Publications

Displaying 201 - 300 of 521
  • Heilbron, M., Ehinger, B., Hagoort, P., & De Lange, F. P. (2019). Tracking naturalistic linguistic predictions with deep neural language models. In Proceedings of the 2019 Conference on Cognitive Computational Neuroscience (pp. 424-427). doi:10.32470/CCN.2019.1096-0.

    Abstract

    Prediction in language has traditionally been studied using
    simple designs in which neural responses to expected
    and unexpected words are compared in a categorical
    fashion. However, these designs have been contested
    as being ‘prediction encouraging’, potentially exaggerating
    the importance of prediction in language understanding.
    A few recent studies have begun to address
    these worries by using model-based approaches to probe
    the effects of linguistic predictability in naturalistic stimuli
    (e.g. continuous narrative). However, these studies
    so far only looked at very local forms of prediction, using
    models that take no more than the prior two words into
    account when computing a word’s predictability. Here,
    we extend this approach using a state-of-the-art neural
    language model that can take roughly 500 times longer
    linguistic contexts into account. Predictability estimates
    fromthe neural network offer amuch better fit to EEG data
    from subjects listening to naturalistic narrative than simpler
    models, and reveal strong surprise responses akin to
    the P200 and N400. These results show that predictability
    effects in language are not a side-effect of simple designs,
    and demonstrate the practical use of recent advances
    in AI for the cognitive neuroscience of language.
  • Hellwig, B., Defina, R., Kidd, E., Allen, S. E. M., Davidson, L., & Kelly, B. F. (2021). Child language documentation: The sketch acquisition project. In G. Haig, S. Schnell, & F. Seifart (Eds.), Doing corpus-based typology with spoken language data: State of the art (pp. 29-58). Honolulu, HI: University of Hawai'i Press.

    Abstract

    This paper reports on an on-going project designed to collect comparable corpus data on child language and child-directed language in under-researched languages. Despite a long history of cross-linguistic research, there is a severe empirical bias within language acquisition research: Data is available for less than 2% of the world's languages, heavily skewed towards the larger and better-described languages. As a result, theories of language development tend to be grounded in a non-representative sample, and we know little about the acquisition of typologically-diverse languages from different families, regions, or sociocultural contexts. It is very likely that the reasons are to be found in the forbidding methodological challenges of constructing child language corpora under fieldwork conditions with their strict requirements on participant selection, sampling intervals, and amounts of data. There is thus an urgent need for proposals that facilitate and encourage language acquisition research across a wide variety of languages. Adopting a language documentation perspective, we illustrate an approach that combines the construction of manageable corpora of natural interaction with and between children with a sketch description of the corpus data – resulting in a set of comparable corpora and comparable sketches that form the basis for cross-linguistic comparisons.
  • Herbst, L. E. (2006). The influence of language dominance on bilingual VOT: A case study. In Proceedings of the 4th University of Cambridge Postgraduate Conference on Language Research (CamLing 2006) (pp. 91-98). Cambridge: Cambridge University Press.

    Abstract

    Longitudinally collected VOT data from an early English-Italian bilingual who became increasingly English-dominant was analyzed. Stops in English were always produced with significantly longer VOT than in Italian. However, the speaker did not show any significant change in the VOT production in either language over time, despite the clear dominance of English in his every day language use later in his life. The results indicate that – unlike L2 learners – early bilinguals may remain unaffected by language use with respect to phonetic realization.
  • Hintz, F., Voeten, C. C., McQueen, J. M., & Scharenborg, O. (2021). The effects of onset and offset masking on the time course of non-native spoken-word recognition in noise. In T. Fitch, C. Lamm, H. Leder, & K. Teßmar-Raible (Eds.), Proceedings of the 43rd Annual Conference of the Cognitive Science Society (CogSci 2021) (pp. 133-139). Vienna: Cognitive Science Society.

    Abstract

    Using the visual-word paradigm, the present study investigated the effects of word onset and offset masking on the time course of non-native spoken-word recognition in the presence of background noise. In two experiments, Dutch non-native listeners heard English target words, preceded by carrier sentences that were noise-free (Experiment 1) or contained intermittent noise (Experiment 2). Target words were either onset- or offset-masked or not masked at all. Results showed that onset masking delayed target word recognition more than offset masking did, suggesting that – similar to natives – non-native listeners strongly rely on word onset information during word recognition in noise.

    Additional information

    Link to Preprint on BioRxiv
  • Hoeksema, N., Villanueva, S., Mengede, J., Salazar-Casals, A., Rubio-García, A., Curcic-Blake, B., Vernes, S. C., & Ravignani, A. (2020). Neuroanatomy of the grey seal brain: Bringing pinnipeds into the neurobiological study of vocal learning. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 162-164). Nijmegen: The Evolution of Language Conferences.
  • Hoeksema, N., Wiesmann, M., Kiliaan, A., Hagoort, P., & Vernes, S. C. (2020). Bats and the comparative neurobiology of vocal learning. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 165-167). Nijmegen: The Evolution of Language Conferences.
  • Holler, J., & Stevens, R. (2006). How speakers represent size information in referential communication for knowing and unknowing recipients. In D. Schlangen, & R. Fernandez (Eds.), Brandial '06 Proceedings of the 10th Workshop on the Semantics and Pragmatics of Dialogue, Potsdam, Germany, September 11-13.
  • Indefrey, P., & Goebel, R. (1993). The learning of weak noun declension in German - children vs artificial network models. In Proceedings of the 15th Annual conference of the Cognitive Science Society (pp. 575-580). Hillsdale, NJ: Erlbaum.
  • Jadoul, Y., Düngen, D., & Ravignani, A. (2023). Live-tracking acoustic parameters in animal behavioural experiments: Interactive bioacoustics with parselmouth. In A. Astolfi, F. Asdrubali, & L. Shtrepi (Eds.), Proceedings of the 10th Convention of the European Acoustics Association Forum Acusticum 2023 (pp. 4675-4678). Torino: European Acoustics Association.

