Publications

Displaying 201 - 300 of 422
  • Klein, W. (2010). Typen und Konzepte des Spracherwerbs. In H. Ludger (Ed.), Sprachwissenschaft, ein Reader (pp. 902-924). Berlin: De Gruyter Studium.
  • Klein, W. (2010). Über die zwänglerische Befolgung sprachlicher Normen. In P. Eisenberg (Ed.), Der Jugend zuliebe: Literarische Texte, für die Schule verändert (pp. 77-87). Göttingen: Wallstein.
  • Klein, W., & Dimroth, C. (2009). Untutored second language acquisition. In W. C. Ritchie, & T. K. Bhatia (Eds.), The new handbook of second language acquisition (2nd rev. ed., pp. 503-522). Bingley: Emerald.
  • Klein, W. (2013). Von Reichtum und Armut des deutschen Wortschatzes. In Deutsche Akademie für Sprache und Dichtung, & Union der deutschen Akademien der Wissenschaften (Eds.), Reichtum und Armut der deutschen Sprache (pp. 15-55). Boston: de Gruyter.
  • Kopecka, A. (2006). The semantic structure of motion verbs in French: Typological perspectives. In M. Hickmann, & Roberts S. (Eds.), Space in languages: Linguistic systems and cognitive categories (pp. 83-102). Amsterdam: Benjamins.
  • Kopecka, A. (2009). Continuity and change in the representation of motion events in French. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Özçaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 415-426). New York: Psychology Press.
  • Kristoffersen, J. H., Troelsgard, T., & Zwitserlood, I. (2013). Issues in sign language lexicography. In H. Jackson (Ed.), The Bloomsbury companion to lexicography (pp. 259-283). London: Bloomsbury.
  • Kuijpers, C. T., Coolen, R., Houston, D., & Cutler, A. (1998). Using the head-turning technique to explore cross-linguistic performance differences. In C. Rovee-Collier, L. Lipsitt, & H. Hayne (Eds.), Advances in infancy research: Vol. 12 (pp. 205-220). Stamford: Ablex.
  • Kuzla, C., Ernestus, M., & Mitterer, H. (2010). Compensation for assimilatory devoicing and prosodic structure in German fricative perception. In C. Fougeron, B. Kühnert, M. D'Imperio, & N. Vallée (Eds.), Laboratory Phonology 10 (pp. 731-757). Berlin: De Gruyter.
  • Ladd, D. R., & Dediu, D. (2013). Genes and linguistic tone. In H. Pashler (Ed.), Encyclopedia of the mind (pp. 372-373). London: Sage Publications.

    Abstract

    It is usually assumed that the language spoken by a human community is independent of the community's genetic makeup, an assumption supported by an overwhelming amount of evidence. However, the possibility that language is influenced by its speakers' genes cannot be ruled out a priori, and a recently discovered correlation between the geographic distribution of tone languages and two human genes seems to point to a genetically influenced bias affecting language. This entry describes this specific correlation and highlights its major implications. Voice pitch has a variety of communicative functions. Some of these are probably universal, such as conveying information about the speaker's sex, age, and emotional state. In many languages, including the European languages, voice pitch also conveys certain sentence-level meanings such as signaling that an utterance is a question or an exclamation; these uses of pitch are known as intonation. Some languages, however, known as tone languages, nian ...
  • Lai, V. T., & Frajzyngier, Z. (2009). Change of functions of the first person pronouns in Chinese. In M. Dufresne, M. Dupuis, & E. Vocaj (Eds.), Historical Linguistics 2007: Selected papers from the 18th International Conference on Historical Linguistics Montreal, 6-11 August 2007 (pp. 223-232). Amsterdam: John Benjamins.

    Abstract

    Selected papers from the 18th International Conference on Historical Linguistics, Montreal, 6-11 August 2007
  • Lausberg, H., & Sloetjes, H. (2013). NEUROGES in combination with the annotation tool ELAN. In H. Lausberg (Ed.), Understanding body movement: A guide to empirical research on nonverbal behaviour with an introduction to the NEUROGES coding system (pp. 199-200). Frankfurt a/M: Lang.
  • Lev-Ari, S. (2019). The influence of social network properties on language processing and use. In M. S. Vitevitch (Ed.), Network Science in Cognitive Psychology (pp. 10-29). New York, NY: Routledge.

    Abstract

    Language is a social phenomenon. The author learns, processes, and uses it in social contexts. In other words, the social environment shapes the linguistic knowledge and use of the knowledge. To a degree, this is trivial. A child exposed to Japanese will become fluent in Japanese, whereas a child exposed to only Spanish will not understand Japanese but will master the sounds, vocabulary, and grammar of Spanish. Language is a structured system. Sounds and words do not occur randomly but are characterized by regularities. Learners are sensitive to these regularities and exploit them when learning language. People differ in the sizes of their social networks. Some people tend to interact with only a few people, whereas others might interact with a wide range of people. This is reflected in people’s holiday greeting habits: some people might send cards to only a few people, whereas other would send greeting cards to more than 350 people.
  • Levelt, W. J. M. (1989). De connectionistische mode: Symbolische en subsymbolische modellen van het menselijk gedrag. In C. M. Brown, P. Hagoort, & T. Meijering (Eds.), Vensters op de geest: Cognitie op het snijvlak van filosofie en psychologie (pp. 202-219). Utrecht: Stichting Grafiet.
  • Levelt, W. J. M. (1976). Formal grammars and the natural language user: A review. In A. Marzollo (Ed.), Topics in artificial intelligence (pp. 226-290). Vienna: Springer.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M. (2007). Levensbericht Detlev W. Ploog. In Levensberichten en herdenkingen 2007 (pp. 60-63). Amsterdam: Koninklijke Nederlandse Akademie van Wetenschappen.
  • Levelt, W. J. M., & Kempen, G. (1976). Taal. In J. Michon, E. Eijkman, & L. De Klerk (Eds.), Handboek der Psychonomie (pp. 492-523). Deventer: Van Loghum Slaterus.
  • Levelt, W. J. M. (1989). Working models of perception: Five general issues. In B. A. Elsendoorn, & H. Bouma (Eds.), Working models of perception (pp. 489-503). London: Academic Press.
  • Levinson, S. C. (2007). Optimizing person reference - perspectives from usage on Rossel Island. In N. Enfield, & T. Stivers (Eds.), Person reference in interaction: Linguistic, cultural, and social perspectives (pp. 29-72). Cambridge: Cambridge University Press.

