (Ed.), Encontro nacional de filosofia analítica. (pp. 259-276). Coimbra, Portugal: Faculdade de Letras.
  • Seuren, P. A. M. (2000). Pseudocomplementen. In H. Den Besten, E. Elffers, & J. Luif (Eds.), Samengevoegde woorden. Voor Wim Klooster bij zijn afscheid als hoogleraar (pp. 231-237). Amsterdam: Leerstoelgroep Nederlandse Taalkunde, Universiteit van Amsterdam.
  • Seuren, P. A. M. (1973). The comparative. In F. Kiefer, & N. Ruwet (Eds.), Generative grammar in Europe (pp. 528-564). Reidel: Dordrecht.

    Abstract

    No idea is older in the history of linguistics than the thought that there is, somehow hidden underneath the surface of sentences, a form or a structure which provides a semantic analysis and lays bare their logical structure. In Plato’s Cratylus the theory was proposed, deriving from Heraclitus’ theory of explanatory underlying structure in physical nature, that words contain within themselves bits of syntactic structure giving their meanings. The Stoics held the same view and maintained moreover that every sentence has an underlying logical structure, which for them was the Aristotelian subject- predicate form. They even proposed transformational processes to derive the surface from the deep structure. The idea of a semantically analytic logical form underlying the sentences of every language kept reappearing in various guises at various times. Quite recently it re-emerged under the name of generative semantics.
  • Seuren, P. A. M. (1973). The new approach to the study of language. In B. Douglas (Ed.), Linguistics and the mind (pp. 11-20). Sydney: Sydney University Extension Board.
  • Seuren, P. A. M. (1998). Towards a discourse-semantic account of donkey anaphora. In S. Botley, & T. McEnery (Eds.), New Approaches to Discourse Anaphora: Proceedings of the Second Colloquium on Discourse Anaphora and Anaphor Resolution (DAARC2) (pp. 212-220). Lancaster: Universiy Centre for Computer Corpus Research on Language, Lancaster University.
  • Sjerps, M. J., & Chang, E. F. (2019). The cortical processing of speech sounds in the temporal lobe. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 361-379). Cambridge, MA: MIT Press.
  • Skiba, R. (2004). Revitalisierung bedrohter Sprachen - Ein Ernstfall für die Sprachdidaktik. In H. W. Hess (Ed.), Didaktische Reflexionen "Berliner Didaktik" und Deutsch als Fremdsprache heute (pp. 251-262). Berlin: Staufenburg.
  • Skiba, R. (2003). Computer Analysis: Corpus based language research. In U. Amon, N. Dittmar, K. Mattheier, & P. Trudgil (Eds.), Handbook ''Sociolinguistics'' (2nd ed.) (pp. 1250-1260). Berlin: de Gruyter.
  • De Smedt, K., & Kempen, G. (1987). Incremental sentence production, self-correction, and coordination. In G. Kempen (Ed.), Natural language generation: New results in artificial intelligence, psychology and linguistics (pp. 365-376). Dordrecht: Nijhoff.
  • Stivers, T. (2004). Question sequences in interaction. In A. Majid (Ed.), Field Manual Volume 9 (pp. 45-47). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.506967.

    Abstract

    When people request information, they have a variety of means for eliciting the information. In English two of the primary resources for eliciting information include asking questions, making statements about their interlocutor (thereby generating confirmation or revision). But within these types there are a variety of ways that these information elicitors can be designed. The goal of this task is to examine how different languages seek and provide information, the extent to which syntax vs prosodic resources are used (e.g., in questions), and the extent to which the design of information seeking actions and their responses display a structural preference to promote social solidarity.
  • Stolker, C. J. J. M., & Poletiek, F. H. (1998). Smartengeld - Wat zijn we eigenlijk aan het doen? Naar een juridische en psychologische evaluatie. In F. Stadermann (Ed.), Bewijs en letselschade (pp. 71-86). Lelystad, The Netherlands: Koninklijke Vermande.
  • Suppes, P., Böttner, M., & Liang, L. (1998). Machine Learning of Physics Word Problems: A Preliminary Report. In A. Aliseda, R. van Glabbeek, & D. Westerståhl (Eds.), Computing Natural Language (pp. 141-154). Stanford, CA, USA: CSLI Publications.
  • Terrill, A. (2004). Coordination in Lavukaleve. In M. Haspelmath (Ed.), Coordinating Constructions. (pp. 427-443). Amsterdam: John Benjamins.
  • Thomaz, A. L., Lieven, E., Cakmak, M., Chai, J. Y., Garrod, S., Gray, W. D., Levinson, S. C., Paiva, A., & Russwinkel, N. (2019). Interaction for task instruction and learning. In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 91-110). Cambridge, MA: MIT Press.
  • Trujillo, J. P., Levinson, S. C., & Holler, J. (2021). Visual information in computer-mediated interaction matters: Investigating the association between the availability of gesture and turn transition timing in conversation. In M. Kurosu (Ed.), Human-Computer Interaction. Design and User Experience Case Studies. HCII 2021 (pp. 643-657). Cham: Springer. doi:10.1007/978-3-030-78468-3_44.