    Abstract

    Most bioacoustics software is used to analyse the already collected acoustics data in batch, i.e., after the data-collecting phase of a scientific study. However, experiments based on animal training require immediate and precise reactions from the experimenter, and thus do not easily dovetail with a typical bioacoustics workflow. Bridging this methodological gap, we have developed a custom application to live-monitor the vocal development of harbour seals in a behavioural experiment. In each trial, the application records and automatically detects an animal's call, and immediately measures duration and acoustic measures such as intensity, fundamental frequency, or formant frequencies. It then displays a spectrogram of the recording and the acoustic measurements, allowing the experimenter to instantly evaluate whether or not to reinforce the animal's vocalisation. From a technical perspective, the rapid and easy development of this custom software was made possible by combining multiple open-source software projects. Here, we integrated the acoustic analyses from Parselmouth, a Python library for Praat, together with PyAudio and Matplotlib's recording and plotting functionality, into a custom graphical user interface created with PyQt. This flexible recombination of different open-source Python libraries allows the whole program to be written in a mere couple of hundred lines of code
  • Janse, E. (2003). Word perception in natural-fast and artificially time-compressed speech. In M. SolÉ, D. Recasens, & J. Romero (Eds.), Proceedings of the 15th International Congress of the Phonetic Sciences (pp. 3001-3004).
  • Johnson, E. K. (2003). Speaker intent influences infants' segmentation of potentially ambiguous utterances. In Proceedings of the 15th International Congress of Phonetic Sciences (PCPhS 2003) (pp. 1995-1998). Adelaide: Causal Productions.
  • De Jong, N. H., Schreuder, R., & Baayen, R. H. (2003). Morphological resonance in the mental lexicon. In R. Baayen, & R. Schreuder (Eds.), Morphological structure in language processing (pp. 65-88). Berlin: Mouton de Gruyter.
  • Joo, H., Jang, J., Kim, S., Cho, T., & Cutler, A. (2019). Prosodic structural effects on coarticulatory vowel nasalization in Australian English in comparison to American English. In S. Calhoun, P. Escudero, M. Tabain, & P. Warren (Eds.), Proceedings of the 19th International Congress of Phonetic Sciences (ICPhS 20195) (pp. 835-839). Canberra, Australia: Australasian Speech Science and Technology Association Inc.

    Abstract

    This study investigates effects of prosodic factors (prominence, boundary) on coarticulatory Vnasalization in Australian English (AusE) in CVN and NVC in comparison to those in American English
    (AmE). As in AmE, prominence was found to
    lengthen N, but to reduce V-nasalization, enhancing N’s nasality and V’s orality, respectively (paradigmatic contrast enhancement). But the prominence effect in CVN was more robust than that in AmE. Again similar to findings in AmE, boundary
    induced a reduction of N-duration and V-nasalization phrase-initially (syntagmatic contrast enhancement), and increased the nasality of both C and V phrasefinally.
    But AusE showed some differences in terms
    of the magnitude of V nasalization and N duration. The results suggest that the linguistic contrast enhancements underlie prosodic-structure modulation of coarticulatory V-nasalization in
    comparable ways across dialects, while the fine phonetic detail indicates that the phonetics-prosody interplay is internalized in the individual dialect’s phonetic grammar.
  • Jordanoska, I. (2023). Focus marking and size in some Mande and Atlantic languages. In N. Sumbatova, I. Kapitonov, M. Khachaturyan, S. Oskolskaya, & V. Verhees (Eds.), Songs and Trees: Papers in Memory of Sasha Vydrina (pp. 311-343). St. Petersburg: Institute for Linguistic Studies and Russian Academy of Sciences.

    Abstract

    This paper compares the focus marking systems and the focus size that can be expressed by the different focus markings in four Mande and three Atlantic languages and varieties, namely: Bambara, Dyula, Kakabe, Soninke (Mande), Wolof, Jóola Foñy and Jóola Karon (Atlantic). All of these languages are known to mark focus morphosyntactically, rather than prosodically, as the more well-studied Germanic languages do. However, the Mande languages under discussion use only morphology, in the form of a particle that follows the focus, while the Atlantic ones use a more complex morphosyntactic system in which focus is marked by morphology in the verbal complex and movement of the focused term. It is shown that while there are some syntactic restrictions to how many different focus sizes can be marked in a distinct way, there is also a certain degree of arbitrariness as to which focus sizes are marked in the same way as each other.
  • Jordens, P. (1998). Defaultformen des Präteritums. Zum Erwerb der Vergangenheitsmorphologie im Niederlänidischen. In H. Wegener (Ed.), Eine zweite Sprache lernen (pp. 61-88). Tübingen, Germany: Verlag Gunter Narr.
  • Jordens, P. (2003). Constraints on the shape of second language learner varieties. In G. Rickheit, T. Herrmann, & W. Deutsch (Eds.), Psycholinguistik/Psycholinguistics: Ein internationales Handbuch. [An International Handbook] (pp. 819-833). Berlin: Mouton de Gruyter.
  • Jordens, P., & Dimroth, C. (2006). Finiteness in children and adults learning Dutch. In N. Gagarina, & I. Gülzow (Eds.), The acquisition of verbs and their grammar: The effect of particular languages (pp. 173-200). Dordrecht: Springer.
  • Jordens, P. (2006). Inversion as an artifact: The acquisition of topicalization in child L1- and adult L2-Dutch. In S. H. Foster-Cohen, M. Medved Krajnovic, & J. Mihaljevic Djigunovic (Eds.), EUROSLA Yearbook 6 (pp. 101-120).
  • Kanakanti, M., Singh, S., & Shrivastava, M. (2023). MultiFacet: A multi-tasking framework for speech-to-sign language generation. In E. André, M. Chetouani, D. Vaufreydaz, G. Lucas, T. Schultz, L.-P. Morency, & A. Vinciarelli (Eds.), ICMI '23 Companion: Companion Publication of the 25th International Conference on Multimodal Interaction (pp. 205-213). New York: ACM. doi:10.1145/3610661.3616550.