    Abstract

    This chapter explicates the requirement in person–reference for balancing demands for recognition, minimalization, explicitness and indirection. This is illustrated with reference to data from repair of failures of person–reference within a particular linguistic/cultural context, namely casual interaction among Rossel Islanders. Rossel Island (PNG) offers a ‘natural experiment’ for studying aspects of person reference, because of a number of special properties: 1. It is a closed universe of 4000 souls, sharing one kinship network, so in principle anyone could be recognizable from a reference. As a result no (complex) descriptions (cf. ‘ the author of Waverly’) are employed. 2. Names, however, are never uniquely referring, since they are drawn from a fixed pool. They are only used for about 25% of initial references, another 25% of initial references being done by kinship triangulation (‘that man’s father–in–law’). Nearly 50% of initial references are semantically underspecified or vague (e.g. ‘that girl’). 3. There are systematic motivations for oblique reference, e.g. kinship–based taboos and other constraints, which partly account for the underspecified references. The ‘natural experiment’ thus reveals some gneral lessons about how person–reference requires optimizing multiple conflicting constraints. Comparison with Sacks and Schegloff’s (1979) treatment of English person reference suggests a way to tease apart the universal and the culturally–particular.
  • Levinson, S. C., & Wilkins, D. P. (2006). Patterns in the data: Towards a semantic typology of spatial description. In S. C. Levinson, & D. P. Wilkins (Eds.), Grammars of space: Explorations in cognitive diversity (pp. 512-552). Cambridge: Cambridge University Press.
  • Levinson, S. C., & Wilkins, D. P. (2006). The background to the study of the language of space. In S. C. Levinson, & D. P. Wilkins (Eds.), Grammars of space: Explorations in cognitive diversity (pp. 1-23). Cambridge: Cambridge University Press.
  • Levinson, S. C. (2006). The language of space in Yélî Dnye. In S. C. Levinson, & D. P. Wilkins (Eds.), Grammars of space: Explorations in cognitive diversity (pp. 157-203). Cambridge: Cambridge University Press.
  • Levinson, S. C. (2013). Action formation and ascription. In T. Stivers, & J. Sidnell (Eds.), The handbook of conversation analysis (pp. 103-130). Malden, MA: Wiley-Blackwell. doi:10.1002/9781118325001.ch6.

    Abstract

    Since the core matrix for language use is interaction, the main job of language
    is not to express propositions or abstract meanings, but to deliver actions.
    For in order to respond in interaction we have to ascribe to the prior turn
    a primary ‘action’ – variously thought of as an ‘illocution’, ‘speech act’, ‘move’,
    etc. – to which we then respond. The analysis of interaction also relies heavily
    on attributing actions to turns, so that, e.g., sequences can be characterized in
    terms of actions and responses. Yet the process of action ascription remains way
    understudied. We don’t know much about how it is done, when it is done, nor even
    what kind of inventory of possible actions might exist, or the degree to which they
    are culturally variable.
    The study of action ascription remains perhaps the primary unfulfilled task in
    the study of language use, and it needs to be tackled from conversationanalytic,
    psycholinguistic, cross-linguistic and anthropological perspectives.
    In this talk I try to take stock of what we know, and derive a set of goals for and
    constraints on an adequate theory. Such a theory is likely to employ, I will suggest,
    a top-down plus bottom-up account of action perception, and a multi-level notion
    of action which may resolve some of the puzzles that have repeatedly arisen.
  • Levinson, S. C. (1989). Conversation. In E. Barnouw (Ed.), International encyclopedia of communications (pp. 407-410). New York: Oxford University Press.
  • Levinson, S. C. (2013). Cross-cultural universals and communication structures. In M. A. Arbib (Ed.), Language, music, and the brain: A mysterious relationship (pp. 67-80). Cambridge, MA: MIT Press.

