Publications

Displaying 201 - 300 of 407
  • Klein, W., & Extra, G. (1982). Second language acquisition by adult immigrants: A European Science Foundation project. In R. E. V. Stuip, & W. Zwanenburg (Eds.), Handelingen van het zevenendertigste Nederlandse Filologencongres (pp. 127-136). Amsterdam: APA-Holland Universiteitspers.
  • Klein, W., & Vater, H. (1998). The perfect in English and German. In L. Kulikov, & H. Vater (Eds.), Typology of verbal categories: Papers presented to Vladimir Nedjalkov on the occasion of his 70th birthday (pp. 215-235). Tübingen: Niemeyer.
  • Klein, W., & Musan, R. (2009). Werden. In W. Eins, & F. Schmoë (Eds.), Wie wir sprechen und schreiben: Festschrift für Helmut Glück zum 60. Geburtstag (pp. 45-61). Wiesbaden: Harrassowitz Verlag.
  • Klein, W. (2001). Time and again. In C. Féry, & W. Sternefeld (Eds.), Audiatur vox sapientiae: A festschrift for Arnim von Stechow (pp. 267-286). Berlin: Akademie Verlag.
  • Klein, W. (2001). Typen und Konzepte des Spracherwerbs. In L. Götze, G. Helbig, G. Henrici, & H. Krumm (Eds.), Deutsch als Fremdsprache (pp. 604-616). Berlin: de Gruyter.
  • Klein, W., & Dimroth, C. (2009). Untutored second language acquisition. In W. C. Ritchie, & T. K. Bhatia (Eds.), The new handbook of second language acquisition (2nd rev. ed., pp. 503-522). Bingley: Emerald.
  • Klein, W. (2013). Von Reichtum und Armut des deutschen Wortschatzes. In Deutsche Akademie für Sprache und Dichtung, & Union der deutschen Akademien der Wissenschaften (Eds.), Reichtum und Armut der deutschen Sprache (pp. 15-55). Boston: de Gruyter.
  • Kooijman, V., Johnson, E. K., & Cutler, A. (2008). Reflections on reflections of infant word recognition. In A. D. Friederici, & G. Thierry (Eds.), Early language development: Bridging brain and behaviour (pp. 91-114). Amsterdam: Benjamins.
  • Kopecka, A. (2009). Continuity and change in the representation of motion events in French. In J. Guo, E. Lieven, N. Budwig, S. Ervin-Tripp, K. Nakamura, & S. Özçaliskan (Eds.), Crosslinguistic approaches to the psychology of language: Research in the tradition of Dan Isaac Slobin (pp. 415-426). New York: Psychology Press.
  • De Kovel, C. G. F., & Fisher, S. E. (2018). Molecular genetic methods. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 330-353). Hoboken: Wiley.
  • Kristoffersen, J. H., Troelsgard, T., & Zwitserlood, I. (2013). Issues in sign language lexicography. In H. Jackson (Ed.), The Bloomsbury companion to lexicography (pp. 259-283). London: Bloomsbury.
  • Kuijpers, C. T., Coolen, R., Houston, D., & Cutler, A. (1998). Using the head-turning technique to explore cross-linguistic performance differences. In C. Rovee-Collier, L. Lipsitt, & H. Hayne (Eds.), Advances in infancy research: Vol. 12 (pp. 205-220). Stamford: Ablex.
  • Kupisch, T., Pereira Soares, S. M., Puig-Mayenco, E., & Rothman, J. (2021). Multilingualism and Chomsky's Generative Grammar. In N. Allott (Ed.), A companion to Chomsky (pp. 232-242). doi:10.1002/9781119598732.ch15.

    Abstract

    Like Einstein's general theory of relativity is concerned with explaining the basics of an observable experience – i.e., gravity – most people take for granted that Chomsky's theory of generative grammar (GG) is concerned with the basic nature of language. This chapter highlights a mere subset of central constructs in GG, showing how they have featured prominently and thus shaped formal linguistic studies in multilingualism. Because multilingualism includes a wide range of nonmonolingual populations, the constructs are divided across child bilingualism and adult third language for greater coverage. In the case of the former, the chapter examines how poverty of the stimulus has been investigated. Using the nascent field of L3/Ln acquisition as the backdrop, it discusses how the GG constructs of I-language versus E-language sit at the core of debates regarding the very notion of what linguistic transfer and mental representations should be taken to be.
  • Ladd, D. R., & Dediu, D. (2013). Genes and linguistic tone. In H. Pashler (Ed.), Encyclopedia of the mind (pp. 372-373). London: Sage Publications.

    Abstract

    It is usually assumed that the language spoken by a human community is independent of the community's genetic makeup, an assumption supported by an overwhelming amount of evidence. However, the possibility that language is influenced by its speakers' genes cannot be ruled out a priori, and a recently discovered correlation between the geographic distribution of tone languages and two human genes seems to point to a genetically influenced bias affecting language. This entry describes this specific correlation and highlights its major implications. Voice pitch has a variety of communicative functions. Some of these are probably universal, such as conveying information about the speaker's sex, age, and emotional state. In many languages, including the European languages, voice pitch also conveys certain sentence-level meanings such as signaling that an utterance is a question or an exclamation; these uses of pitch are known as intonation. Some languages, however, known as tone languages, nian ...
  • Lai, V. T., & Frajzyngier, Z. (2009). Change of functions of the first person pronouns in Chinese. In M. Dufresne, M. Dupuis, & E. Vocaj (Eds.), Historical Linguistics 2007: Selected papers from the 18th International Conference on Historical Linguistics Montreal, 6-11 August 2007 (pp. 223-232). Amsterdam: John Benjamins.