    Abstract

    Sign language is a rich form of communication, uniquely conveying meaning through a combination of gestures, facial expressions, and body movements. Existing research in sign language generation has predominantly focused on text-to-sign pose generation, while speech-to-sign pose generation remains relatively underexplored. Speech-to-sign language generation models can facilitate effective communication between the deaf and hearing communities. In this paper, we propose an architecture that utilises prosodic information from speech audio and semantic context from text to generate sign pose sequences. In our approach, we adopt a multi-tasking strategy that involves an additional task of predicting Facial Action Units (FAUs). FAUs capture the intricate facial muscle movements that play a crucial role in conveying specific facial expressions during sign language generation. We train our models on an existing Indian Sign language dataset that contains sign language videos with audio and text translations. To evaluate our models, we report Dynamic Time Warping (DTW) and Probability of Correct Keypoints (PCK) scores. We find that combining prosody and text as input, along with incorporating facial action unit prediction as an additional task, outperforms previous models in both DTW and PCK scores. We also discuss the challenges and limitations of speech-to-sign pose generation models to encourage future research in this domain. We release our models, results and code to foster reproducibility and encourage future research1.
  • Karaca, F., Brouwer, S., Unsworth, S., & Huettig, F. (2021). Prediction in bilingual children: The missing piece of the puzzle. In E. Kaan, & T. Grüter (Eds.), Prediction in Second Language Processing and Learning (pp. 116-137). Amsterdam: Benjamins.

    Abstract

    A wealth of studies has shown that more proficient monolingual speakers are better at predicting upcoming information during language comprehension. Similarly, prediction skills of adult second language (L2) speakers in their L2 have also been argued to be modulated by their L2 proficiency. How exactly language proficiency and prediction are linked, however, is yet to be systematically investigated. One group of language users which has the potential to provide invaluable insights into this link is bilingual children. In this paper, we compare bilingual children’s prediction skills with those of monolingual children and adult L2 speakers, and show how investigating bilingual children’s prediction skills may contribute to our understanding of how predictive processing works.
  • Karadöller, D. Z., Sumer, B., Ünal, E., & Ozyurek, A. (2021). Spatial language use predicts spatial memory of children: Evidence from sign, speech, and speech-plus-gesture. In T. Fitch, C. Lamm, H. Leder, & K. Teßmar-Raible (Eds.), Proceedings of the 43rd Annual Conference of the Cognitive Science Society (CogSci 2021) (pp. 672-678). Vienna: Cognitive Science Society.

    Abstract

    There is a strong relation between children’s exposure to
    spatial terms and their later memory accuracy. In the current
    study, we tested whether the production of spatial terms by
    children themselves predicts memory accuracy and whether
    and how language modality of these encodings modulates
    memory accuracy differently. Hearing child speakers of
    Turkish and deaf child signers of Turkish Sign Language
    described pictures of objects in various spatial relations to each
    other and later tested for their memory accuracy of these
    pictures in a surprise memory task. We found that having
    described the spatial relation between the objects predicted
    better memory accuracy. However, the modality of these
    descriptions in sign, speech, or speech-plus-gesture did not
    reveal differences in memory accuracy. We discuss the
    implications of these findings for the relation between spatial
    language, memory, and the modality of encoding.
  • Kastens, K. (2020). The Jerome Bruner Library treasure. In M. E. Poulsen (Ed.), The Jerome Bruner Library: From New York to Nijmegen (pp. 29-34). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Keating, P., Cho, T., Fougeron, C., & Hsu, C.-S. (2003). Domain-initial strengthening in four languages. In J. Local, R. Ogden, & R. Temple (Eds.), Laboratory phonology VI: Phonetic interpretation (pp. 145-163). Cambridge: Cambridge University Press.
  • Kempen, G., & Harbusch, K. (2003). A corpus study into word order variation in German subordinate clauses: Animacy affects linearization independently of function assignment. In Proceedings of AMLaP 2003 (pp. 153-154). Glasgow: Glasgow University.
  • Kempen, G. (1993). Die Architektur des Sprechens [Abstract]. In O. Herzog, T. Christaller, & D. Schütt (Eds.), Grundlagen und Anwendungen der Künstlichen Intelligenz: 17. Fachtagung für Künstliche Intelligenz, Humboldt-Universität zu Berlin, 13.-16. September 1993 (pp. 201-202). Berlin: Springer Verlag.
  • Kempen, G., & Harbusch, K. (1998). A 'tree adjoining' grammar without adjoining: The case of scrambling in German. In Fourth International Workshop on Tree Adjoining Grammars and Related Frameworks (TAG+4).
  • Kempen, G. (1993). A cognitive architecture for incremental syntactic processing in sentence understanding and sentence production [Abstract]. In Abstracts of the International Conference on the Psychology of Language and Communication. Glasgow: University of Glasgow.
  • Kempen, G., & Harbusch, K. (2003). Dutch and German verb clusters in performance grammar. In P. A. Seuren, & G. Kempen (Eds.), Verb constructions in German and Dutch (pp. 185-221). Amsterdam: Benjamins.
  • Kempen, G. (2003). Language generation. In W. Frawley (Ed.), International encyclopedia of linguistics (pp. 362-364). New York: Oxford University Press.
  • Kempen, G., & Hoenkamp, E. (1982). Incremental sentence generation: Implications for the structure of a syntactic processor. In J. Horecký (Ed.), COLING 82. Proceedings of the Ninth International Conference on Computational Linguistics, Prague, July 5-10, 1982 (pp. 151-156). Amsterdam: North-Holland.