    Abstract

    Given the diversity of languages, it is unlikely that the human capacity for language resides in rich universal syntactic machinery. More likely, it resides centrally in the capacity for vocal learning combined with a distinctive ethology for communicative interaction, which together (no doubt with other capacities) make diverse languages learnable. This chapter focuses on face-to-face communication, which is characterized by the mapping of sounds and multimodal signals onto speech acts and which can be deeply recursively embedded in interaction structure, suggesting an interactive origin for complex syntax. These actions are recognized through Gricean intention recognition, which is a kind of “ mirroring” or simulation distinct from the classic mirror neuron system. The multimodality of conversational interaction makes evident the involvement of body, hand, and mouth, where the burden on these can be shifted, as in the use of speech and gesture, or hands and face in sign languages. Such shifts having taken place during the course of human evolution. All this suggests a slightly different approach to the mystery of music, whose origins should also be sought in joint action, albeit with a shift from turn-taking to simultaneous expression, and with an affective quality that may tap ancient sources residual in primate vocalization. The deep connection of language to music can best be seen in the only universal form of music, namely song.
  • Levinson, S. C. (1998). Deixis. In J. L. Mey (Ed.), Concise encyclopedia of pragmatics (pp. 200-204). Amsterdam: Elsevier.
  • Levinson, S. C., Senft, G., & Majid, A. (2007). Emotion categories in language and thought. In A. Majid (Ed.), Field Manual Volume 10 (pp. 46-52). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492892.
  • Levinson, S. C. (2009). Cognitive anthropology. In G. Senft, J. O. Östman, & J. Verschueren (Eds.), Culture and language use (pp. 50-57). Amsterdam: Benjamins.
  • Levinson, S. C. (2006). Introduction: The evolution of culture in a microcosm. In S. C. Levinson, & P. Jaisson (Eds.), Evolution and culture: A Fyssen Foundation Symposium (pp. 1-41). Cambridge: MIT Press.
  • Levinson, S. C. (2009). Foreword. In J. Liep (Ed.), A Papuan plutocracy: Ranked exchange on Rossel Island (pp. ix-xxiii). Copenhagen: Aarhus University Press.
  • Levinson, S. C. (2010). Generalized conversational implicature. In L. Cummings (Ed.), The pragmatics encyclopedia (pp. 201-203). London: Routledge.
  • Levinson, S. C. (1998). Minimization and conversational inference. In A. Kasher (Ed.), Pragmatics: Vol. 4 Presupposition, implicature and indirect speech acts (pp. 545-612). London: Routledge.
  • Levinson, S. C., & Toni, I. (2019). Key issues and future directions: Interactional foundations of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 257-261). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2009). Language and mind: Let's get the issues straight! In S. D. Blum (Ed.), Making sense of language: Readings in culture and communication (pp. 95-104). Oxford: Oxford University Press.
  • Levinson, S. C., Majid, A., & Enfield, N. J. (2007). Language of perception: The view from language and culture. In A. Majid (Ed.), Field Manual Volume 10 (pp. 10-21). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.468738.
  • Levinson, S. C. (2019). Interactional foundations of language: The interaction engine hypothesis. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 189-200). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2019). Natural forms of purposeful interaction among humans: What makes interaction effective? In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 111-126). Cambridge, MA: MIT Press.
  • Levinson, S. C., & Majid, A. (2009). Preface and priorities. In A. Majid (Ed.), Field manual volume 12 (pp. III). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C., & Majid, A. (2009). The role of language in mind. In S. Nolen-Hoeksema, B. Fredrickson, G. Loftus, & W. Wagenaar (Eds.), Atkinson and Hilgard's introduction to psychology (15th ed., pp. 352). London: Cengage learning.
  • Levinson, S. C., & Dediu, D. (2013). The interplay of genetic and cultural factors in ongoing language evolution. In P. J. Richerson, & M. H. Christiansen (Eds.), Cultural evolution: Society, technology, language, and religion. Strüngmann Forum Reports, vol. 12 (pp. 219-232). Cambridge, Mass: MIT Press.
  • Levinson, S. C., & Majid, A. (2007). The language of sound. In A. Majid (Ed.), Field Manual Volume 10 (pp. 29-31). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.468735.
  • Levinson, S. C., & Majid, A. (2007). The language of vision II: Shape. In A. Majid (Ed.), Field Manual Volume 10 (pp. 26-28). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.468732.
  • Lindström, E., Terrill, A., Reesink, G., & Dunn, M. (2007). The languages of Island Melanesia. In J. S. Friedlaender (Ed.), Genes, language, and culture history in the Southwest Pacific (pp. 118-140). Oxford: Oxford University Press.

    Abstract

    This chapter provides an overview of the Papuan and the Oceanic languages (a branch of Austronesian) in Northern Island Melanesia, as well as phenomena arising through contact between these groups. It shows how linguistics can contribute to the understanding of the history of languages and speakers, and what the findings of those methods have been. The location of the homeland of speakers of Proto-Oceanic is indicated (in northeast New Britain); many facets of the lives of those speakers are shown; and the patterns of their subsequent spread across Island Melanesia and beyond into Remote Oceania are indicated, followed by a second wave overlaying the first into New Guinea and as far as halfway through the Solomon Islands. Regarding the Papuan languages of this region, at least some are older than the 6,000-10,000 ceiling of the Comparative Method, and their relations are explored with the aid of a database of 125 non-lexical structural features. The results reflect archipelago-based clustering with the Central Solomons Papuan languages forming a clade either with the Bismarcks or with Bougainville languages. Papuan languages in Bougainville are less influenced by Oceanic languages than those in the Bismarcks and the Solomons. The chapter considers a variety of scenarios to account for their findings, concluding that the results are compatible with multiple pre-Oceanic waves of arrivals into the area after initial settlement.
  • Liszkowski, U. (2010). Before L1: A differentiated perspective on infant gestures. In M. Gullberg, & K. De Bot (Eds.), Gestures in language development (pp. 35-51). Amsterdam: Benjamins.
  • Liszkowski, U. (2007). Human twelve-month-olds point cooperatively to share interest with and helpfully provide information for a communicative partner. In K. Liebal, C. Müller, & S. Pika (Eds.), Gestural communication in nonhuman and human primates (pp. 124-140). Amsterdam: Benjamins.