    Abstract

    Selected papers from the 18th International Conference on Historical Linguistics, Montreal, 6-11 August 2007
  • Lausberg, H., & Sloetjes, H. (2013). NEUROGES in combination with the annotation tool ELAN. In H. Lausberg (Ed.), Understanding body movement: A guide to empirical research on nonverbal behaviour with an introduction to the NEUROGES coding system (pp. 199-200). Frankfurt a/M: Lang.
  • Levelt, W. J. M. (2016). Localism versus holism. Historical origins of studying language in the brain. In R. Rubens, & M. Van Dijk (Eds.), Sartoniana vol. 29 (pp. 37-60). Ghent: Ghent University.
  • Levelt, W. J. M. (2016). The first golden age of psycholinguistics 1865-World War I. In R. Rubens, & M. Van Dyck (Eds.), Sartoniana vol. 29 (pp. 15-36). Ghent: Ghent University.
  • Levelt, W. J. M. (2001). The architecture of normal spoken language use. In G. Gupta (Ed.), Cognitive science: Issues and perspectives (pp. 457-473). New Delhi: Icon Publications.
  • Levelt, W. J. M., & De Swaan, A. (2016). Levensbericht Nico Frijda. In Koninklijke Nederlandse Akademie van Wetenschappen (Ed.), Levensberichten en herdenkingen 2016 (pp. 16-25). Amsterdam: KNAW.
  • Levelt, W. J. M. (1982). Cognitive styles in the use of spatial direction terms. In R. Jarvella, & W. Klein (Eds.), Speech, place, and action: Studies in deixis and related topics (pp. 251-268). Chichester: Wiley.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M. (1982). Linearization in describing spatial networks. In S. Peters, & E. Saarinen (Eds.), Processes, beliefs, and questions (pp. 199-220). Dordrecht - Holland: D. Reidel.

    Abstract

    The topic of this paper is the way in which speakers order information in discourse. I will refer to this issue with the term "linearization", and will begin with two types of general remarks. The first one concerns the scope and relevance of the problem with reference to some existing literature. The second set of general remarks will be about the place of linearization in a theory of the speaker. The following, and main part of this paper, will be a summary report of research of linearization in a limited, but well-defined domain of discourse, namely the description of spatial networks.
  • Levelt, W. J. M. (2001). Relations between speech production and speech perception: Some behavioral and neurological observations. In E. Dupoux (Ed.), Language, brain and cognitive development: Essays in honour of Jacques Mehler (pp. 241-256). Cambridge, MA: MIT Press.
  • Levelt, W. J. M. (2008). What has become of formal grammars in linguistics and psycholinguistics? [Postscript]. In Formal Grammars in linguistics and psycholinguistics (pp. 1-17). Amsterdam: John Benjamins.
  • Levinson, S. C. (2001). Motion Verb Stimulus (Moverb) version 2. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 9-13). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3513706.

    Abstract

    How do languages express ideas of movement, and how do they package different components of this domain, such as manner and path of motion? This task uses one large set of stimuli to gain knowledge of certain key aspects of motion verb meanings in the target language, and expands the investigation beyond simple verbs (e.g., go) to include the semantics of motion predications complete with adjuncts (e.g., go across something). Consultants are asked to view and briefly describe 96 animations of a few seconds each. The task is designed to get linguistic elicitations of motion predications under contrastive comparison with other animations in the same set. Unlike earlier tasks, the stimuli focus on inanimate moving items or “figures” (in this case, a ball).
  • Levinson, S. C. (1982). Caste rank and verbal interaction in Western Tamilnadu. In D. B. McGilvray (Ed.), Caste ideology and interaction (pp. 98-203). Cambridge University Press.
  • Levinson, S. C. (2013). Action formation and ascription. In T. Stivers, & J. Sidnell (Eds.), The handbook of conversation analysis (pp. 103-130). Malden, MA: Wiley-Blackwell. doi:10.1002/9781118325001.ch6.

    Abstract

    Since the core matrix for language use is interaction, the main job of language
    is not to express propositions or abstract meanings, but to deliver actions.
    For in order to respond in interaction we have to ascribe to the prior turn
    a primary ‘action’ – variously thought of as an ‘illocution’, ‘speech act’, ‘move’,
    etc. – to which we then respond. The analysis of interaction also relies heavily
    on attributing actions to turns, so that, e.g., sequences can be characterized in
    terms of actions and responses. Yet the process of action ascription remains way
    understudied. We don’t know much about how it is done, when it is done, nor even
    what kind of inventory of possible actions might exist, or the degree to which they
    are culturally variable.
    The study of action ascription remains perhaps the primary unfulfilled task in
    the study of language use, and it needs to be tackled from conversationanalytic,
    psycholinguistic, cross-linguistic and anthropological perspectives.
    In this talk I try to take stock of what we know, and derive a set of goals for and
    constraints on an adequate theory. Such a theory is likely to employ, I will suggest,
    a top-down plus bottom-up account of action perception, and a multi-level notion
    of action which may resolve some of the puzzles that have repeatedly arisen.
  • Levinson, S. C. (2001). Covariation between spatial language and cognition. In M. Bowerman, & S. C. Levinson (Eds.), Language acquisition and conceptual development (pp. 566-588). Cambridge: Cambridge University Press.
  • Levinson, S. C. (2013). Cross-cultural universals and communication structures. In M. A. Arbib (Ed.), Language, music, and the brain: A mysterious relationship (pp. 67-80). Cambridge, MA: MIT Press.