    Abstract

    Human speakers often produce sentences incrementally. They can start speaking having in mind only a fragmentary idea of what they want to say, and while saying this they refine the contents underlying subsequent parts of the utterance. This capability imposes a number of constraints on the design of a syntactic processor. This paper explores these constraints and evaluates some recent computational sentence generators from the perspective of incremental production.
  • Kempen, G. (1993). Naar geautomatiseerde Nederlandstalige informatiediensten. In N. Van Willigen (Ed.), RABIN uitGELUID: Tien persoonlijke bijdragen na zes jaar advisering over bibliotheken en informatie (pp. 42-51). Den Haag: RABIN.
  • Kempen, G. (1998). Sentence parsing. In A. D. Friederici (Ed.), Language comprehension: A biological perspective (pp. 213-228). Berlin: Springer.
  • Kempen, G., & Harbusch, K. (2003). Word order scrambling as a consequence of incremental sentence production. In H. Härtl, & H. Tappe (Eds.), Mediating between concepts and grammar (pp. 141-164). Berlin: Mouton de Gruyter.
  • Kemps-Snijders, M., Ducret, J., Romary, L., & Wittenburg, P. (2006). An API for accessing the data category registry. In Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC 2006) (pp. 2299-2302).
  • Kemps-Snijders, M., Nederhof, M.-J., & Wittenburg, P. (2006). LEXUS, a web-based tool for manipulating lexical resources. In Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC 2006) (pp. 1862-1865).
  • Khoe, Y. H., Tsoukala, C., Kootstra, G. J., & Frank, S. L. (2020). Modeling cross-language structural priming in sentence production. In T. C. Stewart (Ed.), Proceedings of the 18th Annual Meeting of the International Conference on Cognitive Modeling (pp. 131-137). University Park, PA, USA: The Penn State Applied Cognitive Science Lab.

    Abstract

    A central question in the psycholinguistic study of multilingualism is how syntax is shared across languages. We implement a model to investigate whether error-based implicit learning can provide an account of cross-language structural priming. The model is based on the Dual-path model of
    sentence-production (Chang, 2002). We implement our model using the Bilingual version of Dual-path (Tsoukala, Frank, & Broersma, 2017). We answer two main questions: (1) Can structural priming of active and passive constructions occur between English and Spanish in a bilingual version of the Dual-
    path model? (2) Does cross-language priming differ quantitatively from within-language priming in this model? Our results show that cross-language priming does occur in the model. This finding adds to the viability of implicit learning as an account of structural priming in general and cross-language
    structural priming specifically. Furthermore, we find that the within-language priming effect is somewhat stronger than the cross-language effect. In the context of mixed results from
    behavioral studies, we interpret the latter finding as an indication that the difference between cross-language and within-
    language priming is small and difficult to detect statistically.
  • Kidd, E., Bigood, A., Donnelly, S., Durrant, S., Peter, M. S., & Rowland, C. F. (2020). Individual differences in first language acquisition and their theoretical implications. In C. F. Rowland, A. L. Theakston, B. Ambridge, & K. E. Twomey (Eds.), Current Perspectives on Child Language Acquisition: How children use their environment to learn (pp. 189-219). Amsterdam: John Benjamins. doi:10.1075/tilar.27.09kid.

    Abstract

    Much of Lieven’s pioneering work has helped move the study of individual differences to the centre of child language research. The goal of the present chapter is to illustrate how the study of individual differences provides crucial insights into the language acquisition process. In part one, we summarise some of the evidence showing how pervasive individual differences are across the whole of the language system; from gestures to morphosyntax. In part two, we describe three causal factors implicated in explaining individual differences, which, we argue, must be built into any theory of language acquisition (intrinsic differences in the neurocognitive learning mechanisms, the child’s communicative environment, and developmental cascades in which each new linguistic skill that the child has to acquire depends critically on the prior acquisition of foundational abilities). In part three, we present an example study on the role of the speed of linguistic processing on vocabulary development, which illustrates our approach to individual differences. The results show evidence of a changing relationship between lexical processing speed and vocabulary over developmental time, perhaps as a result of the changing nature of the structure of the lexicon. The study thus highlights the benefits of an individual differences approach in building, testing, and constraining theories of language acquisition.
  • Kidd, E. (2006). The acquisition of complement clause constructions. In E. V. Clark, & B. F. Kelly (Eds.), Constructions in acquisition (pp. 311-332). Stanford: Center for the Study of Language and Information.
  • Kita, S. (2003). Pointing: A foundational building block in human communication. In S. Kita (Ed.), Pointing: Where language, culture, and cognition meet (pp. 1-8). Mahwah, NJ: Erlbaum.
  • Kita, S. (2003). Interplay of gaze, hand, torso orientation and language in pointing. In S. Kita (Ed.), Pointing: Where language, culture, and cognition meet (pp. 307-328). Mahwah, NJ: Erlbaum.
  • Kita, S., & Essegbey, J. (2003). Left-hand taboo on direction-indicating gestures in Ghana: When and why people still use left-hand gestures. In M. Rector, I. Poggi, & N. Trigo (Eds.), Gesture: Meaning and use (pp. 301-306). Oporto: Edições Universidade Fernando Pessoa, Fundação Fernado Pessoa.
  • Kita, S., van Gijn, I., & van der Hulst, H. (1998). Movement phases in signs and co-speech gestures, and their transcription by human coders. In Gesture and Sign-Language in Human-Computer Interaction (Lecture Notes in Artificial Intelligence - LNCS Subseries, Vol. 1371) (pp. 23-35). Berlin, Germany: Springer-Verlag.