    Abstract

    Natural human interaction involves the fast-paced exchange of speaker turns. Crucially, if a next speaker waited with planning their turn until the current speaker was finished, language production models would predict much longer turn transition times than what we observe. Next speakers must therefore prepare their turn in parallel to listening. Visual signals likely play a role in this process, for example by helping the next speaker to process the ongoing utterance and thus prepare an appropriately-timed response.

    To understand how visual signals contribute to the timing of turn-taking, and to move beyond the mostly qualitative studies of gesture in conversation, we examined unconstrained, computer-mediated conversations between 20 pairs of participants while systematically manipulating speaker visibility. Using motion tracking and manual gesture annotation, we assessed 1) how visibility affected the timing of turn transitions, and 2) whether use of co-speech gestures and 3) the communicative kinematic features of these gestures were associated with changes in turn transition timing.

    We found that 1) decreased visibility was associated with less tightly timed turn transitions, and 2) the presence of gestures was associated with more tightly timed turn transitions across visibility conditions. Finally, 3) structural and salient kinematics contributed to gesture’s facilitatory effect on turn transition times.

    Our findings suggest that speaker visibility--and especially the presence and kinematic form of gestures--during conversation contributes to the temporal coordination of conversational turns in computer-mediated settings. Furthermore, our study demonstrates that it is possible to use naturalistic conversation and still obtain controlled results.
  • Van Turennout, M., Schmitt, B., & Hagoort, P. (2003). When words come to mind: Electrophysiological insights on the time course of speaking and understanding words. In N. O. Schiller, & A. S. Meyer (Eds.), Phonetics and phonology in language comprehension and production: Differences and similarities (pp. 241-278). Berlin: Mouton de Gruyter.
  • van Staden, M., & Majid, A. (2003). Body colouring task 2003. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 66-68). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.877666.

    Abstract

    This Field Manual entry has been superceded by the published version: Van Staden, M., & Majid, A. (2006). Body colouring task. Language Sciences, 28(2-3), 158-161. doi:10.1016/j.langsci.2005.11.004.

    Additional information

    2003_body_model_large.pdf

    Files private

    Request files
  • Van Berkum, J. J. A., & Nieuwland, M. S. (2019). A cognitive neuroscience perspective on language comprehension in context. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 429-442). Cambridge, MA: MIT Press.
  • Van Wijk, C., & Kempen, G. (1985). From sentence structure to intonation contour: An algorithm for computing pitch contours on the basis of sentence accents and syntactic structure. In B. Müller (Ed.), Sprachsynthese: Zur Synthese von natürlich gesprochener Sprache aus Texten und Konzepten (pp. 157-182). Hildesheim: Georg Olms.
  • Van Valin Jr., R. D. (2003). Minimalism and explanation. In J. Moore, & M. Polinsky (Eds.), The nature of explanation in linguistic theory (pp. 281-297). University of Chicago Press.
  • Van Geenhoven, V. (1998). On the Argument Structure of some Noun Incorporating Verbs in West Greenlandic. In M. Butt, & W. Geuder (Eds.), The Projection of Arguments - Lexical and Compositional Factors (pp. 225-263). Stanford, CA, USA: CSLI Publications.
  • Van Valin Jr., R. D. (1998). The acquisition of WH-questions and the mechanisms of language acquisition. In M. Tomasello (Ed.), The new psychology of language: Cognitive and functional approaches to language structure (pp. 221-249). Mahwah, New Jersey: Erlbaum.
  • Van Berkum, J. J. A. (2004). Sentence comprehension in a wider discourse: Can we use ERPs to keep track of things? In M. Carreiras, Jr., & C. Clifton (Eds.), The on-line study of sentence comprehension: eyetracking, ERPs and beyond (pp. 229-270). New York: Psychology Press.
  • Vernes, S. C., Janik, V. M., Fitch, W. T., & Slater, P. J. B. (Eds.). (2021). Vocal learning in animals and humans [Special Issue]. Philosophical Transactions of the Royal Society of London, Series B: Biological Sciences, 376.
  • Vernes, S. C. (2019). Neuromolecular approaches to the study of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 577-593). Cambridge, MA: MIT Press.
  • Von Stutterheim, C., Carroll, M., & Klein, W. (2003). Two ways of construing complex temporal structures. In F. Lenz (Ed.), Deictic conceptualization of space, time and person (pp. 97-133). Amsterdam: Benjamins.
  • Von Stutterheim, C., & Klein, W. (2004). Die Gesetze des Geistes sind metrisch: Hölderlin und die Sprachproduktion. In H. Schwarz (Ed.), Fenster zur Welt: Deutsch als Fremdsprachenphilologie (pp. 439-460). München: Iudicium.
  • Vonk, W., & Cozijn, R. (2003). On the treatment of saccades and regressions in eye movement measures of reading time. In J. Hyönä, R. Radach, & H. Deubel (Eds.), The mind's eye: Cognitive and applied aspects of eye movement research (pp. 291-312). Amsterdam: Elsevier.
  • Warner, N. (2003). Rapid perceptibility as a factor underlying universals of vowel inventories. In A. Carnie, H. Harley, & M. Willie (Eds.), Formal approaches to function in grammar, in honor of Eloise Jelinek (pp. 245-261). Amsterdam: Benjamins.
  • Wender, K. F., Haun, D. B. M., Rasch, B. H., & Blümke, M. (2003). Context effects in memory for routes. In C. Freksa, W. Brauer, C. Habel, & K. F. Wender (Eds.), Spatial cognition III: Routes and navigation, human memory and learning, spatial representation and spatial learning (pp. 209-231). Berlin: Springer.
  • Zavala, R. (2000). Multiple classifier systems in Akatek (Mayan). In G. Senft (Ed.), Systems of nominal classification (pp. 114-146). Cambridge University Press.
  • Zhang, Y., Chen, C.-h., & Yu, C. (2019). Mechanisms of cross-situational learning: Behavioral and computational evidence. In Advances in Child Development and Behavior; vol. 56 (pp. 37-63).