    Abstract

    Given the diversity of languages, it is unlikely that the human capacity for language resides in rich universal syntactic machinery. More likely, it resides centrally in the capacity for vocal learning combined with a distinctive ethology for communicative interaction, which together (no doubt with other capacities) make diverse languages learnable. This chapter focuses on face-to-face communication, which is characterized by the mapping of sounds and multimodal signals onto speech acts and which can be deeply recursively embedded in interaction structure, suggesting an interactive origin for complex syntax. These actions are recognized through Gricean intention recognition, which is a kind of “ mirroring” or simulation distinct from the classic mirror neuron system. The multimodality of conversational interaction makes evident the involvement of body, hand, and mouth, where the burden on these can be shifted, as in the use of speech and gesture, or hands and face in sign languages. Such shifts having taken place during the course of human evolution. All this suggests a slightly different approach to the mystery of music, whose origins should also be sought in joint action, albeit with a shift from turn-taking to simultaneous expression, and with an affective quality that may tap ancient sources residual in primate vocalization. The deep connection of language to music can best be seen in the only universal form of music, namely song.
  • Levinson, S. C. (1998). Deixis. In J. L. Mey (Ed.), Concise encyclopedia of pragmatics (pp. 200-204). Amsterdam: Elsevier.
  • Levinson, S. C., Kita, S., & Ozyurek, A. (2001). Demonstratives in context: Comparative handicrafts. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 52-54). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874663.

    Abstract

    Demonstratives (e.g., words such as this and that in English) pivot on relationships between the item being talked about, and features of the speech act situation (e.g., where the speaker and addressee are standing or looking). However, they are only rarely investigated multi-modally, in natural language contexts. This task is designed to build a video corpus of cross-linguistically comparable discourse data for the study of “deixis in action”, while simultaneously supporting the investigation of joint attention as a factor in speaker selection of demonstratives. In the task, two or more speakers are asked to discuss and evaluate a group of similar items (e.g., examples of local handicrafts, tools, produce) that are placed within a relatively defined space (e.g., on a table). The task can additionally provide material for comparison of pointing gesture practices.
  • Levinson, S. C. (2009). Cognitive anthropology. In G. Senft, J. O. Östman, & J. Verschueren (Eds.), Culture and language use (pp. 50-57). Amsterdam: Benjamins.
  • Levinson, S. C., Bohnemeyer, J., & Enfield, N. J. (2001). “Time and space” questionnaire for “space in thinking” subproject. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 14-20). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    This entry contains: 1. An invitation to think about to what extent the grammar of space and time share lexical and morphosyntactic resources − the suggestions here are only prompts, since it would take a long questionnaire to fully explore this; 2. A suggestion about how to collect gestural data that might show us to what extent the spatial and temporal domains, have a psychological continuity. This is really the goal − but you need to do the linguistic work first or in addition. The goal of this task is to explore the extent to which time is conceptualised on a spatial basis.
  • Levinson, S. C. (2009). Foreword. In J. Liep (Ed.), A Papuan plutocracy: Ranked exchange on Rossel Island (pp. ix-xxiii). Copenhagen: Aarhus University Press.
  • Levinson, S. C. (2001). Maxim. In S. Duranti (Ed.), Key terms in language and culture (pp. 139-142). Oxford: Blackwell.
  • Levinson, S. C. (1998). Minimization and conversational inference. In A. Kasher (Ed.), Pragmatics: Vol. 4 Presupposition, implicature and indirect speech acts (pp. 545-612). London: Routledge.
  • Levinson, S. C., Enfield, N. J., & Senft, G. (2001). Kinship domain for 'space in thinking' subproject. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 85-88). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874655.
  • Levinson, S. C. (2009). Language and mind: Let's get the issues straight! In S. D. Blum (Ed.), Making sense of language: Readings in culture and communication (pp. 95-104). Oxford: Oxford University Press.
  • Levinson, S. C. (2016). Language and mind: Let's get the issues straight! In S. D. Blum (Ed.), Making sense of language: Readings in culture and communication [3rd ed.] (pp. 68-80). Oxford: Oxford University Press.
  • Levinson, S. C., & Wittenburg, P. (2001). Language as cultural heritage - Promoting research and public awareness on the Internet. In J. Renn (Ed.), ECHO - An Infrastructure to Bring European Cultural Heritage Online (pp. 104-111). Berlin: Max Planck Institute for the History of Science.