    Abstract

    The previous literature has suggested that the hand movement in co-speech gestures and signs consists of a series of phases with qualitatively different dynamic characteristics. In this paper, we propose a syntagmatic rule system for movement phases that applies to both co-speech gestures and signs. Descriptive criteria for the rule system were developed for the analysis video-recorded continuous production of signs and gesture. It involves segmenting a stream of body movement into phases and identifying different phase types. Two human coders used the criteria to analyze signs and cospeech gestures that are produced in natural discourse. It was found that the criteria yielded good inter-coder reliability. These criteria can be used for the technology of automatic recognition of signs and co-speech gestures in order to segment continuous production and identify the potentially meaningbearing phase.
  • Kita, S., & Enfield, N. J. (2003). Recording recommendations for video research. In N. J. Enfield (Ed.), Field research manual 2003, part I: Multimodal interaction, space, event representation (pp. 8-9). Nijmegen: Max Planck Institute for Psycholinguistics.
  • Klassmann, A., Offenga, F., Broeder, D., Skiba, R., & Wittenburg, P. (2006). Comparison of resource discovery methods. In Proceedings of the 5th International Conference on Language Resources and Evaluation (LREC 2006) (pp. 113-116).
  • Klein, W. (2006). On finiteness. In V. Van Geenhoven (Ed.), Semantics in acquisition (pp. 245-272). Dordrecht: Springer.

    Abstract

    The distinction between finite and non-finite verb forms is well-established but not particularly well-defined. It cannot just be a matter of verb morphology, because it is also made when there is hardly any morphological difference: by far most English verb forms can be finite as well as non-finite. More importantly, many structural phenomena are clearly associated with the presence or absence of finiteness, a fact which is clearly reflected in the early stages of first and second language acquisition. In syntax, these include basic word order rules, gapping, the licensing of a grammatical subject and the licensing of expletives. In semantics, the specific interpretation of indefinite noun phrases is crucially linked to the presence of a finite element. These phenomena are surveyed, and it is argued that finiteness (a) links the descriptive content of the sentence (the 'sentence basis') to its topic component (in particular, to its topic time), and (b) it confines the illocutionary force to that topic component. In a declarative main clause, for example, the assertion is confined to a particular time, the topic time. It is shown that most of the syntactic and semantic effects connected to finiteness naturally follow from this assumption.
  • Klein, W. (2021). Das „Heidelberger Forschungsprojekt Pidgin-Deutsch “und die Folgen. In B. Ahrenholz, & M. Rost-Roth (Eds.), Ein Blick zurück nach vorn: Frühe deutsche Forschung zu Zweitspracherwerb, Migration, Mehrsprachigkeit und zweitsprachbezogener Sprachdidaktik sowie ihre Bedeutung heute (pp. 50-95). Berlin: De Gruyter.
  • Klein, W. (1998). Ein Blick zurück auf die Varietätengrammatik. In U. Ammon, K. Mattheier, & P. Nelde (Eds.), Sociolinguistica: Internationales Jahrbuch für europäische Soziolinguistik (pp. 22-38). Tübingen: Niemeyer.
  • Klein, W. (1993). Ellipse. In J. Jacobs, A. von Stechow, W. Sternefeld, & T. Vennemann (Eds.), Syntax: Ein internationales Handbuch zeitgenössischer Forschung [1. Halbband] (pp. 763-799). Berlin: de Gruyter.
  • Klein, W. (1998). Assertion and finiteness. In N. Dittmar, & Z. Penner (Eds.), Issues in the theory of language acquisition: Essays in honor of Jürgen Weissenborn (pp. 225-245). Bern: Peter Lang.
  • Klein, W., & Dimroth, C. (2003). Der ungesteuerte Zweitspracherwerb Erwachsener: Ein Überblick über den Forschungsstand. In U. Maas, & U. Mehlem (Eds.), Qualitätsanforderungen für die Sprachförderung im Rahmen der Integration von Zuwanderern (Heft 21) (pp. 127-161). Osnabrück: IMIS.
  • Klein, W. (1993). L'Expression de la spatialité dans le langage humain. In M. Denis (Ed.), Images et langages (pp. 73-85). Paris: CNRS.
  • Klein, W. (1993). Learner varieties and theoretical linguistics. In C. Perdue (Ed.), Adult language acquisition: Cross-linguistic perspectives. Cambridge: Cambridge University Press.
  • Klein, W. (1982). Local deixis in route directions. In R. Jarvella, & W. Klein (Eds.), Speech, place, and action: Studies in deixis and related topics (pp. 161-182). New York: Wiley.
  • Klein, W. (1993). Some notorious pitfalls in the analysis of spatial expressions. In F. Beckman, & G. Heyer (Eds.), Theorie und Praxis des Lexikons (pp. 191-204). Berlin: de Gruyter.
  • Klein, W., & Extra, G. (1982). Second language acquisition by adult immigrants: A European Science Foundation project. In R. E. V. Stuip, & W. Zwanenburg (Eds.), Handelingen van het zevenendertigste Nederlandse Filologencongres (pp. 127-136). Amsterdam: APA-Holland Universiteitspers.
  • Klein, W., & Vater, H. (1998). The perfect in English and German. In L. Kulikov, & H. Vater (Eds.), Typology of verbal categories: Papers presented to Vladimir Nedjalkov on the occasion of his 70th birthday (pp. 215-235). Tübingen: Niemeyer.
  • Klein, W., & Perdue, C. (1993). Utterance structure. In C. Perdue (Ed.), Adult language acquisition: Cross-linguistic perspectives: Vol. 2 The results (pp. 3-40). Cambridge: Cambridge University Press.
  • Kopecka, A. (2006). The semantic structure of motion verbs in French: Typological perspectives. In M. Hickmann, & Roberts S. (Eds.), Space in languages: Linguistic systems and cognitive categories (pp. 83-102). Amsterdam: Benjamins.
  • Koutamanis, E., Kootstra, G. J., Dijkstra, T., & Unsworth., S. (2021). Lexical priming as evidence for language-nonselective access in the simultaneous bilingual child's lexicon. In D. Dionne, & L.-A. Vidal Covas (Eds.), BUCLD 45: Proceedings of the 45th annual Boston University Conference on Language Development (pp. 413-430). Sommerville, MA: Cascadilla Press.
  • Kuijpers, C. T., Coolen, R., Houston, D., & Cutler, A. (1998). Using the head-turning technique to explore cross-linguistic performance differences. In C. Rovee-Collier, L. Lipsitt, & H. Hayne (Eds.), Advances in infancy research: Vol. 12 (pp. 205-220). Stamford: Ablex.
  • Kupisch, T., Pereira Soares, S. M., Puig-Mayenco, E., & Rothman, J. (2021). Multilingualism and Chomsky's Generative Grammar. In N. Allott (Ed.), A companion to Chomsky (pp. 232-242). doi:10.1002/9781119598732.ch15.