    Abstract

    Word learning happens in everyday contexts with many words and many potential referents for those words in view at the same time. It is challenging for young learners to find the correct referent upon hearing an unknown word at the moment. This problem of referential uncertainty has been deemed as the crux of early word learning (Quine, 1960). Recent empirical and computational studies have found support for a statistical solution to the problem termed cross-situational learning. Cross-situational learning allows learners to acquire word meanings across multiple exposures, despite each individual exposure is referentially uncertain. Recent empirical research shows that infants, children and adults rely on cross-situational learning to learn new words (Smith & Yu, 2008; Suanda, Mugwanya, & Namy, 2014; Yu & Smith, 2007). However, researchers have found evidence supporting two very different theoretical accounts of learning mechanisms: Hypothesis Testing (Gleitman, Cassidy, Nappa, Papafragou, & Trueswell, 2005; Markman, 1992) and Associative Learning (Frank, Goodman, & Tenenbaum, 2009; Yu & Smith, 2007). Hypothesis Testing is generally characterized as a form of learning in which a coherent hypothesis regarding a specific word-object mapping is formed often in conceptually constrained ways. The hypothesis will then be either accepted or rejected with additional evidence. However, proponents of the Associative Learning framework often characterize learning as aggregating information over time through implicit associative mechanisms. A learner acquires the meaning of a word when the association between the word and the referent becomes relatively strong. In this chapter, we consider these two psychological theories in the context of cross-situational word-referent learning. By reviewing recent empirical and cognitive modeling studies, our goal is to deepen our understanding of the underlying word learning mechanisms by examining and comparing the two theoretical learning accounts.
  • Zuidema, W., & Fitz, H. (2019). Key issues and future directions: Models of human language and speech processing. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 353-358). Cambridge, MA: MIT Press.
  • Zwitserlood, I. (2003). Word formation below and above little x: Evidence from Sign Language of the Netherlands. In Proceedings of SCL 19. Nordlyd Tromsø University Working Papers on Language and Linguistics (pp. 488-502).

    Abstract

    Although in many respects sign languages have a similar structure to that of spoken languages, the different modalities in which both types of languages are expressed cause differences in structure as well. One of the most striking differences between spoken and sign languages is the influence of the interface between grammar and PF on the surface form of utterances. Spoken language words and phrases are in general characterized by sequential strings of sounds, morphemes and words, while in sign languages we find that many phonemes, morphemes, and even words are expressed simultaneously. A linguistic model should be able to account for the structures that occur in both spoken and sign languages. In this paper, I will discuss the morphological/ morphosyntactic structure of signs in Nederlandse Gebarentaal (Sign Language of the Netherlands, henceforth NGT), with special focus on the components ‘place of articulation’ and ‘handshape’. I will focus on their multiple functions in the grammar of NGT and argue that the framework of Distributed Morphology (DM), which accounts for word formation in spoken languages, is also suited to account for the formation of structures in sign languages. First I will introduce the phonological and morphological structure of NGT signs. Then, I will briefly outline the major characteristics of the DM framework. Finally, I will account for signs that have the same surface form but have a different morphological structure by means of that framework.

Share this page