    Abstract

    The ECHO proposal aims to bring to life the cultural heritage of Europe, through internet technology that encourages collaboration across the Humanities disciplines which interpret it – at the same time making all this scholarship accessible to the citizens of Europe. An essential part of the cultural heritage of Europe is the diverse set of languages used on the continent, in their historical, literary and spoken forms. Amongst these are the ‘hidden languages’ used by minorities but of wide interest to the general public. We take the 18 Sign Languages of the EEC – the natural languages of the deaf - as an example. Little comparative information about these is available, despite their special scientific importance, the widespread public interest and the policy implications. We propose a research project on these languages based on placing fully annotated digitized moving images of each of these languages on the internet. This requires significant development of multi-media technology which would allow distributed annotation of a central corpus, together with the development of special search techniques. The technology would have widespread application to all cultural performances recorded as sound plus moving images. Such a project captures in microcosm the essence of the ECHO proposal: cultural heritage is nothing without the humanities research which contextualizes and gives it comparative assessment; by marrying information technology to humanities research, we can bring these materials to a wider public while simultaneously boosting Europe as a research area.
  • Levinson, S. C., Kita, S., & Enfield, N. J. (2001). Locally-anchored narrative. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 147). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874660.

    Abstract

    As for 'Locally-anchored spatial gestures task, version 2', a major goal of this task is to elicit locally-anchored spatial gestures across different cultures. “Locally-anchored spatial gestures” are gestures that are roughly oriented to the actual geographical direction of referents. Rather than set up an interview situation, this task involves recording informal, animated narrative delivered to a native-speaker interlocutor. Locally-anchored gestures produced in such narrative are roughly comparable to those collected in the interview task. The data collected can also be used to investigate a wide range of other topics.
  • Levinson, S. C. (2018). Introduction: Demonstratives: Patterns in diversity. In S. C. Levinson, S. Cutfield, M. Dunn, N. J. Enfield, & S. Meira (Eds.), Demonstratives in cross-linguistic perspective (pp. 1-42). Cambridge: Cambridge University Press.
  • Levinson, S. C. (2016). The countable singulare tantum. In A. Reuneker, R. Boogaart, & S. Lensink (Eds.), Aries netwerk: Een constructicon (pp. 145-146). Leiden: Leiden University.
  • Levinson, S. C. (2001). Space: Linguistic expression. In N. Smelser, & P. Baltes (Eds.), International Encyclopedia of Social and Behavioral Sciences: Vol. 22 (pp. 14749-14752). Oxford: Pergamon.
  • Levinson, S. C. (1982). Speech act theory: The state of the art. In V. Kinsella (Ed.), Surveys 2. Eight state-of-the-art articles on key areas in language teaching. Cambridge University Press.
  • Levinson, S. C. (2001). Place and space in the sculpture of Anthony Gormley - An anthropological perspective. In S. D. McElroy (Ed.), Some of the facts (pp. 68-109). St Ives: Tate Gallery.
  • Levinson, S. C. (2001). Pragmatics. In N. Smelser, & P. Baltes (Eds.), International Encyclopedia of Social and Behavioral Sciences: Vol. 17 (pp. 11948-11954). Oxford: Pergamon.
  • Levinson, S. C., & Majid, A. (2008). Preface and priorities. In A. Majid (Ed.), Field manual volume 11 (pp. iii-iv). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C., & Enfield, N. J. (2001). Preface and priorities. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 3). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C., & Majid, A. (2009). Preface and priorities. In A. Majid (Ed.), Field manual volume 12 (pp. III). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Levinson, S. C., & Majid, A. (2009). The role of language in mind. In S. Nolen-Hoeksema, B. Fredrickson, G. Loftus, & W. Wagenaar (Eds.), Atkinson and Hilgard's introduction to psychology (15th ed., pp. 352). London: Cengage learning.
  • Levinson, S. C., & Dediu, D. (2013). The interplay of genetic and cultural factors in ongoing language evolution. In P. J. Richerson, & M. H. Christiansen (Eds.), Cultural evolution: Society, technology, language, and religion. Strüngmann Forum Reports, vol. 12 (pp. 219-232). Cambridge, Mass: MIT Press.
  • Levinson, S. C., Bohnemeyer, J., & Enfield, N. J. (2008). Time and space questionnaire. In A. Majid (Ed.), Field Manual Volume 11 (pp. 42-49). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492955.

    Abstract

    This entry contains: 1. An invitation to think about to what extent the grammar of space and time share lexical and morphosyntactic resources − the suggestions here are only prompts, since it would take a long questionnaire to fully explore this; 2. A suggestion about how to collect gestural data that might show us to what extent the spatial and temporal domains, have a psychological continuity. This is really the goal − but you need to do the linguistic work first or in addition. The goal of this task is to explore the extent to which time is conceptualised on a spatial basis.
  • Levinson, S. C. (2018). Yélî Dnye: Demonstratives in the language of Rossel Island, Papua New Guinea. In S. C. Levinson, S. Cutfield, M. Dunn, N. J. Enfield, & S. Meira (Eds.), Demonstratives in cross-linguistic perspective (pp. 318-342). Cambridge: Cambridge University Press.
  • Levshina, N. (2021). Conditional inference trees and random forests. In M. Paquot, & T. Gries (Eds.), Practical Handbook of Corpus Linguistics (pp. 611-643). New York: Springer.
  • Magyari, L. (2008). A mentális lexikon modelljei és a magyar nyelv (Models of mental lexicon and the Hungarian language). In J. Gervain, & C. Pléh (Eds.), A láthatatlan nyelv (Invisible Language). Budapest: Gondolat Kiadó.
  • Majid, A., van Leeuwen, T., & Dingemanse, M. (2008). Synaesthesia: A cross-cultural pilot. In A. Majid (Ed.), Field manual volume 11 (pp. 37-41). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492960.

