Publications

Displaying 201 - 237 of 237
  • Seuren, P. A. M. (1996). Parameters van variatie. In R. Van Hout, & J. Kruijsen (Eds.), Taalvariaties: Toonzettingen en modulaties op een thema (pp. 211-221). Dordrecht: Foris.
  • Seuren, P. A. M. (1973). The comparative. In F. Kiefer, & N. Ruwet (Eds.), Generative grammar in Europe (pp. 528-564). Reidel: Dordrecht.

    Abstract

    No idea is older in the history of linguistics than the thought that there is, somehow hidden underneath the surface of sentences, a form or a structure which provides a semantic analysis and lays bare their logical structure. In Plato’s Cratylus the theory was proposed, deriving from Heraclitus’ theory of explanatory underlying structure in physical nature, that words contain within themselves bits of syntactic structure giving their meanings. The Stoics held the same view and maintained moreover that every sentence has an underlying logical structure, which for them was the Aristotelian subject- predicate form. They even proposed transformational processes to derive the surface from the deep structure. The idea of a semantically analytic logical form underlying the sentences of every language kept reappearing in various guises at various times. Quite recently it re-emerged under the name of generative semantics.
  • Seuren, P. A. M. (1991). The definition of serial verbs. In F. Byrne, & T. Huebner (Eds.), Development and structures of Creole languages: Essays in honor of Derek Bickerton (pp. 193-205). Amsterdam: Benjamins.
  • Seuren, P. A. M., & Wekker, H. (1986). Semantic transparency as a factor in Creole genesis. In P. Muysken, & N. Smith (Eds.), Substrata versus universals in Creole genesis: Papers from the Amsterdam Creole Workshop, April 1985 (pp. 57-70). Amsterdam: Benjamins.
  • Seuren, P. A. M. (1991). Präsuppositionen. In A. Von Stechow, & D. Wunderlich (Eds.), Semantik: Ein internationales Handbuch der zeitgenössischen Forschung (pp. 286-318). Berlin: De Gruyter.
  • Seuren, P. A. M. (1973). The new approach to the study of language. In B. Douglas (Ed.), Linguistics and the mind (pp. 11-20). Sydney: Sydney University Extension Board.
  • Seuren, P. A. M. (1999). The subject-predicate debate X-rayed. In D. Cram, A. Linn, & E. Nowak (Eds.), History of Linguistics 1996: Selected papers from the Seventh International Conference on the History of the Language Sciences (ICHOLS VII), Oxford, 12-17 September 1996. Volume 1: Traditions in Linguistics Worldwide (pp. 41-55). Amsterdam: Benjamins.
  • Seuren, P. A. M. (1999). Topic and comment. In C. F. Justus, & E. C. Polomé (Eds.), Language Change and Typological Variation: Papers in Honor of Winfred P. Lehmann on the Occasion of His 83rd Birthday. Vol. 2: Grammatical universals and typology (pp. 348-373). Washington, DC: Institute for the Study of Man.
  • Seuren, P. A. M. (1998). Towards a discourse-semantic account of donkey anaphora. In S. Botley, & T. McEnery (Eds.), New Approaches to Discourse Anaphora: Proceedings of the Second Colloquium on Discourse Anaphora and Anaphor Resolution (DAARC2) (pp. 212-220). Lancaster: Universiy Centre for Computer Corpus Research on Language, Lancaster University.
  • Sjerps, M. J., & Chang, E. F. (2019). The cortical processing of speech sounds in the temporal lobe. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 361-379). Cambridge, MA: MIT Press.
  • Skiba, R. (2004). Revitalisierung bedrohter Sprachen - Ein Ernstfall für die Sprachdidaktik. In H. W. Hess (Ed.), Didaktische Reflexionen "Berliner Didaktik" und Deutsch als Fremdsprache heute (pp. 251-262). Berlin: Staufenburg.
  • Skiba, R. (1991). Eine Datenbank für Deutsch als Zweitsprache Materialien: Zum Einsatz von PC-Software bei Planung von Zweitsprachenunterricht. In H. Barkowski, & G. Hoff (Eds.), Berlin interkulturell: Ergebnisse einer Berliner Konferenz zu Migration und Pädagogik. (pp. 131-140). Berlin: Colloquium.
  • De Smedt, K., & Kempen, G. (1996). Discontinuous constituency in Segment Grammar. In H. C. Bunt, & A. Van Horck (Eds.), Discontinuous constituency (pp. 141-163). Berlin: Mouton de Gruyter.
  • De Smedt, K., & Kempen, G. (1991). Segment Grammar: A formalism for incremental sentence generation. In C. Paris, W. Swartout, & W. Mann (Eds.), Natural language generation and computational linguistics (pp. 329-349). Dordrecht: Kluwer Academic Publishers.

