Publications

Displaying 201 - 206 of 206
  • Wittenburg, P., Johnson, H., Buchhorn, M., Brugman, H., & Broeder, D. (2004). Architecture for distributed language resource management and archiving. In M. Lino, M. Xavier, F. Ferreira, R. Costa, & R. Silva (Eds.), Proceedings of the 4th International Conference on Language Resources and Evaluation (LREC2004) (pp. 361-364). Paris: ELRA - European Language Resources Association.
  • Wnuk, E. (2016). Specificity at the basic level in event taxonomies: The case of Maniq verbs of ingestion. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016) (pp. 2687-2692). Austin, TX: Cognitive Science Society.

    Abstract

    Previous research on basic-level object categories shows there is cross-cultural variation in basic-level concepts, arguing against the idea that the basic level reflects an objective reality. In this paper, I extend the investigation to the domain of events. More specifically, I present a case study of verbs of ingestion in Maniq illustrating a highly specific categorization of ingestion events at the basic level. A detailed analysis of these verbs reveals they tap into culturally salient notions. Yet, cultural salience alone cannot explain specificity of basic-level verbs, since ingestion is a domain of universal human experience. Further analysis reveals, however, that another key factor is the language itself. Maniq’s preference for encoding specific meaning in basic-level verbs is not a peculiarity of one domain, but a recurrent characteristic of its verb lexicon, pointing to the significant role of the language system in the structure of event concepts
  • Woensdregt, M., & Dingemanse, M. (2020). Other-initiated repair can facilitate the emergence of compositional language. In A. Ravignani, C. Barbieri, M. Flaherty, Y. Jadoul, E. Lattenkamp, H. Little, M. Martins, K. Mudd, & T. Verhoef (Eds.), The Evolution of Language: Proceedings of the 13th International Conference (Evolang13) (pp. 474-476). Nijmegen: The Evolution of Language Conferences.
  • Yang, J., Van den Bosch, A., & Frank, S. L. (2020). Less is Better: A cognitively inspired unsupervised model for language segmentation. In M. Zock, E. Chersoni, A. Lenci, & E. Santus (Eds.), Proceedings of the Workshop on the Cognitive Aspects of the Lexicon ( 28th International Conference on Computational Linguistics) (pp. 33-45). Stroudsburg: Association for Computational Linguistics.

    Abstract

    Language users process utterances by segmenting them into many cognitive units, which vary in their sizes and linguistic levels. Although we can do such unitization/segmentation easily, its cognitive mechanism is still not clear. This paper proposes an unsupervised model, Less-is-Better (LiB), to simulate the human cognitive process with respect to language unitization/segmentation. LiB follows the principle of least effort and aims to build a lexicon which minimizes the number of unit tokens (alleviating the effort of analysis) and number of unit types (alleviating the effort of storage) at the same time on any given corpus. LiB’s workflow is inspired by empirical cognitive phenomena. The design makes the mechanism of LiB cognitively plausible and the computational requirement light-weight. The lexicon generated by LiB performs the best among different types of lexicons (e.g. ground-truth words) both from an information-theoretical view and a cognitive view, which suggests that the LiB lexicon may be a plausible proxy of the mental lexicon.

    Additional information

    full text via ACL website
  • Zhang, Y., & Yu, C. (2016). Examining referential uncertainty in naturalistic contexts from the child’s view: Evidence from an eye-tracking study with infants. In A. Papafragou, D. Grodner, D. Mirman, & J. Trueswell (Eds.), Proceedings of the 38th Annual Meeting of the Cognitive Science Society (CogSci 2016). Austin, TX: Cognitive Science Society (pp. 2027-2032). Austin, TX: Cognitive Science Society.

    Abstract

    Young Infants are prolific word learners even though they are facing the challenge of referential uncertainty (Quine, 1960). Many laboratory studies have shown that infants are skilled at inferring correct referents of words from ambiguous contexts (Swingley, 2009). However, little is known regarding how they visually attend to and select the target object among many other objects in view when parents name it during everyday interactions. By investigating the looking pattern of 12-month-old infants using naturalistic first-person images with varying degrees of referential ambiguity, we found that infants’ attention is selective and they only select a small subset of objects to attend to at each learning instance despite the complexity of the data in the real world. This work allows us to better understand how perceptual properties of objects in infants’ view influence their visual attention, which is also related to how they select candidate objects to build word-object mappings.
  • Zhang, Y., Amatuni, A., Crain, E., & Yu, C. (2020). Seeking meaning: Examining a cross-situational solution to learn action verbs using human simulation paradigm. In S. Denison, M. Mack, Y. Xu, & B. C. Armstrong (Eds.), Proceedings of the 42nd Annual Meeting of the Cognitive Science Society (CogSci 2020) (pp. 2854-2860). Montreal, QB: Cognitive Science Society.

    Abstract

    To acquire the meaning of a verb, language learners not only need to find the correct mapping between a specific verb and an action or event in the world, but also infer the underlying relational meaning that the verb encodes. Most verb naming instances in naturalistic contexts are highly ambiguous as many possible actions can be embedded in the same scenario and many possible verbs can be used to describe those actions. To understand whether learners can find the correct verb meaning from referentially ambiguous learning situations, we conducted three experiments using the Human Simulation Paradigm with adult learners. Our results suggest that although finding the right verb meaning from one learning instance is hard, there is a statistical solution to this problem. When provided with multiple verb learning instances all referring to the same verb, learners are able to aggregate information across situations and gradually converge to the correct semantic space. Even in cases where they may not guess the exact target verb, they can still discover the right meaning by guessing a similar verb that is semantically close to the ground truth.

Share this page