    Abstract

    This Field Manual entry has been superceded by the 2009 version:
    https://doi.org/10.17617/2.883570

    Files private

    Request files
  • Majid, A., van Leeuwen, T., & Dingemanse, M. (2009). Synaesthesia: A cross-cultural pilot. In A. Majid (Ed.), Field manual volume 12 (pp. 8-13). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.883570.

    Abstract

    Synaesthesia is a condition in which stimulation of one sensory modality (e.g. hearing) causes additional experiences in a second, unstimulated modality (e.g. seeing colours). The goal of this task is to explore the types (and incidence) of synaesthesia in different cultures. Two simple tests can ascertain the existence of synaesthesia in your community.

    Additional information

    2009_Synaesthesia_audio_files.zip
  • Majid, A. (2018). Cultural factors shape olfactory language [Reprint]. In D. Howes (Ed.), Senses and Sensation: Critical and Primary Sources. Volume 3 (pp. 307-310). London: Bloomsbury Publishing.
  • Majid, A. (2008). Focal colours. In A. Majid (Ed.), Field Manual Volume 11 (pp. 8-10). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.492958.

    Abstract

    In this task we aim to find what the best exemplars or “focal colours” of each basic colour term is in our field languages. This is an important part of the evidence we need in order to understand the colour data collected using 'The Language of Vision I: Colour'. This task consists of an experiment where participants pick out the best exemplar for the colour terms in their language. The goal is to establish language specific focal colours.
  • Majid, A. (2018). Language and cognition. In H. Callan (Ed.), The International Encyclopedia of Anthropology. Hoboken: John Wiley & Sons Ltd.

    Abstract

    What is the relationship between the language we speak and the way we think? Researchers working at the interface of language and cognition hope to understand the complex interplay between linguistic structures and the way the mind works. This is thorny territory in anthropology and its closely allied disciplines, such as linguistics and psychology.

    Additional information

    home page encyclopedia
  • Majid, A. (2013). Psycholinguistics. In J. L. Jackson (Ed.), Oxford Bibliographies Online: Anthropology. Oxford: Oxford University Press.
  • Majid, A. (2016). Was wir von anderen Kulturen über den Geruchsinn lernen können. In Museum Tinguely (Ed.), Belle Haleine – Der Duft der Kunst. Interdisziplinäres Symposium (pp. 73-79). Heidelberg: Kehrer.
  • Majid, A. (2016). What other cultures can tell us about the sense of smell. In Museum Tinguely (Ed.), Belle haleine - the scent of art: interdisciplinary symposium (pp. 72-77). Heidelberg: Kehrer.
  • Mak, M., & Willems, R. M. (2021). Mental simulation during literary reading. In D. Kuiken, & A. M. Jacobs (Eds.), Handbook of empirical literary studies (pp. 63-84). Berlin: De Gruyter.

    Abstract

    Readers experience a number of sensations during reading. They do
    not – or do not only – process words and sentences in a detached, abstract
    manner. Instead they “perceive” what they read about. They see descriptions of
    scenery, feel what characters feel, and hear the sounds in a story. These sensa-
    tions tend to be grouped under the umbrella terms “mental simulation” and
    “mental imagery.” This chapter provides an overview of empirical research on
    the role of mental simulation during literary reading. Our chapter also discusses
    what mental simulation is and how it relates to mental imagery. Moreover, it
    explores how mental simulation plays a role in leading models of literary read-
    ing and investigates under what circumstances mental simulation occurs dur-
    ing literature reading. Finally, the effect of mental simulation on the literary
    reader’s experience is discussed, and suggestions and unresolved issues in this
    field are formulated.
  • Mamus, E., & Karadöller, D. Z. (2018). Anıları Zihinde Canlandırma [Imagery in autobiographical memories]. In S. Gülgöz, B. Ece, & S. Öner (Eds.), Hayatı Hatırlamak: Otobiyografik Belleğe Bilimsel Yaklaşımlar [Remembering Life: Scientific Approaches to Autobiographical Memory] (pp. 185-200). Istanbul, Turkey: Koç University Press.
  • Mani, N., Mishra, R. K., & Huettig, F. (2018). Introduction to 'The Interactive Mind: Language, Vision and Attention'. In N. Mani, R. K. Mishra, & F. Huettig (Eds.), The Interactive Mind: Language, Vision and Attention (pp. 1-2). Chennai: Macmillan Publishers India.
  • Matić, D., Hammond, J., & Van Putten, S. (2016). Left-dislocation, sentences and clauses in Avatime, Tundra Yukaghir and Whitesands. In J. Fleischhauer, A. Latrouite, & R. Osswald (Eds.), Exploring the Syntax-Semantics Interface. Festschrift for Robert D. Van Valin, Jr. (pp. 339-367). Düsseldorf: Düsseldorf University Press.
  • Matić, D. (2016). Tag questions and focus markers: Evidence from the Tompo dialect of Even. In M. M. J. Fernandez-Vest, & R. D. Van Valin Jr. (Eds.), Information structure and spoken language in a cross-linguistic perspective (pp. 167-190). Berlin: Mouton de Gruyter.
  • McDonough, L., Choi, S., Bowerman, M., & Mandler, J. M. (1998). The use of preferential looking as a measure of semantic development. In C. Rovee-Collier, L. P. Lipsitt, & H. Hayne (Eds.), Advances in Infancy Research. Volume 12. (pp. 336-354). Stamford, CT: Ablex Publishing.
  • McQueen, J. M., & Cutler, A. (1998). Morphology in word recognition. In A. M. Zwicky, & A. Spencer (Eds.), The handbook of morphology (pp. 406-427). Oxford: Blackwell.
  • Meira, S., & Levinson, S. C. (2001). Topological tasks: General introduction. In S. C. Levinson, & N. J. Enfield (Eds.), Manual for the field season 2001 (pp. 29-51). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.874665.
  • Mishra, R. K., Olivers, C. N. L., & Huettig, F. (2013). Spoken language and the decision to move the eyes: To what extent are language-mediated eye movements automatic? In V. S. C. Pammi, & N. Srinivasan (Eds.), Progress in Brain Research: Decision making: Neural and behavioural approaches (pp. 135-149). New York: Elsevier.