    Abstract

    Like Einstein's general theory of relativity is concerned with explaining the basics of an observable experience – i.e., gravity – most people take for granted that Chomsky's theory of generative grammar (GG) is concerned with the basic nature of language. This chapter highlights a mere subset of central constructs in GG, showing how they have featured prominently and thus shaped formal linguistic studies in multilingualism. Because multilingualism includes a wide range of nonmonolingual populations, the constructs are divided across child bilingualism and adult third language for greater coverage. In the case of the former, the chapter examines how poverty of the stimulus has been investigated. Using the nascent field of L3/Ln acquisition as the backdrop, it discusses how the GG constructs of I-language versus E-language sit at the core of debates regarding the very notion of what linguistic transfer and mental representations should be taken to be.
  • Kuzla, C., Mitterer, H., Ernestus, M., & Cutler, A. (2006). Perceptual compensation for voice assimilation of German fricatives. In P. Warren, & I. Watson (Eds.), Proceedings of the 11th Australasian International Conference on Speech Science and Technology (pp. 394-399).

    Abstract

    In German, word-initial lax fricatives may be produced with substantially reduced glottal vibration after voiceless obstruents. This assimilation occurs more frequently and to a larger extent across prosodic word boundaries than across phrase boundaries. Assimilatory devoicing makes the fricatives more similar to their tense counterparts and could thus hinder word recognition. The present study investigates how listeners cope with assimilatory devoicing. Results of a cross-modal priming experiment indicate that listeners compensate for assimilation in appropriate contexts. Prosodic structure moderates compensation for assimilation: Compensation occurs especially after phrase boundaries, where devoiced fricatives are sufficiently long to be confused with their tense counterparts.
  • Kuzla, C., Ernestus, M., & Mitterer, H. (2006). Prosodic structure affects the production and perception of voice-assimilated German fricatives. In R. Hoffmann, & H. Mixdorff (Eds.), Speech prosody 2006. Dresden: TUD Press.

    Abstract

    Prosodic structure has long been known to constrain phonological processes [1]. More recently, it has also been recognized as a source of fine-grained phonetic variation of speech sounds. In particular, segments in domain-initial position undergo prosodic strengthening [2, 3], which also implies more resistance to coarticulation in higher prosodic domains [5]. The present study investigates the combined effects of prosodic strengthening and assimilatory devoicing on word-initial fricatives in German, the functional implication of both processes for cues to the fortis-lenis contrast, and the influence of prosodic structure on listeners’ compensation for assimilation. Results indicate that 1. Prosodic structure modulates duration and the degree of assimilatory devoicing, 2. Phonological contrasts are maintained by speakers, but differ in phonetic detail across prosodic domains, and 3. Compensation for assimilation in perception is moderated by prosodic structure and lexical constraints.
  • Kuzla, C. (2003). Prosodically-conditioned variation in the realization of domain-final stops and voicing assimilation of domain-initial fricatives in German. In Proceedings of the 15th International Congress of Phonetic Sciences (ICPhS 2003) (pp. 2829-2832). Adelaide: Causal Productions.
  • Kuzla, C., Mitterer, H., & Ernestus, M. (2006). Compensation for assimilatory devoicing and prosodic structure in German fricative perception. In Variation, detail and representation: 10th Conference on Laboratory Phonology (pp. 43-44).
  • De Lange, F. P., Hagoort, P., & Toni, I. (2003). Differential fronto-parietal contributions to visual and motor imagery. NeuroImage, 19(2), e2094-e2095.

    Abstract

    Mental imagery is a cognitive process crucial to human reasoning. Numerous studies have characterized specific
    instances of this cognitive ability, as evoked by visual imagery (VI) or motor imagery (MI) tasks. However, it
    remains unclear which neural resources are shared between VI and MI, and which are exclusively related to MI.
    To address this issue, we have used fMRI to measure human brain activity during performance of VI and MI
    tasks. Crucially, we have modulated the imagery process by manipulating the degree of mental rotation necessary
    to solve the tasks. We focused our analysis on changes in neural signal as a function of the degree of mental
    rotation in each task.
  • Laparle, S. (2023). Moving past the lexical affiliate with a frame-based analysis of gesture meaning. In W. Pouw, J. Trujillo, H. R. Bosker, L. Drijvers, M. Hoetjes, J. Holler, S. Kadava, L. Van Maastricht, E. Mamus, & A. Ozyurek (Eds.), Gesture and Speech in Interaction (GeSpIn) Conference. doi:10.17617/2.3527218.