    Abstract

    This paper investigates infant pointing at 12 months. Three recent experimental studies from our lab are reported and contrasted with existing accounts on infant communicative and social-cognitive abilities. The new results show that infant pointing at 12 months already is a communicative act which involves the intentional transmission of information to share interest with, or provide information for other persons. It is argued that infant pointing is an inherently social and cooperative act which is used to share psychological relations between interlocutors and environment, repairs misunderstandings in proto-conversational turn-taking, and helps others by providing information. Infant pointing builds on an understanding of others as persons with attentional states and attitudes. Findings do not support lean accounts on early infant pointing which posit that it is initially non-communicative, does not serve the function of indicating, or is purely self-centered. It is suggested to investigate the emergence of reference and the motivation to jointly engage with others also before pointing has emerged.
  • Liszkowski, U., & Brown, P. (2007). Infant pointing (9-15 months) in different cultures. In A. Majid (Ed.), Field Manual Volume 10 (pp. 82-88). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492895.

    Abstract

    There are two tasks for conducting systematic observation of child-caregiver joint attention interactions. Task 1 – a “decorated room” designed to elicit infant and caregiver pointing. Task 2 – videotaped interviews about infant pointing behaviour. The goal of this task is to document the ontogenetic emergence of referential communication in caregiver infant interaction in different cultures, during the critical age of 8-15 months when children come to understand and share others’ intentions. This is of interest to all students of interaction and human communication; it does not require specialist knowledge of children.
  • Liszkowski, U. (2006). Infant pointing at twelve months: Communicative goals, motives, and social-cognitive abilities. In N. J. Enfield, & S. C. Levinson (Eds.), Roots of human sociality: culture, cognition and interaction (pp. 153-178). New York: Berg.
  • Majid, A., van Leeuwen, T., & Dingemanse, M. (2009). Synaesthesia: A cross-cultural pilot. In A. Majid (Ed.), Field manual volume 12 (pp. 8-13). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.883570.

    Abstract

    Synaesthesia is a condition in which stimulation of one sensory modality (e.g. hearing) causes additional experiences in a second, unstimulated modality (e.g. seeing colours). The goal of this task is to explore the types (and incidence) of synaesthesia in different cultures. Two simple tests can ascertain the existence of synaesthesia in your community.

    Additional information

    2009_Synaesthesia_audio_files.zip
  • Majid, A., & Levinson, S. C. (2007). Language of perception: Overview of field tasks. In A. Majid (Ed.), Field Manual Volume 10 (pp. 8-9). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492898.
  • Majid, A. (2013). Psycholinguistics. In J. L. Jackson (Ed.), Oxford Bibliographies Online: Anthropology. Oxford: Oxford University Press.
  • Majid, A. (2019). Preface. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. vii-viii). Amsterdam: Benjamins.
  • Majid, A. (2007). Preface and priorities. In A. Majid (Ed.), Field manual volume 10 (pp. 3). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Majid, A., Senft, G., & Levinson, S. C. (2007). The language of olfaction. In A. Majid (Ed.), Field Manual Volume 10 (pp. 36-41). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492910.
  • Majid, A., Senft, G., & Levinson, S. C. (2007). The language of touch. In A. Majid (Ed.), Field Manual Volume 10 (pp. 32-35). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492907.
  • Majid, A., & Levinson, S. C. (2007). The language of vision I: colour. In A. Majid (Ed.), Field Manual Volume 10 (pp. 22-25). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492901.
  • Majid, A. (2010). Words for parts of the body. In B. C. Malt, & P. Wolff (Eds.), Words and the Mind: How words capture human experience (pp. 58-71). New York: Oxford University Press.
  • Massaro, D. W., & Jesse, A. (2007). Audiovisual speech perception and word recognition. In M. G. Gaskell (Ed.), The Oxford handbook of psycholinguistics (pp. 19-35). Oxford: Oxford University Press.

    Abstract

    In most of our everyday conversations, we not only hear but also see each other talk. Our understanding of speech benefits from having the speaker's face present. This finding immediately necessitates the question of how the information from the different perceptual sources is used to reach the best overall decision. This need for processing of multiple sources of information also exists in auditory speech perception, however. Audiovisual speech simply shifts the focus from intramodal to intermodal sources but does not necessitate a qualitatively different form of processing. It is essential that a model of speech perception operationalizes the concept of processing multiple sources of information so that quantitative predictions can be made. This chapter gives an overview of the main research questions and findings unique to audiovisual speech perception and word recognition research as well as what general questions about speech perception and cognition the research in this field can answer. The main theoretical approaches to explain integration and audiovisual speech perception are introduced and critically discussed. The chapter also provides an overview of the role of visual speech as a language learning tool in multimodal training.
  • Matic, D. (2010). Discourse and syntax in linguistic change: Decline of postverbal topical subjects in Serbo-Croat. In G. Ferraresi, & R. Lühr (Eds.), Diachronic studies on information structure: Language acquisition and change (pp. 117-142). Berlin: Mouton de Gruyter.
  • McDonough, L., Choi, S., Bowerman, M., & Mandler, J. M. (1998). The use of preferential looking as a measure of semantic development. In C. Rovee-Collier, L. P. Lipsitt, & H. Hayne (Eds.), Advances in Infancy Research. Volume 12. (pp. 336-354). Stamford, CT: Ablex Publishing.
  • McQueen, J. M., & Cutler, A. (2010). Cognitive processes in speech perception. In W. J. Hardcastle, J. Laver, & F. E. Gibbon (Eds.), The handbook of phonetic sciences (2nd ed., pp. 489-520). Oxford: Blackwell.
  • McQueen, J. M. (2007). Eight questions about spoken-word recognition. In M. G. Gaskell (Ed.), The Oxford handbook of psycholinguistics (pp. 37-53). Oxford: Oxford University Press.

