Publications

Displaying 201 - 227 of 227
  • Seuren, P. A. M. (1981). Taaluniversalia. In W. De Geest, R. Dirven, & Y. Putseys (Eds.), Twintig facetten van de taalwetenschap (pp. 112-126). Louvain: Acco.
  • Seuren, P. A. M. (1994). Prediction and retrodiction. In R. E. Asher, & J. M. Y. Simpson (Eds.), The Encyclopedia of Language and Linguistics (vol. 6) (pp. 3302-3303). Oxford: Pergamon Press.
  • Seuren, P. A. M. (1993). The question of predicate clefting in the Indian Ocean Creoles. In F. Byrne, & D. Winford (Eds.), Focus and grammatical relations in Creole languages (pp. 53-64). Amsterdam: Benjamins.
  • Seuren, P. A. M. (1998). Towards a discourse-semantic account of donkey anaphora. In S. Botley, & T. McEnery (Eds.), New Approaches to Discourse Anaphora: Proceedings of the Second Colloquium on Discourse Anaphora and Anaphor Resolution (DAARC2) (pp. 212-220). Lancaster: Universiy Centre for Computer Corpus Research on Language, Lancaster University.
  • Skiba, R. (1993). Funktionale Analyse des Spracherwerbs einer polnischen Deutschlernerin. In A. Katny (Ed.), Beiträge zur Sprachwissenschaft, Psycho- und Soziolinguistik: Probleme des Deutschen als Mutter-, Fremd- und Zweitsprache (pp. 201-225). Rzeszów: WSP.
  • Skiba, R. (1993). Modal verbs and their syntactical characteristics in elementary learner varieties. In N. Dittmar, & A. Reich (Eds.), Modality in language acquisition (pp. 247-260). Berlin: Walter de Gruyter.
  • Skiba, R. (2010). Polnisch. In S. Colombo-Scheffold, P. Fenn, S. Jeuk, & J. Schäfer (Eds.), Ausländisch für Deutsche. Sprachen der Kinder - Sprachen im Klassenzimmer (2. korrigierte und erweiterte Auflage, pp. 165-176). Freiburg: Fillibach.
  • Skiba, R., & Steinmüller, U. (1995). Pragmatics of compositional word formation in technical languages. In H. Pishwa, & K. Maroldt (Eds.), The development of morphological systematicity: A cross-linguistic perspective (pp. 305-321). Tübingen: Narr.
  • Stolker, C. J. J. M., & Poletiek, F. H. (1998). Smartengeld - Wat zijn we eigenlijk aan het doen? Naar een juridische en psychologische evaluatie. In F. Stadermann (Ed.), Bewijs en letselschade (pp. 71-86). Lelystad, The Netherlands: Koninklijke Vermande.
  • Suppes, P., Böttner, M., & Liang, L. (1998). Machine Learning of Physics Word Problems: A Preliminary Report. In A. Aliseda, R. van Glabbeek, & D. Westerståhl (Eds.), Computing Natural Language (pp. 141-154). Stanford, CA, USA: CSLI Publications.
  • Terrill, A. (2010). Complex predicates and complex clauses in Lavukaleve. In J. Bowden, N. P. Himmelman, & M. Ross (Eds.), A journey through Austronesian and Papuan linguistic and cultural space: Papers in honour of Andrew K. Pawley (pp. 499-512). Canberra: Pacific Linguistics.
  • Trujillo, J. P., Levinson, S. C., & Holler, J. (2021). Visual information in computer-mediated interaction matters: Investigating the association between the availability of gesture and turn transition timing in conversation. In M. Kurosu (Ed.), Human-Computer Interaction. Design and User Experience Case Studies. HCII 2021 (pp. 643-657). Cham: Springer. doi:10.1007/978-3-030-78468-3_44.

    Abstract

    Natural human interaction involves the fast-paced exchange of speaker turns. Crucially, if a next speaker waited with planning their turn until the current speaker was finished, language production models would predict much longer turn transition times than what we observe. Next speakers must therefore prepare their turn in parallel to listening. Visual signals likely play a role in this process, for example by helping the next speaker to process the ongoing utterance and thus prepare an appropriately-timed response.