    Abstract

    Incremental sentence generation imposes special constraints on the representation of the grammar and the design of the formulator (the module which is responsible for constructing the syntactic and morphological structure). In the model of natural speech production presented here, a formalism called Segment Grammar is used for the representation of linguistic knowledge. We give a definition of this formalism and present a formulator design which relies on it. Next, we present an object- oriented implementation of Segment Grammar. Finally, we compare Segment Grammar with other formalisms.
  • Stivers, T. (2004). Question sequences in interaction. In A. Majid (Ed.), Field Manual Volume 9 (pp. 45-47). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.506967.

    Abstract

    When people request information, they have a variety of means for eliciting the information. In English two of the primary resources for eliciting information include asking questions, making statements about their interlocutor (thereby generating confirmation or revision). But within these types there are a variety of ways that these information elicitors can be designed. The goal of this task is to examine how different languages seek and provide information, the extent to which syntax vs prosodic resources are used (e.g., in questions), and the extent to which the design of information seeking actions and their responses display a structural preference to promote social solidarity.
  • Stolker, C. J. J. M., & Poletiek, F. H. (1998). Smartengeld - Wat zijn we eigenlijk aan het doen? Naar een juridische en psychologische evaluatie. In F. Stadermann (Ed.), Bewijs en letselschade (pp. 71-86). Lelystad, The Netherlands: Koninklijke Vermande.
  • Stolz, C. (1996). Bloxes: an interactive task for the elicitation of dimensional expressions. In S. C. Levinson (Ed.), Manual for the 1996 Field Season (pp. 25-31). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003352.

    Abstract

    “Dimensional expressions” single out and describe one symmetric axis of a 1D, 2D, or 3D object (e.g., The road is long). “Bloxes” is an interactive, object-matching task that elicits descriptions of dimensional contrasts between simple geometrical objects (rectangular blocks, rectangular boxes, and cylinders). The aim is to explore the linguistic encoding of dimensions, focusing on features of axis, orientation, flatness/solidity, size and shape. See also 'Suggestions for field research on dimensional expressions' (https://doi.org/10.17617/2.3003382).
  • Stolz, C. (1996). Suggestions for field research on dimensional expressions. In S. C. Levinson (Ed.), Manual for the 1996 Field Season (pp. 32-45). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003382.