    Abstract

    Recent eye-tracking research has revealed that spoken language can guide eye gaze very rapidly (and closely time-locked to the unfolding speech) toward referents in the visual world. We discuss whether, and to what extent, such language-mediated eye movements are automatic rather than subject to conscious and controlled decision-making. We consider whether language-mediated eye movements adhere to four main criteria of automatic behavior, namely, whether they are fast and efficient, unintentional, unconscious, and overlearned (i.e., arrived at through extensive practice). Current evidence indicates that language-driven oculomotor behavior is fast but not necessarily always efficient. It seems largely unintentional though there is also some evidence that participants can actively use the information in working memory to avoid distraction in search. Language-mediated eye movements appear to be for the most part unconscious and have all the hallmarks of an overlearned behavior. These data are suggestive of automatic mechanisms linking language to potentially referred-to visual objects, but more comprehensive and rigorous testing of this hypothesis is needed.
  • Mitterer, H., Brouwer, S., & Huettig, F. (2018). How important is prediction for understanding spontaneous speech? In N. Mani, R. K. Mishra, & F. Huettig (Eds.), The Interactive Mind: Language, Vision and Attention (pp. 26-40). Chennai: Macmillan Publishers India.
  • Morgan, A., Fisher, S. E., Scheffer, I., & Hildebrand, M. (2016). FOXP2-related speech and language disorders. In R. A. Pagon, M. P. Adam, H. H. Ardinger, S. E. Wallace, A. Amemiya, L. J. Bean, T. D. Bird, C.-T. Fong, H. C. Mefford, R. J. Smith, & K. Stephens (Eds.), GeneReviews® [internet]. Seattle (WA): University of Washington, Seattle. Retrieved from http://www.ncbi.nlm.nih.gov/books/NBK368474/.
  • Muntendam, A., & Torreira, F. (2016). Focus and prosody in Spanish and Quechua: Insights from an interactive task. In M. E. Armstrong, N. Hendriksen, & M. Del Mar Vanrell (Eds.), Intonational Grammar in Ibero-Romance: Approaches across linguistic subfields (pp. 69-90). Amsterdam: Benjmanins.

    Abstract

    This paper reports the results of a study on the prosodic marking of broad and contrastive focus in three language varieties of which two are in contact: bilingual Peruvian Spanish, Quechua and Peninsular Spanish. An interactive communicative task revealed that the prosodic marking of contrastive focus was limited in all three language varieties. No systematic correspondence was observed between specific contour/accent types and focus, and the phonetic marking of contrastive focus was weak and restricted to phrase-final position. Interestingly, we identified two contours for bilingual Peruvian Spanish that were present in Quechua, but not in Peninsular Spanish, providing evidence for a prosodic transfer from Quechua to Spanish in Quechua-Spanish bilinguals.
  • Narasimhan, B., & Brown, P. (2009). Getting the inside story: Learning to talk about containment in Tzeltal and Hindi. In V. C. Mueller-Gathercole (Ed.), Routes to language: Studies in honor of Melissa Bowerman (pp. 97-132). New York: Psychology Press.

    Abstract

    The present study examines young children's uses of semantically specific and general relational containment terms (e.g. in, enter) in Hindi and Tzeltal, and the extent to which their usage patterns are influenced by input frequency. We hypothesize that if children have a preference for relational terms that are semantically specific, this will be reflected in early acquisition of more semantically specific expressions and underextension of semantically general ones, regardless of the distributional patterns of use of these terms in the input. Our findings however show a strong role for input frequency in guiding children's patterns of use of containment terms in the two languages. Yet language-specific lexicalization patterns play a role as well, since object-specific containment verbs are used as early as the semantically general 'enter' verb by children acquiring Tzeltal.
  • De Nooijer, J. A., & Willems, R. M. (2016). What can we learn about cognition from studying handedness? Insights from cognitive neuroscience. In F. Loffing, N. Hagemann, B. Strauss, & C. MacMahon (Eds.), Laterality in sports: Theories and applications (pp. 135-153). Amsterdam: Elsevier.