    To understand how visual signals contribute to the timing of turn-taking, and to move beyond the mostly qualitative studies of gesture in conversation, we examined unconstrained, computer-mediated conversations between 20 pairs of participants while systematically manipulating speaker visibility. Using motion tracking and manual gesture annotation, we assessed 1) how visibility affected the timing of turn transitions, and 2) whether use of co-speech gestures and 3) the communicative kinematic features of these gestures were associated with changes in turn transition timing.

    We found that 1) decreased visibility was associated with less tightly timed turn transitions, and 2) the presence of gestures was associated with more tightly timed turn transitions across visibility conditions. Finally, 3) structural and salient kinematics contributed to gesture’s facilitatory effect on turn transition times.

    Our findings suggest that speaker visibility--and especially the presence and kinematic form of gestures--during conversation contributes to the temporal coordination of conversational turns in computer-mediated settings. Furthermore, our study demonstrates that it is possible to use naturalistic conversation and still obtain controlled results.
  • Van Berkum, J. J. A., Hijne, H., De Jong, T., Van Joolingen, W. R., & Njoo, M. (1995). Characterizing the application of computer simulations in education: Instructional criteria. In A. Ram, & D. B. Leake (Eds.), Goal-driven learning (pp. 381-392). Cambridge, M: MIT Press.
  • Van Valin Jr., R. D. (1994). Extraction restrictions, competing theories and the argument from the poverty of the stimulus. In S. D. Lima, R. Corrigan, & G. K. Iverson (Eds.), The reality of linguistic rules (pp. 243-259). Amsterdam: Benjamins.
  • Van Geenhoven, V. (1998). On the Argument Structure of some Noun Incorporating Verbs in West Greenlandic. In M. Butt, & W. Geuder (Eds.), The Projection of Arguments - Lexical and Compositional Factors (pp. 225-263). Stanford, CA, USA: CSLI Publications.
  • Van Valin Jr., R. D. (1998). The acquisition of WH-questions and the mechanisms of language acquisition. In M. Tomasello (Ed.), The new psychology of language: Cognitive and functional approaches to language structure (pp. 221-249). Mahwah, New Jersey: Erlbaum.
  • Van Valin Jr., R. D. (2010). Role and reference grammar as a framework for linguistic analysis. In B. Heine, & H. Narrog (Eds.), The Oxford handbook of linguistic analysis (pp. 703-738). Oxford: Oxford University Press.
  • Van Valin Jr., R. D. (1995). Toward a functionalist account of so-called ‘extraction constraints’. In B. Devriendt (Ed.), Complex structures: A functionalist perspective (pp. 29-60). Berlin: Mouton de Gruyter.
  • Weber, A., Crocker, M., & Knoeferle, P. (2010). Conflicting constraints in resource-adaptive language comprehension. In M. W. Crocker, & J. Siekmann (Eds.), Resource-adaptive cognitive processes (pp. 119-141). New York: Springer.

    Abstract

    The primary goal of psycholinguistic research is to understand the architectures and mechanisms that underlie human language comprehension and production. This entails an understanding of how linguistic knowledge is represented and organized in the brain and a theory of how that knowledge is accessed when we use language. Research has traditionally emphasized purely linguistic aspects of on-line comprehension, such as the influence of lexical, syntactic, semantic and discourse constraints, and their tim -course. It has become increasingly clear, however, that nonlinguistic information, such as the visual environment, are also actively exploited by situated language comprehenders.
  • Weissenborn, J. (1981). L'acquisition des prepositions spatiales: problemes cognitifs et linguistiques. In C. Schwarze (Ed.), Analyse des prépositions: IIIme colloque franco-allemand de linguistique théorique du 2 au 4 février 1981 à Constance (pp. 251-285). Tübingen: Niemeyer.
  • Wilkins, D. (1993). Route Description Elicitation. In S. C. Levinson (Ed.), Cognition and space kit 1.0 (pp. 15-28). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3513141.