    Abstract

    The aim of this task is to explore the linguistic expression of “dimensions” — e.g., the height, width or depth — of objects in the world around us. In a dimensional expression, one symmetric axis of a 1D, 2D, or 3D object is singled out and described (e.g., That man is tall). Dimensional expressions in different languages show a range of different combinatorial and extensional uses. This document guides the researcher through some spatial situations where contrastive features of dimensional expressions are likely to be observable.
  • Suppes, P., Böttner, M., & Liang, L. (1998). Machine Learning of Physics Word Problems: A Preliminary Report. In A. Aliseda, R. van Glabbeek, & D. Westerståhl (Eds.), Computing Natural Language (pp. 141-154). Stanford, CA, USA: CSLI Publications.
  • Terrill, A. (2004). Coordination in Lavukaleve. In M. Haspelmath (Ed.), Coordinating Constructions. (pp. 427-443). Amsterdam: John Benjamins.
  • Thomaz, A. L., Lieven, E., Cakmak, M., Chai, J. Y., Garrod, S., Gray, W. D., Levinson, S. C., Paiva, A., & Russwinkel, N. (2019). Interaction for task instruction and learning. In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 91-110). Cambridge, MA: MIT Press.
  • Van Valin Jr., R. D. (1999). A typology of the interaction of focus structure and syntax. In E. V. Rachilina, & J. G. Testelec (Eds.), Typology and linguistic theory from description to explanation: For the 60th birthday of Aleksandr E. Kibrik (pp. 511-524). Moscow: Languages of Russian Culture.
  • Van Berkum, J. J. A., & Nieuwland, M. S. (2019). A cognitive neuroscience perspective on language comprehension in context. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 429-442). Cambridge, MA: MIT Press.
  • Van Geenhoven, V. (1998). On the Argument Structure of some Noun Incorporating Verbs in West Greenlandic. In M. Butt, & W. Geuder (Eds.), The Projection of Arguments - Lexical and Compositional Factors (pp. 225-263). Stanford, CA, USA: CSLI Publications.
  • Van Valin Jr., R. D. (1998). The acquisition of WH-questions and the mechanisms of language acquisition. In M. Tomasello (Ed.), The new psychology of language: Cognitive and functional approaches to language structure (pp. 221-249). Mahwah, New Jersey: Erlbaum.
  • Van Berkum, J. J. A. (2004). Sentence comprehension in a wider discourse: Can we use ERPs to keep track of things? In M. Carreiras, Jr., & C. Clifton (Eds.), The on-line study of sentence comprehension: eyetracking, ERPs and beyond (pp. 229-270). New York: Psychology Press.
  • Van Berkum, J. J. A. (1996). The linguistics of gender. In The psycholinguistics of grammatical gender: Studies in language comprehension and production (pp. 14-44). Nijmegen University Press.

    Abstract

    This chapter explores grammatical gender as a linguistic phenomenon. First, I define gender in terms of agreement, and look at the parts of speech that can take gender agreement. Because it relates to assumptions underlying much psycholinguistic gender research, I also examine the reasons why gender systems are thought to emerge, change, and disappear. Then, I describe the gender system of Dutch. The frequent confusion about the number of genders in Dutch will be resolved by looking at the history of the system, and the role of pronominal reference therein. In addition, I report on three lexical- statistical analyses of the distribution of genders in the language. After having dealt with Dutch, I look at whether the genders of Dutch and other languages are more or less randomly assigned, or whether there is some system to it. In contrast to what many people think, regularities do indeed exist. Native speakers could in principle exploit such regularities to compute rather than memorize gender, at least in part. Although this should be taken into account as a possibility, I will also argue that it is by no means a necessary implication.
  • Vernes, S. C. (2019). Neuromolecular approaches to the study of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 577-593). Cambridge, MA: MIT Press.
  • Von Stutterheim, C., & Klein, W. (2004). Die Gesetze des Geistes sind metrisch: Hölderlin und die Sprachproduktion. In H. Schwarz (Ed.), Fenster zur Welt: Deutsch als Fremdsprachenphilologie (pp. 439-460). München: Iudicium.
  • Weissenborn, J. (1986). Learning how to become an interlocutor. The verbal negotiation of common frames of reference and actions in dyads of 7–14 year old children. In J. Cook-Gumperz, W. A. Corsaro, & J. Streeck (Eds.), Children's worlds and children's language (pp. 377-404). Berlin: Mouton de Gruyter.
  • Wilkins, D. (1999). A questionnaire on motion lexicalisation and motion description. In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 96-115). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3002706.

    Abstract

    How do languages express ideas of movement, and how do they package features that can be part of motion, such as path and cause? This questionnaire is used to gain a picture of the lexical resources a language draws on for motion expressions. It targets issues of semantic conflation (i.e., what other semantic information besides motion may be encoded in a verb root) and patterns of semantic distribution (i.e., what types of information are encoded in the morphemes that come together to build a description of a motion event). It was originally designed for Australian languages, but has since been used around the world.
  • Wilkins, D. (1999). Eliciting contrastive use of demonstratives for objects within close personal space (all objects well within arm’s reach). In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 25-28). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.2573796.