    Abstract

    Can studying left- and right-handers inform us about cognition? In this chapter, we give an overview of research showing that studying left- and right-handers is informative for understanding the way the brain is organized (i.e., lateralized), as there appear to be differences between left- and right-handers in this respect, but also on the behavioral level handedness studies can provide new insights. According to theories of embodied cognition, our body can influence cognition. Given that left- and right-handers use their bodies differently, this might reflect their performance on an array of cognitive tasks. Indeed, handedness can have an influence on, for instance, what side of space we judge as more positive, the way we gesture, how we remember things, and how we learn new words. Laterality research can, therefore, provide valuable information as to how we act and why
  • Noordman, L. G., & Vonk, W. (1998). Discourse comprehension. In A. D. Friederici (Ed.), Language comprehension: a biological perspective (pp. 229-262). Berlin: Springer.

    Abstract

    The human language processor is conceived as a system that consists of several interrelated subsystems. Each subsystem performs a specific task in the complex process of language comprehension and production. A subsystem receives a particular input, performs certain specific operations on this input and yields a particular output. The subsystems can be characterized in terms of the transformations that relate the input representations to the output representations. An important issue in describing the language processing system is to identify the subsystems and to specify the relations between the subsystems. These relations can be conceived in two different ways. In one conception the subsystems are autonomous. They are related to each other only by the input-output channels. The operations in one subsystem are not affected by another system. The subsystems are modular, that is they are independent. In the other conception, the different subsystems influence each other. A subsystem affects the processes in another subsystem. In this conception there is an interaction between the subsystems.
  • Norcliffe, E. (2018). Egophoricity and evidentiality in Guambiano (Nam Trik). In S. Floyd, E. Norcliffe, & L. San Roque (Eds.), Egophoricity (pp. 305-345). Amsterdam: Benjamins.

    Abstract

    Egophoric verbal marking is a typological feature common to Barbacoan languages, but otherwise unknown in the Andean sphere. The verbal systems of three out of the four living Barbacoan languages, Cha’palaa, Tsafiki and Awa Pit, have previously been shown to express egophoric contrasts. The status of Guambiano has, however, remained uncertain. In this chapter, I show that there are in fact two layers of egophoric or egophoric-like marking visible in Guambiano’s grammar. Guambiano patterns with certain other (non-Barbacoan) languages in having ego-categories which function within a broader evidential system. It is additionally possible to detect what is possibly a more archaic layer of egophoric marking in Guambiano’s verbal system. This marking may be inherited from a common Barbacoan system, thus pointing to a potential genealogical basis for the egophoric patterning common to these languages. The multiple formal expressions of egophoricity apparent both within and across the four languages reveal how egophoric contrasts are susceptible to structural renewal, suggesting a pan-Barbacoan preoccupation with the linguistic encoding of self-knowledge.
  • Ortega, G. (2016). Language acquisition and development. In G. Gertz (Ed.), The SAGE Deaf Studies Encyclopedia. Vol. 3 (pp. 547-551). London: SAGE Publications Inc.
  • Osswald, R., & Van Valin Jr., R. D. (2013). FrameNet, frame structure and the syntax-semantics interface. In T. Gamerschlag, D. Gerland, R. Osswald, & W. Petersen (Eds.), Frames and concept types: Applications in language and philosophy. Heidelberg: Springer.
  • Ozyurek, A. (2018). Cross-linguistic variation in children’s multimodal utterances. In M. Hickmann, E. Veneziano, & H. Jisa (Eds.), Sources of variation in first language acquisition: Languages, contexts, and learners (pp. 123-138). Amsterdam: Benjamins.

    Abstract

    Our ability to use language is multimodal and requires tight coordination between what is expressed in speech and in gesture, such as pointing or iconic gestures that convey semantic, syntactic and pragmatic information related to speakers’ messages. Interestingly, what is expressed in gesture and how it is coordinated with speech differs in speakers of different languages. This paper discusses recent findings on the development of children’s multimodal expressions taking cross-linguistic variation into account. Although some aspects of speech-gesture development show language-specificity from an early age, it might still take children until nine years of age to exhibit fully adult patterns of cross-linguistic variation. These findings reveal insights about how children coordinate different levels of representations given that their development is constrained by patterns that are specific to their languages.
  • Ozyurek, A. (2018). Role of gesture in language processing: Toward a unified account for production and comprehension. In S.-A. Rueschemeyer, & M. G. Gaskell (Eds.), Oxford Handbook of Psycholinguistics (2nd ed., pp. 592-607). Oxford: Oxford University Press. doi:10.1093/oxfordhb/9780198786825.013.25.