    Abstract

    When we want to describe a path through space, but do not share a common perceptual field with a conversation partner, language has to work doubly hard. This task investigates how people communicate the navigation of space in the absence of shared visual cues, as well as collecting data on motion verbs and the roles of symmetry and landmarks in route description. Two speakers (separated by a curtain or other barrier) are each given a model of a landscape, and one participant describes standard routes through this landscape for the other to match.
  • Wilkins, D., & Hill, D. (1993). Preliminary 'Come' and 'Go' Questionnaire. In S. C. Levinson (Ed.), Cognition and space kit 1.0 (pp. 29-46). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3513125.

    Abstract

    The encoding of apparently ‘simple’ movement concepts such as ‘COME’ and ‘GO’ can differ widely across languages (e.g., in regard to specifying direction of motion relative to the speaker). This questionnaire is used to identify the range of use of basic motion verbs in a language, and investigate semantic parameters that are involved in high frequency ‘COME’ and ‘GO’-like terms.
  • Wilkins, D. (1995). Towards a Socio-Cultural Profile of the Communities We Work With. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 70-79). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3513481.

    Abstract

    Field data are drawn from a particular speech community at a certain place and time. The intent of this survey is to enrich understanding of the various socio-cultural contexts in which linguistic and “cognitive” data may have been collected, so that we can explore the role which societal, cultural and contextual factors may play in this material. The questionnaire gives guidelines concerning types of ethnographic information that are important to cross-cultural and cross-linguistic enquiry, and will be especially useful to researchers who do not have specialised training in anthropology.
  • Wilkins, D., Pederson, E., & Levinson, S. C. (1995). Background questions for the "enter"/"exit" research. In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 14-16). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003935.

    Abstract

    How do languages encode different kinds of movement, and what features do people pay attention to when describing motion events? This document outlines topics concerning the investigation of “enter” and “exit” events. It helps contextualise research tasks that examine this domain (see 'Motion Elicitation' and 'Enter/Exit animation') and gives some pointers about what other questions can be explored.
  • Wilkins, D. (1995). Motion elicitation: "moving 'in(to)'" and "moving 'out (of)'". In D. Wilkins (Ed.), Extensions of space and beyond: manual for field elicitation for the 1995 field season (pp. 4-12). Nijmegen: Max Planck Institute for Psycholinguistics. doi:10.17617/2.3003391.

    Abstract

    How do languages encode different kinds of movement, and what features do people pay attention to when describing motion events? This task investigates the expression of “enter” and “exit” activities, that is, events involving motion in(to) and motion out (of) container-like items. The researcher first uses particular stimuli (a ball, a cup, rice, etc.) to elicit descriptions of enter/exit events from one consultant, and then asks another consultant to demonstrate the event based on these descriptions. See also the related entries Enter/Exit Animation and Background Questions for Enter/Exit Research.
  • Willems, R. M., & Hagoort, P. (2010). Cortical motor contributions to language understanding. In L. Hermer (Ed.), Reciprocal interactions among early sensory and motor areas and higher cognitive networks (pp. 51-72). Kerala, India: Research Signpost Press.

    Abstract

    Here we review evidence from cognitive neuroscience for a tight relation between language and action in the brain. We focus on two types of relation between language and action. First, we investigate whether the perception of speech and speech sounds leads to activation of parts of the cortical motor system also involved in speech production. Second, we evaluate whether understanding action-related language involves the activation of parts of the motor system. We conclude that whereas there is considerable evidence that understanding language can involve parts of our motor cortex, this relation is best thought of as inherently flexible. As we explain, the exact nature of the input as well as the intention with which language is perceived influences whether and how motor cortex plays a role in language processing.
  • Wittenburg, P., & Trilsbeek, P. (2010). Digital archiving - a necessity in documentary linguistics. In G. Senft (Ed.), Endangered Austronesian and Australian Aboriginal languages: Essays on language documentation, archiving and revitalization (pp. 111-136). Canberra: Pacific Linguistics.

Share this page