    Abstract

    This chapter is a review of the literature in experimental psycholinguistics on spoken word recognition. It is organized around eight questions. 1. Why are psycholinguists interested in spoken word recognition? 2. What information in the speech signal is used in word recognition? 3. Where are the words in the continuous speech stream? 4. Which words did the speaker intend? 5. When, as the speech signal unfolds over time, are the phonological forms of words recognized? 6. How are words recognized? 7. Whither spoken word recognition? 8. Who are the researchers in the field?
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • McQueen, J. M., & Meyer, A. S. (2019). Key issues and future directions: Towards a comprehensive cognitive architecture for language use. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 85-96). Cambridge, MA: MIT Press.
  • Mishra, R. K., Olivers, C. N. L., & Huettig, F. (2013). Spoken language and the decision to move the eyes: To what extent are language-mediated eye movements automatic? In V. S. C. Pammi, & N. Srinivasan (Eds.), Progress in Brain Research: Decision making: Neural and behavioural approaches (pp. 135-149). New York: Elsevier.

    Abstract

    Recent eye-tracking research has revealed that spoken language can guide eye gaze very rapidly (and closely time-locked to the unfolding speech) toward referents in the visual world. We discuss whether, and to what extent, such language-mediated eye movements are automatic rather than subject to conscious and controlled decision-making. We consider whether language-mediated eye movements adhere to four main criteria of automatic behavior, namely, whether they are fast and efficient, unintentional, unconscious, and overlearned (i.e., arrived at through extensive practice). Current evidence indicates that language-driven oculomotor behavior is fast but not necessarily always efficient. It seems largely unintentional though there is also some evidence that participants can actively use the information in working memory to avoid distraction in search. Language-mediated eye movements appear to be for the most part unconscious and have all the hallmarks of an overlearned behavior. These data are suggestive of automatic mechanisms linking language to potentially referred-to visual objects, but more comprehensive and rigorous testing of this hypothesis is needed.
  • Mitterer, H., & Cutler, A. (2006). Speech perception. In K. Brown (Ed.), Encyclopedia of Language and Linguistics (vol. 11) (pp. 770-782). Amsterdam: Elsevier.

    Abstract

    The goal of speech perception is understanding a speaker's message. To achieve this, listeners must recognize the words that comprise a spoken utterance. This in turn implies distinguishing these words from other minimally different words (e.g., word from bird, etc.), and this involves making phonemic distinctions. The article summarizes research on the perception of phonemic distinctions, on how listeners cope with the continuity and variability of speech signals, and on how phonemic information is mapped onto the representations of words. Particular attention is paid to theories of speech perception and word recognition.
  • Narasimhan, B., & Brown, P. (2009). Getting the inside story: Learning to talk about containment in Tzeltal and Hindi. In V. C. Mueller-Gathercole (Ed.), Routes to language: Studies in honor of Melissa Bowerman (pp. 97-132). New York: Psychology Press.

    Abstract

    The present study examines young children's uses of semantically specific and general relational containment terms (e.g. in, enter) in Hindi and Tzeltal, and the extent to which their usage patterns are influenced by input frequency. We hypothesize that if children have a preference for relational terms that are semantically specific, this will be reflected in early acquisition of more semantically specific expressions and underextension of semantically general ones, regardless of the distributional patterns of use of these terms in the input. Our findings however show a strong role for input frequency in guiding children's patterns of use of containment terms in the two languages. Yet language-specific lexicalization patterns play a role as well, since object-specific containment verbs are used as early as the semantically general 'enter' verb by children acquiring Tzeltal.
  • Noordman, L. G., & Vonk, W. (1998). Discourse comprehension. In A. D. Friederici (Ed.), Language comprehension: a biological perspective (pp. 229-262). Berlin: Springer.

    Abstract

    The human language processor is conceived as a system that consists of several interrelated subsystems. Each subsystem performs a specific task in the complex process of language comprehension and production. A subsystem receives a particular input, performs certain specific operations on this input and yields a particular output. The subsystems can be characterized in terms of the transformations that relate the input representations to the output representations. An important issue in describing the language processing system is to identify the subsystems and to specify the relations between the subsystems. These relations can be conceived in two different ways. In one conception the subsystems are autonomous. They are related to each other only by the input-output channels. The operations in one subsystem are not affected by another system. The subsystems are modular, that is they are independent. In the other conception, the different subsystems influence each other. A subsystem affects the processes in another subsystem. In this conception there is an interaction between the subsystems.
  • Norcliffe, E., Enfield, N. J., Majid, A., & Levinson, S. C. (2010). The grammar of perception. In E. Norcliffe, & N. J. Enfield (Eds.), Field manual volume 13 (pp. 7-16). Nijmegen: Max Planck Institute for Psycholinguistics.
  • O'Connor, L. (2006). Sobre los predicados complejos en el Chontal de la baja. In A. Oseguera (Ed.), Historia y etnografía entre los Chontales de Oaxaca (pp. 119-161). Oaxaca: Instituto Nacional de Antroplogía e Historia.
  • O'Meara, C., Speed, L. J., San Roque, L., & Majid, A. (2019). Perception Metaphors: A view from diversity. In L. J. Speed, C. O'Meara, L. San Roque, & A. Majid (Eds.), Perception Metaphors (pp. 1-16). Amsterdam: Benjamins.