    Abstract

    Interpreting the meaning of co-speech gesture often involves
    identifying a gesture’s ‘lexical affiliate’, the word or phrase to
    which it most closely relates (Schegloff 1984). Though there is
    work within gesture studies that resists this simplex mapping of
    meaning from speech to gesture (e.g. de Ruiter 2000; Kendon
    2014; Parrill 2008), including an evolving body of literature on
    recurrent gesture and gesture families (e.g. Fricke et al. 2014; Müller 2017), it is still the lexical affiliate model that is most ap-
    parent in formal linguistic models of multimodal meaning(e.g.
    Alahverdzhieva et al. 2017; Lascarides and Stone 2009; Puste-
    jovsky and Krishnaswamy 2021; Schlenker 2020). In this work,
    I argue that the lexical affiliate should be carefully reconsidered
    in the further development of such models.
    In place of the lexical affiliate, I suggest a further shift
    toward a frame-based, action schematic approach to gestural
    meaning in line with that proposed in, for example, Parrill and
    Sweetser (2004) and Müller (2017). To demonstrate the utility
    of this approach I present three types of compositional gesture
    sequences which I call spatial contrast, spatial embedding, and
    cooperative abstract deixis. All three rely on gestural context,
    rather than gesture-speech alignment, to convey interactive (i.e.
    pragmatic) meaning. The centrality of gestural context to ges-
    ture meaning in these examples demonstrates the necessity of
    developing a model of gestural meaning independent of its in-
    tegration with speech.
  • Lattenkamp, E. Z., Linnenschmidt, M., Mardus, E., Vernes, S. C., Wiegrebe, L., & Schutte, M. (2020). Impact of auditory feedback on bat vocal development. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 249-251). Nijmegen: The Evolution of Language Conferences.
  • Lei, L., Raviv, L., & Alday, P. M. (2020). Using spatial visualizations and real-world social networks to understand language evolution and change. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 252-254). Nijmegen: The Evolution of Language Conferences.
  • Lev-Ari, S. (2019). The influence of social network properties on language processing and use. In M. S. Vitevitch (Ed.), Network Science in Cognitive Psychology (pp. 10-29). New York, NY: Routledge.

    Abstract

    Language is a social phenomenon. The author learns, processes, and uses it in social contexts. In other words, the social environment shapes the linguistic knowledge and use of the knowledge. To a degree, this is trivial. A child exposed to Japanese will become fluent in Japanese, whereas a child exposed to only Spanish will not understand Japanese but will master the sounds, vocabulary, and grammar of Spanish. Language is a structured system. Sounds and words do not occur randomly but are characterized by regularities. Learners are sensitive to these regularities and exploit them when learning language. People differ in the sizes of their social networks. Some people tend to interact with only a few people, whereas others might interact with a wide range of people. This is reflected in people’s holiday greeting habits: some people might send cards to only a few people, whereas other would send greeting cards to more than 350 people.
  • Levelt, W. J. M. (1993). Die konnektionistische Mode. In J. Engelkamp, & T. Pechmann (Eds.), Mentale Repräsentation (pp. 51-62). Bern: Huber Verlag.
  • Levelt, W. J. M. (1993). Accessing words in speech production: Stages, processes and representations. In W. J. M. Levelt (Ed.), Lexical access in speech production (pp. 1-22). Cambridge, MA: Blackwell Publishers.

    Abstract

    Originally published in Cognition International Journal of Cognitive Science, Volume 42, Numbers 1-3, 1992 This paper introduces a special issue of Cognition 011 lexical access in speech production. Over the last quarter century, the psycholinguistic study of speaking, and in particular of accessing words in speech, received a major new impetus from the analysis of speech errors, dysfluencies and hesMions, from aphasiology, and from new paradigms in reaction time research. The emerging theoretical picture partitions the accessing process into two subprocesses, the selection of an appropriate lexical item (and "lemma") from the mental lexicon, and the phonological encoding of that item, that is, the computation of a phonetic program for the item in the context of utterance These two theoretical domains are successively introduced by outlining some core issues that have been or still have to be addressed. The final section discusses the controversial question whether phonological encoding can affect lexical selection. This partitioning is also followed in this special issue as a whole. There are, first, four papers on lexical selection, then three papers on phonological encoding, and finally one on the interaction between selection and phonological encoding.
  • Levelt, W. J. M. (1982). Cognitive styles in the use of spatial direction terms. In R. Jarvella, & W. Klein (Eds.), Speech, place, and action: Studies in deixis and related topics (pp. 251-268). Chichester: Wiley.
  • Levelt, C. C., Fikkert, P., & Schiller, N. O. (2003). Metrical priming in speech production. In Proceedings of the 15th International Congress of Phonetic Sciences (ICPhS 2003) (pp. 2481-2485). Adelaide: Causal Productions.

    Abstract

    In this paper we report on four experiments in which we attempted to prime the stress position of Dutch bisyllabic target nouns. These nouns, picture names, had stress on either the first or the second syllable. Auditory prime words had either the same stress as the target or a different stress (e.g., WORtel – MOtor vs. koSTUUM – MOtor; capital letters indicate stressed syllables in prime – target pairs). Furthermore, half of the prime words were semantically related, the other half were unrelated. In none of the experiments a stress priming effect was found. This could mean that stress is not stored in the lexicon. An additional finding was that targets with initial stress had a faster response than targets with a final stress. We hypothesize that bisyllabic words with final stress take longer to be encoded because this stress pattern is irregular with respect to the lexical distribution of bisyllabic stress patterns, even though it can be regular in terms of the metrical stress rules of Dutch.
  • Levelt, W. J. M. (1962). Motion breaking and the perception of causality. In A. Michotte (Ed.), Causalité, permanence et réalité phénoménales: Etudes de psychologie expérimentale (pp. 244-258). Louvain: Publications Universitaires.
  • Levelt, W. J. M., & Plomp, R. (1962). Musical consonance and critical bandwidth. In Proceedings of the 4th International Congress Acoustics (pp. 55-55).
  • Levelt, W. J. M. (1993). Lexical access in speech production. In E. Reuland, & W. Abraham (Eds.), Knowledge and language: Vol. 1. From Orwell's problem to Plato's problem (pp. 241-251). Dordrecht: Kluwer.
  • Levelt, W. J. M. (1993). Lexical selection, or how to bridge the major rift in language processing. In F. Beckmann, & G. Heyer (Eds.), Theorie und Praxis des Lexikons (pp. 164-172). Berlin: Walter de Gruyter.
  • Levelt, W. J. M. (1982). Linearization in describing spatial networks. In S. Peters, & E. Saarinen (Eds.), Processes, beliefs, and questions (pp. 199-220). Dordrecht - Holland: D. Reidel.