    Abstract

    Use of language in face-to-face context is multimodal. Production and perception of speech take place in the context of visual articulators such as lips, face, or hand gestures which convey relevant information to what is expressed in speech at different levels of language. While lips convey information at the phonological level, gestures contribute to semantic, pragmatic, and syntactic information, as well as to discourse cohesion. This chapter overviews recent findings showing that speech and gesture (e.g. a drinking gesture as someone says, “Would you like a drink?”) interact during production and comprehension of language at the behavioral, cognitive, and neural levels. Implications of these findings for current psycholinguistic theories and how they can be expanded to consider the multimodal context of language processing are discussed.
  • Pawley, A., & Hammarström, H. (2018). The Trans New Guinea family. In B. Palmer (Ed.), Papuan Languages and Linguistics (pp. 21-196). Berlin: De Gruyter Mouton.
  • Perniss, P. M., & Ozyurek, A. (2008). Representations of action, motion and location in sign space: A comparison of German (DGS) and Turkish (TID) sign language narratives. In J. Quer (Ed.), Signs of the time: Selected papers from TISLR 8 (pp. 353-376). Seedorf: Signum Press.
  • Perniss, P. M., & Zeshan, U. (2008). Possessive and existential constructions in Kata Kolok (Bali). In Possessive and existential constructions in sign languages. Nijmegen: Ishara Press.
  • Perniss, P. M., & Zeshan, U. (2008). Possessive and existential constructions: Introduction and overview. In Possessive and existential constructions in sign languages (pp. 1-31). Nijmegen: Ishara Press.
  • Petersson, K. M., Ingvar, M., & Reis, A. (2009). Language and literacy from a cognitive neuroscience perspective. In D. Olsen, & N. Torrance (Eds.), Cambridge handbook of literacy (pp. 152-181). Cambridge: Cambridge University Press.
  • Piepers, J., & Redl, T. (2018). Gender-mismatching pronouns in context: The interpretation of possessive pronouns in Dutch and Limburgian. In B. Le Bruyn, & J. Berns (Eds.), Linguistics in the Netherlands 2018 (pp. 97-110). Amsterdam: Benjamins.

    Abstract

    Gender-(mis)matching pronouns have been studied extensively in experiments. However, a phenomenon common to various languages has thus far been overlooked: the systemic use of non-feminine pronouns when referring to female individuals. The present study is the first to provide experimental insights into the interpretation of such a pronoun: Limburgian zien ‘his/its’ and Dutch zijn ‘his/its’ are grammatically ambiguous between masculine and neuter, but while Limburgian zien can refer to women, the Dutch equivalent zijn cannot. Employing an acceptability judgment task, we presented speakers of Limburgian (N = 51) with recordings of sentences in Limburgian featuring zien, and speakers of Dutch (N = 52) with Dutch translations of these sentences featuring zijn. All sentences featured a potential male or female antecedent embedded in a stereotypically male or female context. We found that ratings were higher for sentences in which the pronoun could refer back to the antecedent. For Limburgians, this extended to sentences mentioning female individuals. Context further modulated sentence appreciation. Possible mechanisms regarding the interpretation of zien as coreferential with a female individual will be discussed.
  • Ramus, F., & Fisher, S. E. (2009). Genetics of language. In M. S. Gazzaniga (Ed.), The cognitive neurosciences, 4th ed. (pp. 855-871). Cambridge, MA: MIT Press.

    Abstract

    It has long been hypothesised that the human faculty to acquire a language is in some way encoded in our genetic program. However, only recently has genetic evidence been available to begin to substantiate the presumed genetic basis of language. Here we review the first data from molecular genetic studies showing association between gene variants and language disorders (specific language impairment, speech sound disorder, developmental dyslexia), we discuss the biological function of these genes, and we further speculate on the more general question of how the human genome builds a brain that can learn a language.
  • Rapold, C. J., & Zaugg-Coretti, S. (2009). Exploring the periphery of the central Ethiopian Linguistic area: Data from Yemsa and Benchnon. In J. Crass, & R. Meyer (Eds.), Language contact and language change in Ethiopia (pp. 59-81). Köln: Köppe.
  • Razafindrazaka, H., & Brucato, N. (2008). Esclavage et diaspora Africaine. In É. Crubézy, J. Braga, & G. Larrouy (Eds.), Anthropobiologie: Évolution humaine (pp. 326-328). Issy-les-Moulineaux: Elsevier Masson.
  • Razafindrazaka, H., Brucato, N., & Mazières, S. (2008). Les Noirs marrons. In É. Crubézy, J. Braga, & G. Larrouy (Eds.), Anthropobiologie: Évolution humaine (pp. 319-320). Issy-les-Moulineaux: Elsevier Masson.
  • Reesink, G. (2009). A connection between Bird's Head and (Proto) Oceanic. In B. Evans (Ed.), Discovering history through language, papers in honor of Malcolm Ross (pp. 181-192). Canberra: Pacific Linguistics.
  • Roberts, L. (2008). Processing temporal constraints and some implications for the investigation of second language sentence processing and acquisition. Commentary on Baggio. In P. Indefrey, & M. Gullberg (Eds.), Time to speak: Cognitive and neural prerequisites for time in language (pp. 57-61). Oxford: Blackwell.
  • Roberts, L. (2013). Discourse processing. In P. Robinson (Ed.), The Routledge encyclopedia of second language acquisition (pp. 190-194). New York: Routledge.
  • Roberts, L. (2013). Sentence processing in bilinguals. In R. Van Gompel (Ed.), Sentence processing. London: Psychology Press.
  • Rommers, J., & Federmeier, K. D. (2018). Electrophysiological methods. In A. M. B. De Groot, & P. Hagoort (Eds.), Research methods in psycholinguistics and the neurobiology of language: A practical guide (pp. 247-265). Hoboken: Wiley.

Share this page