    Abstract

    Our bodily experiences play an important role in the way that we think and speak. Abstract language is, however, difficult to reconcile with this body-centred view, unless we appreciate the role metaphors play. To explore the role of the senses across semantic domains, we focus on perception metaphors, and examine their realisation across diverse languages, methods, and approaches. To what extent do mappings in perception metaphor adhere to predictions based on our biological propensities; and to what extent is there space for cross-linguistic and cross-cultural variation? We find that while some metaphors have widespread commonality, there is more diversity attested than should be comfortable for universalist accounts.
  • Osswald, R., & Van Valin Jr., R. D. (2013). FrameNet, frame structure and the syntax-semantics interface. In T. Gamerschlag, D. Gerland, R. Osswald, & W. Petersen (Eds.), Frames and concept types: Applications in language and philosophy. Heidelberg: Springer.
  • Ozyurek, A. (2007). Processing of multi-modal semantic information: Insights from cross-linguistic comparisons and neurophysiological recordings. In T. Sakamoto (Ed.), Communicating skills of intention (pp. 131-142). Tokyo: Hituzi Syobo Publishing.
  • Ozyurek, A., Kita, S., Allen, S., Furman, R., & Brown, A. (2007). How does linguistic framing of events influence co-speech gestures? Insights from crosslinguistic variations and similarities. In K. Liebal, C. Müller, & S. Pika (Eds.), Gestural communication in nonhuman and human primates (pp. 199-218). Amsterdam: Benjamins.

    Abstract

    What are the relations between linguistic encoding and gestural representations of events during online speaking? The few studies that have been conducted on this topic have yielded somewhat incompatible results with regard to whether and how gestural representations of events change with differences in the preferred semantic and syntactic encoding possibilities of languages. Here we provide large scale semantic, syntactic and temporal analyses of speech- gesture pairs that depict 10 different motion events from 20 Turkish and 20 English speakers. We find that the gestural representations of the same events differ across languages when they are encoded by different syntactic frames (i.e., verb-framed or satellite-framed). However, where there are similarities across languages, such as omission of a certain element of the event in the linguistic encoding, gestural representations also look similar and omit the same content. The results are discussed in terms of what gestures reveal about the influence of language specific encoding on on-line thinking patterns and the underlying interactions between speech and gesture during the speaking process.
  • Ozyurek, A., & Woll, B. (2019). Language in the visual modality: Cospeech gesture and sign language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 67-83). Cambridge, MA: MIT Press.
  • Patterson, R. D., & Cutler, A. (1989). Auditory preprocessing and recognition of speech. In A. Baddeley, & N. Bernsen (Eds.), Research directions in cognitive science: A european perspective: Vol. 1. Cognitive psychology (pp. 23-60). London: Erlbaum.
  • Perniss, P. M., Pfau, R., & Steinbach, M. (2007). Can't you see the difference? Sources of variation in sign language structure. In P. M. Perniss, R. Pfau, & M. Steinbach (Eds.), Visible variation: Cross-linguistic studies in sign language narratives (pp. 1-34). Berlin: Mouton de Gruyter.
  • Perniss, P. M. (2007). Locative functions of simultaneous perspective constructions in German sign language narrative. In M. Vermeerbergen, L. Leeson, & O. Crasborn (Eds.), Simultaneity in signed language: Form and function (pp. 27-54). Amsterdam: Benjamins.
  • Petersson, K. M., & Reis, A. (2006). Characteristics of illiterate and literate cognitive processing: Implications of brain- behavior co-constructivism. In P. B. Baltes, P. Reuter-Lorenz, & F. Rösler (Eds.), Lifespan development and the brain: The perspective of biocultural co-constructivism (pp. 279-305). Cambridge: Cambridge University Press.

    Abstract

    Literacy and education represent essential aspects of contemporary society and subserve important aspects of socialization and cultural transmission. The study of illiterate subjects represents one approach to investigate the interactions between neurobiological and cultural factors in cognitive development, individual learning, and their influence on the functional organization of the brain. In this chapter we review some recent cognitive, neuroanatomic, and functional neuroimaging results indicating that formal education influences important aspects of the human brain. Taken together this provides strong support for the idea that the brain is modulated by literacy and formal education, which in turn change the brains capacity to interact with its environment, including the individual's contemporary culture. In other words, the individual is able to participate in, interact with, and actively contribute to the process of cultural transmission in new ways through acquired cognitive skills.
  • Petersson, K. M., Ingvar, M., & Reis, A. (2009). Language and literacy from a cognitive neuroscience perspective. In D. Olsen, & N. Torrance (Eds.), Cambridge handbook of literacy (pp. 152-181). Cambridge: Cambridge University Press.
  • Petrich, P., Piedrasanta, R., Figuerola, H., & Le Guen, O. (2010). Variantes y variaciones en la percepción de los antepasados entre los Mayas. In A. Monod Becquelin, A. Breton, & M. H. Ruz (Eds.), Figuras Mayas de la diversidad (pp. 255-275). Mérida, Mexico: Universidad autónoma de México.
  • Piai, V., & Zheng, X. (2019). Speaking waves: Neuronal oscillations in language production. In K. D. Federmeier (Ed.), Psychology of Learning and Motivation (pp. 265-302). Elsevier.

