Publications

Displaying 201 - 208 of 208
  • Wanrooij, K., De Vos, J., & Boersma, P. (2015). Distributional vowel training may not be effective for Dutch adults. In Scottish consortium for ICPhS 2015, M. Wolters, J. Livingstone, B. Beattie, R. Smith, M. MacMahon, J. Stuart-Smith, & J. Scobbie (Eds.), Proceedings of the 18th International Congress of Phonetic Sciences (ICPhS 2015). Glasgow: University of Glasgow.

    Abstract

    Distributional vowel training for adults has been reported as “effective” for Spanish and Bulgarian learners of Dutch vowels, in studies using a behavioural task. A recent study did not yield a similar clear learning effect for Dutch learners of the English vowel contrast /æ/~/ε/, as measured with event-related potentials (ERPs). The present study aimed to examine the possibility that the latter result was related to the method. As in the ERP study, we tested whether distributional training improved Dutch adult learners’ perception of English /æ/~/ε/. However, we measured behaviour instead of ERPs, in a design identical to that used in the previous studies with Spanish learners. The results do not support an effect of distributional training and thus “replicate” the ERP study. We conclude that it remains unclear whether distributional vowel training is effective for Dutch adults.
  • Weber, A. (1998). Listening to nonnative language which violates native assimilation rules. In D. Duez (Ed.), Proceedings of the European Scientific Communication Association workshop: Sound patterns of Spontaneous Speech (pp. 101-104).

    Abstract

    Recent studies using phoneme detection tasks have shown that spoken-language processing is neither facilitated nor interfered with by optional assimilation, but is inhibited by violation of obligatory assimilation. Interpretation of these results depends on an assessment of their generality, specifically, whether they also obtain when listeners are processing nonnative language. Two separate experiments are presented in which native listeners of German and native listeners of Dutch had to detect a target fricative in legal monosyllabic Dutch nonwords. All of the nonwords were correct realisations in standard Dutch. For German listeners, however, half of the nonwords contained phoneme strings which violate the German fricative assimilation rule. Whereas the Dutch listeners showed no significant effects, German listeners detected the target fricative faster when the German fricative assimilation was violated than when no violation occurred. The results might suggest that violation of assimilation rules does not have to make processing more difficult per se.
  • Weber, A. (2009). The role of linguistic experience in lexical recognition [Abstract]. Journal of the Acoustical Society of America, 125, 2759.

    Abstract

    Lexical recognition is typically slower in L2 than in L1. Part of the difficulty comes from a not precise enough processing of L2 phonemes. Consequently, L2 listeners fail to eliminate candidate words that L1 listeners can exclude from competing for recognition. For instance, the inability to distinguish /r/ from /l/ in rocket and locker makes for Japanese listeners both words possible candidates when hearing their onset (e.g., Cutler, Weber, and Otake, 2006). The L2 disadvantage can, however, be dispelled: For L2 listeners, but not L1 listeners, L2 speech from a non-native talker with the same language background is known to be as intelligible as L2 speech from a native talker (e.g., Bent and Bradlow, 2003). A reason for this may be that L2 listeners have ample experience with segmental deviations that are characteristic for their own accent. On this account, only phonemic deviations that are typical for the listeners’ own accent will cause spurious lexical activation in L2 listening (e.g., English magic pronounced as megic for Dutch listeners). In this talk, I will present evidence from cross-modal priming studies with a variety of L2 listener groups, showing how the processing of phonemic deviations is accent-specific but withstands fine phonetic differences.
  • Willems, R. M. (Ed.). (2015). Cognitive neuroscience of natural language use. Cambridge: Cambridge University Press.
  • Wittek, A. (1998). Learning verb meaning via adverbial modification: Change-of-state verbs in German and the adverb "wieder" again. In A. Greenhill, M. Hughes, H. Littlefield, & H. Walsh (Eds.), Proceedings of the 22nd Annual Boston University Conference on Language Development (pp. 779-790). Somerville, MA: Cascadilla Press.
  • Won, S.-O., Hu, I., Kim, M.-Y., Bae, J.-M., Kim, Y.-M., & Byun, K.-S. (2009). Theory and practice of Sign Language interpretation. Pyeongtaek: Korea National College of Rehabilitation & Welfare.
  • Xiao, M., Kong, X., Liu, J., & Ning, J. (2009). TMBF: Bloom filter algorithms of time-dependent multi bit-strings for incremental set. In Proceedings of the 2009 International Conference on Ultra Modern Telecommunications & Workshops.

    Abstract

    Set is widely used as a kind of basic data structure. However, when it is used for large scale data set the cost of storage, search and transport is overhead. The bloom filter uses a fixed size bit string to represent elements in a static set, which can reduce storage space and search cost that is a fixed constant. The time-space efficiency is achieved at the cost of a small probability of false positive in membership query. However, for many applications the space savings and locating time constantly outweigh this drawback. Dynamic bloom filter (DBF) can support concisely representation and approximate membership queries of dynamic set instead of static set. It has been proved that DBF not only possess the advantage of standard bloom filter, but also has better features when dealing with dynamic set. This paper proposes a time-dependent multiple bit-strings bloom filter (TMBF) which roots in the DBF and targets on dynamic incremental set. TMBF uses multiple bit-strings in time order to present a dynamic increasing set and uses backward searching to test whether an element is in a set. Based on the system logs from a real P2P file sharing system, the evaluation shows a 20% reduction in searching cost compared to DBF.
  • Zhang, Y., Yurovsky, D., & Yu, C. (2015). Statistical word learning is a continuous process: Evidence from the human simulation paradigm. In D. Noelle, R. Dale, A. Warlaumont, J. Yoshimi, T. Matlock, C. D. Jennings, & P. P. Maglio (Eds.), Proceedings of the 37th Annual Meeting of the Cognitive Science Society (CogSci 2015) (pp. 2422-2427). Austin: Cognitive Science Society.

    Abstract

    In the word-learning domain, both adults and young children are able to find the correct referent of a word from highly ambiguous contexts that involve many words and objects by computing distributional statistics across the co-occurrences of words and referents at multiple naming moments (Yu & Smith, 2007; Smith & Yu, 2008). However, there is still debate regarding how learners accumulate distributional information to learn object labels in natural learning environments, and what underlying learning mechanism learners are most likely to adopt. Using the Human Simulation Paradigm (Gillette, Gleitman, Gleitman & Lederer, 1999), we found that participants’ learning performance gradually improved and that their ability to remember and carry over partial knowledge from past learning instances facilitated subsequent learning. These results support the statistical learning model that word learning is a continuous process.

Share this page