    Abstract

    The topic of this paper is the way in which speakers order information in discourse. I will refer to this issue with the term "linearization", and will begin with two types of general remarks. The first one concerns the scope and relevance of the problem with reference to some existing literature. The second set of general remarks will be about the place of linearization in a theory of the speaker. The following, and main part of this paper, will be a summary report of research of linearization in a limited, but well-defined domain of discourse, namely the description of spatial networks.
  • Levelt, W. J. M. (2020). The alpha and omega of Jerome Bruner's contributions to the Max Planck Institute for Psycholinguistics. In M. E. Poulsen (Ed.), The Jerome Bruner Library: From New York to Nijmegen (pp. 11-18). Nijmegen: Max Planck Institute for Psycholinguistics.

    Abstract

    Presentation of the official opening of the Jerome Bruner Library, January 8th, 2020
  • Levelt, W. J. M. (1993). The architecture of normal spoken language use. In G. Blanken, J. Dittman, H. Grimm, J. C. Marshall, & C.-W. Wallesch (Eds.), Linguistic disorders and pathologies: An international handbook (pp. 1-15). Berlin: Walter de Gruyter.
  • Levelt, W. J. M. (1993). Spreken als vaardigheid. In C. Blankenstijn, & A. Scheper (Eds.), Taalvaardigheid (pp. 1-16). Dordrecht: ICG Publications.
  • Levinson, S. C., & Wilkins, D. P. (2006). Patterns in the data: Towards a semantic typology of spatial description. In S. C. Levinson, & D. P. Wilkins (Eds.), Grammars of space: Explorations in cognitive diversity (pp. 512-552). Cambridge: Cambridge University Press.
  • Levinson, S. C. (2003). Spatial language. In L. Nadel (Ed.), Encyclopedia of cognitive science (pp. 131-137). London: Nature Publishing Group.
  • Levinson, S. C. (2006). On the human "interaction engine". In N. J. Enfield, & S. C. Levinson (Eds.), Roots of human sociality: Culture, cognition and interaction (pp. 39-69). Oxford: Berg.
  • Levinson, S. C., & Wilkins, D. P. (2006). The background to the study of the language of space. In S. C. Levinson, & D. P. Wilkins (Eds.), Grammars of space: Explorations in cognitive diversity (pp. 1-23). Cambridge: Cambridge University Press.
  • Levinson, S. C. (2006). The language of space in Yélî Dnye. In S. C. Levinson, & D. P. Wilkins (Eds.), Grammars of space: Explorations in cognitive diversity (pp. 157-203). Cambridge: Cambridge University Press.
  • Levinson, S. C. (1982). Caste rank and verbal interaction in Western Tamilnadu. In D. B. McGilvray (Ed.), Caste ideology and interaction (pp. 98-203). Cambridge University Press.
  • Levinson, S. C. (1998). Deixis. In J. L. Mey (Ed.), Concise encyclopedia of pragmatics (pp. 200-204). Amsterdam: Elsevier.
  • Levinson, S. C. (2003). Contextualizing 'contextualization cues'. In S. Eerdmans, C. Prevignano, & P. Thibault (Eds.), Language and interaction: Discussions with John J. Gumperz (pp. 31-39). Amsterdam: John Benjamins.
  • Levinson, S. C. (2006). Introduction: The evolution of culture in a microcosm. In S. C. Levinson, & P. Jaisson (Eds.), Evolution and culture: A Fyssen Foundation Symposium (pp. 1-41). Cambridge: MIT Press.
  • Levinson, S. C. (2003). Language and cognition. In W. Frawley (Ed.), International Encyclopedia of Linguistics (pp. 459-463). Oxford: Oxford University Press.
  • Levinson, S. C. (2003). Language and mind: Let's get the issues straight! In D. Gentner, & S. Goldin-Meadow (Eds.), Language in mind: Advances in the study of language and cognition (pp. 25-46). Cambridge, MA: MIT Press.
  • Levinson, S. C. (1998). Minimization and conversational inference. In A. Kasher (Ed.), Pragmatics: Vol. 4 Presupposition, implicature and indirect speech acts (pp. 545-612). London: Routledge.
  • Levinson, S. C., & Toni, I. (2019). Key issues and future directions: Interactional foundations of language. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 257-261). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2019). Interactional foundations of language: The interaction engine hypothesis. In P. Hagoort (Ed.), Human language: From genes and brain to behavior (pp. 189-200). Cambridge, MA: MIT Press.
  • Levinson, S. C. (2019). Natural forms of purposeful interaction among humans: What makes interaction effective? In K. A. Gluck, & J. E. Laird (Eds.), Interactive task learning: Humans, robots, and agents acquiring new tasks through natural interactions (pp. 111-126). Cambridge, MA: MIT Press.
  • Levinson, S. C. (1993). Raumkonzeptionen mit absoluten Systemen. In Max Planck Gesellschaft Jahrbuch 1993 (pp. 297-299).
  • Levinson, S. C. (1982). Speech act theory: The state of the art. In V. Kinsella (Ed.), Surveys 2. Eight state-of-the-art articles on key areas in language teaching. Cambridge University Press.
  • Levinson, S. C. (2023). On cognitive artifacts. In R. Feldhay (Ed.), The evolution of knowledge: A scientific meeting in honor of Jürgen Renn (pp. 59-78). Berlin: Max Planck Institute for the History of Science.

    Abstract

    Wearing the hat of a cognitive anthropologist rather than an historian, I will try to amplify the ideas of Renn’s cited above. I argue that a particular subclass of material objects, namely “cognitive artifacts,” involves a close coupling of mind and artifact that acts like a brain prosthesis. Simple cognitive artifacts are external objects that act as aids to internal
    computation, and not all cultures have extended inventories of these. Cognitive artifacts in this sense (e.g., calculating or measuring devices) have clearly played a central role in the history of science. But the notion can be widened to take in less material externalizations of cognition, like writing and language itself. A critical question here is how and why this close coupling of internal computation and external device actually works, a rather neglected question to which I’ll suggest some answers.

    Additional information

    link to book

Share this page