    Abstract

    Language production involves the retrieval of information from memory, the planning of an articulatory program, and executive control and self-monitoring. These processes can be related to the domains of long-term memory, motor control, and executive control. Here, we argue that studying neuronal oscillations provides an important opportunity to understand how general neuronal computational principles support language production, also helping elucidate relationships between language and other domains of cognition. For each relevant domain, we provide a brief review of the findings in the literature with respect to neuronal oscillations. Then, we show how similar patterns are found in the domain of language production, both through review of previous literature and novel findings. We conclude that neurophysiological mechanisms, as reflected in modulations of neuronal oscillations, may act as a fundamental basis for bringing together and enriching the fields of language and cognition.
  • Pluymaekers, M., Ernestus, M., Baayen, R. H., & Booij, G. (2010). Morphological effects on fine phonetic detail: The case of Dutch -igheid. In C. Fougeron, B. Kühnert, M. D'Imperio, & N. Vallée (Eds.), Laboratory Phonology 10 (pp. 511-532). Berlin: De Gruyter.
  • Poletiek, F. H. (2006). Natural sampling of stimuli in (artificial) grammar learning. In K. Fiedler, & P. Juslin (Eds.), Information sampling and adaptive cognition (pp. 440-455). Cambridge: Cambridge University Press.
  • Pye, C., Pfeiler, B., De León, L., Brown, P., & Mateo, P. (2007). Roots or edges? Explaining variation in children's early verb forms across five Mayan languages. In B. Pfeiler (Ed.), Learning indigenous languages: Child language acquisition in Mesoamerica (pp. 15-46). Berlin: Mouton de Gruyter.

    Abstract

    This paper compares the acquisition of verb morphology in five Mayan languages, using a comparative method based on historical linguistics to establish precise equivalences between linguistic categories in the five languages. Earlier work on the acquisition of these languages, based on examination of longitudinal samples of naturally-occuring child language, established that in some of the languages (Tzeltal, Tzotzil) bare roots were the predominant forms for children’s early verbs, but in three other languages (Yukatek, K’iche’, Q’anjobal) unanalyzed portions of the final part of the verb were more likely. That is, children acquiring different Mayan languages initially produce different parts of the adult verb forms. In this paper we analyse the structures of verbs in caregiver speech to these same children, using samples from two-year-old children and their caregivers, and assess the degree to which features of the input might account for the children’s early verb forms in these five Mayan languages. We found that the frequency with which adults produce verbal roots at the extreme right of words and sentences influences the frequency with which children produce bare verb roots in their early verb expressions, while production of verb roots at the extreme left does not, suggesting that the children ignore the extreme left of verbs and sentences when extracting verb roots.
  • Ramus, F., & Fisher, S. E. (2009). Genetics of language. In M. S. Gazzaniga (Ed.), The cognitive neurosciences, 4th ed. (pp. 855-871). Cambridge, MA: MIT Press.

    Abstract

    It has long been hypothesised that the human faculty to acquire a language is in some way encoded in our genetic program. However, only recently has genetic evidence been available to begin to substantiate the presumed genetic basis of language. Here we review the first data from molecular genetic studies showing association between gene variants and language disorders (specific language impairment, speech sound disorder, developmental dyslexia), we discuss the biological function of these genes, and we further speculate on the more general question of how the human genome builds a brain that can learn a language.
  • Rapold, C. J. (2010). Beneficiary and other roles of the dative in Tashelhiyt. In F. Zúñiga, & S. Kittilä (Eds.), Benefactives and malefactives: Typological perspectives and case studies (pp. 351-376). Amsterdam: Benjamins.

    Abstract

    This paper explores the semantics of the dative in Tashelhiyt, a Berber language from Morocco. After a brief morphosyntactic overview of the dative in this language, I identify a wide range of its semantic roles, including possessor, experiencer, distributive and unintending causer. I arrange these roles in a semantic map and propose semantic links between the roles such as metaphorisation and generalisation. In the light of the Tashelhiyt data, the paper also proposes additions to previous semantic maps of the dative (Haspelmath 1999, 2003) and to Kittilä’s 2005 typology of beneficiary coding.
  • Rapold, C. J. (2010). Defining converbs ten years on - A hitchhikers'guide. In S. Völlmin, A. Amha, C. J. Rapold, & S. Zaugg-Coretti (Eds.), Converbs, medial verbs, clause chaining and related issues (pp. 7-30). Köln: Rüdiger Köppe Verlag.
  • Rapold, C. J., & Zaugg-Coretti, S. (2009). Exploring the periphery of the central Ethiopian Linguistic area: Data from Yemsa and Benchnon. In J. Crass, & R. Meyer (Eds.), Language contact and language change in Ethiopia (pp. 59-81). Köln: Köppe.
  • Ravignani, A., Chiandetti, C., & Kotz, S. (2019). Rhythm and music in animal signals. In J. Choe (Ed.), Encyclopedia of Animal Behavior (vol. 1) (2nd ed., pp. 615-622). Amsterdam: Elsevier.
  • Reesink, G. (2009). A connection between Bird's Head and (Proto) Oceanic. In B. Evans (Ed.), Discovering history through language, papers in honor of Malcolm Ross (pp. 181-192). Canberra: Pacific Linguistics.
  • Reesink, G. (2010). The difference a word makes. In K. A. McElhannon, & G. Reesink (Eds.), A mosaic of languages and cultures: Studies celebrating the career of Karl J. Franklin (pp. 434-446). Dallas, TX: SIL International.