    Abstract

    Contrastive reference, where a speaker presents or identifies one item in explicit contrast to another (I like this book but that one is boring), has special communicative and information structure properties. This can be reflected in rules of demonstrative use. For example, in some languages, terms equivalent to this and that can be used for contrastive reference in almost any spatial context. But other two-term languages stick more closely to “distance rules” for demonstratives, allowing a this-like term in close space only. This task elicits data concerning one context of contrastive reference, focusing on whether (and how) non-proximal demonstratives can be used to distinguish objects within a proximal area. The task runs like a memory game, with the consultant being asked to identify the locations of two or three hidden items arranged within arm’s reach.
  • Wilkins, D. (1999). The 1999 demonstrative questionnaire: “This” and “that” in comparative perspective. In D. Wilkins (Ed.), Manual for the 1999 Field Season (pp. 1-24). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.2573775.

    Abstract

    Demonstrative terms (e.g., this and that) are key to understanding how a language constructs and interprets spatial relationships. They are tricky to pin down, typically having functions that do not match “idealized” uses, and that can become invisible in narrow elicitation settings. This questionnaire is designed to identify the range(s) of use of certain spatial demonstrative terms, and help assess the roles played by gesture, access, attention, and addressee knowledge in demonstrative use. The stimuli consist of 25 diagrammed “elicitation settings” to be created by the researcher.
  • Wittek, A. (1999). Zustandsveränderungsverben im Deutschen - wie lernt das Kind die komplexe Semantik? In J. Meibauer, & M. Rothweiler (Eds.), Das Lexikon im Spracherwerb (pp. 278-296). Tübingen: Francke.

    Abstract

    Angelika Wittek untersuchte Zustandsveränderungsverben bei vier- bis sechsjährigen Kindern. Englischsprechende Kinder verstehen bis zum Alter von 8 Jahren diese Verben als Bewegungsverben und ignorieren, daß sie zusätzlich die Information über einen Endzustand im Sinne der Negation des Ausgangszustands beeinhalten. Wittek zeigte, daß entgegen der Erwartung transparente, morphologisch komplexe Formen (wachmachen), in denen die Partikel den Endzustand explizit macht, nicht besser verstanden werden als Simplizia (wecken). Zudem diskutierte sie, inwieweit die Verwendung des Adverbs wieder in restitutiver Lesart Hinweise auf den Erwerb dieser Verben geben kann.
  • Zavala, R. M. (1999). External possessor in Oluta Popoluca (Mixean): Applicatives and incorporation of relational terms. In D. L. Payne, & I. Barshi (Eds.), External possession (pp. 339-372). Amsterdam: Benjamins.
  • Zhang, Y., Chen, C.-h., & Yu, C. (2019). Mechanisms of cross-situational learning: Behavioral and computational evidence. In Advances in Child Development and Behavior; vol. 56 (pp. 37-63).

    Abstract

    Word learning happens in everyday contexts with many words and many potential referents for those words in view at the same time. It is challenging for young learners to find the correct referent upon hearing an unknown word at the moment. This problem of referential uncertainty has been deemed as the crux of early word learning (Quine, 1960). Recent empirical and computational studies have found support for a statistical solution to the problem termed cross-situational learning. Cross-situational learning allows learners to acquire word meanings across multiple exposures, despite each individual exposure is referentially uncertain. Recent empirical research shows that infants, children and adults rely on cross-situational learning to learn new words (Smith & Yu, 2008; Suanda, Mugwanya, & Namy, 2014; Yu & Smith, 2007). However, researchers have found evidence supporting two very different theoretical accounts of learning mechanisms: Hypothesis Testing (Gleitman, Cassidy, Nappa, Papafragou, & Trueswell, 2005; Markman, 1992) and Associative Learning (Frank, Goodman, & Tenenbaum, 2009; Yu & Smith, 2007). Hypothesis Testing is generally characterized as a form of learning in which a coherent hypothesis regarding a specific word-object mapping is formed often in conceptually constrained ways. The hypothesis will then be either accepted or rejected with additional evidence. However, proponents of the Associative Learning framework often characterize learning as aggregating information over time through implicit associative mechanisms. A learner acquires the meaning of a word when the association between the word and the referent becomes relatively strong. In this chapter, we consider these two psychological theories in the context of cross-situational word-referent learning. By reviewing recent empirical and cognitive modeling studies, our goal is to deepen our understanding of the underlying word learning mechanisms by examining and comparing the two theoretical learning accounts.
  • Zuidema, W., & Fitz, H. (2019). Key issues and future directions: Models of human language and speech processing. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 353-358). Cambridge, MA: MIT Press.

Share this page