    Abstract

    This paper offers some thoughts on the question what effect language has on the understanding and hence behavior of a human being. It reviews some issues of linguistic relativity, known as the “Sapir-Whorf hypothesis,” suggesting that the culture we grow up in is reflected in the language and that our cognition (and our worldview) is shaped or colored by the conventions developed by our ancestors and peers. This raises questions for the degree of translatability, illustrated by the comparison of two poems by a Dutch poet who spent most of his life in the USA. Mutual understanding, I claim, is possible because we have the cognitive apparatus that allows us to enter different emic systems.
  • Reesink, G. (2010). Prefixation of arguments in West Papuan languages. In M. Ewing, & M. Klamer (Eds.), East Nusantara, typological and areal analyses (pp. 71-95). Canberra: Pacific Linguistics.
  • Reis, A., Petersson, K. M., & Faísca, L. (2010). Neuroplasticidade: Os efeitos de aprendizagens específicas no cérebro humano. In C. Nunes, & S. N. Jesus (Eds.), Temas actuais em Psicologia (pp. 11-26). Faro: Universidade do Algarve.
  • Rietveld, T., & Chen, A. (2006). How to obtain and process perceptual judgements of intonational meaning. In S. Sudhoff, D. Lenertová, R. Meyer, S. Pappert, P. Augurzky, I. Mleinek, N. Richter, & J. Schliesser (Eds.), Methods in empirical prosody research (pp. 283-319). Berlin: Mouton de Gruyter.
  • Roberts, L. (2013). Discourse processing. In P. Robinson (Ed.), The Routledge encyclopedia of second language acquisition (pp. 190-194). New York: Routledge.
  • Roberts, L. (2010). Parsing the L2 input, an overview: Investigating L2 learners’ processing of syntactic ambiguities and dependencies in real-time comprehension. In G. D. Véronique (Ed.), Language, Interaction and Acquisition [Special issue] (pp. 189-205). Amsterdam: Benjamins.

    Abstract

    The acquisition of second language (L2) syntax has been central to the study of L2 acquisition, but recently there has been an interest in how learners apply their L2 syntactic knowledge to the input in real-time comprehension. Investigating L2 learners’ moment-by-moment syntactic analysis during listening or reading of sentence as it unfolds — their parsing of the input — is important, because language learning involves both the acquisition of knowledge and the ability to use it in real time. Using methods employed in monolingual processing research, investigations often focus on the processing of temporary syntactic ambiguities and structural dependencies. Investigating ambiguities involves examining parsing decisions at points in a sentence where there is a syntactic choice and this can offer insights into the nature of the parsing mechanism, and in particular, its processing preferences. Studying the establishment of syntactic dependencies at the critical point in the input allows for an investigation of how and when different kinds of information (e.g., syntactic, semantic, pragmatic) are put to use in real-time interpretation. Within an L2 context, further questions are of interest and familiar from traditional L2 acquisition research. Specifically, how native-like are the parsing procedures that L2 learners apply when processing the L2 input? What is the role of the learner’s first language (L1)? And, what are the effects of individual factors such as age, proficiency/dominance and working memory on L2 parsing? In the current paper I will provide an overview of the findings of some experimental research designed to investigate these questions.
  • Roberts, L. (2013). Sentence processing in bilinguals. In R. Van Gompel (Ed.), Sentence processing. London: Psychology Press.
  • Roelofs, A., & Lamers, M. (2007). Modelling the control of visual attention in Stroop-like tasks. In A. S. Meyer, L. R. Wheeldon, & A. Krott (Eds.), Automaticity and control in language processing (pp. 123-142). Hove: Psychology Press.

    Abstract

    The authors discuss the issue of how visual orienting, selective stimulus processing, and vocal response planning are related in Stroop-like tasks. The evidence suggests that visual orienting is dependent on both visual processing and verbal response planning. They also discuss the issue of selective perceptual processing in Stroop-like tasks. The evidence suggests that space-based and object-based attention lead to a Trojan horse effect in the classic Stroop task, which can be moderated by increasing the spatial distance between colour and word and by making colour and word part of different objects. Reducing the presentation duration of the colour-word stimulus or the duration of either the colour or word dimension reduces Stroop interference. This paradoxical finding was correctly simulated by the WEAVER++ model. Finally, the authors discuss evidence on the neural correlates of executive attention, in particular, the ACC. The evidence suggests that the ACC plays a role in regulation itself rather than only signalling the need for regulation.
  • Rojas-Berscia, L. M. (2019). Nominalization in Shawi/Chayahuita. In R. Zariquiey, M. Shibatani, & D. W. Fleck (Eds.), Nominalization in languages of the Americas (pp. 491-514). Amsterdam: Benjamins.

    Abstract

    This paper deals with the Shawi nominalizing suffixes -su’~-ru’~-nu’ ‘general nominalizer’, -napi/-te’/-tun‘performer/agent nominalizer’, -pi’‘patient nominalizer’, and -nan ‘instrument nominalizer’. The goal of this article is to provide a description of nominalization in Shawi. Throughout this paper I apply the Generalized Scale Model (GSM) (Malchukov, 2006) to Shawi verbal nominalizations, with the intention of presenting a formal representation that will provide a basis for future areal and typological studies of nominalization. In addition, I dialogue with Shibatani’s model to see how the loss or gain of categories correlates with the lexical or grammatical nature of nominalizations. strong nominalization in Shawi correlates with lexical nominalization, whereas weak nominalizations correlate with grammatical nominalization. A typology which takes into account the productivity of the nominalizers is also discussed.

Share this page